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A COMPLEXITY CHARACTERISTIC OF
PETRI NET LANGUAGES

PHAM TRA AN

Abstract. A new complexity characteristic of Petri net languages is
introduced. Some necessary conditions for Petri net languages are estab-
lished and a series of simple languages not acceptable by Petri nets are
given.

1. Introduction

The notion of Petri net was first introduced by C. A. Petri in his model
of parallel and distributed computing systems. In the past few years, the
theory and application of Petri nets were investigated extensively by many
authors, (see, for example, [11, 12, 13, 14, 15]).

In this paper we are concerned with a new complexity characteristic
of Petri net languages. Analogous complexity characteristics were earlier
considered, for instance, by Myhill-Nerode for the languages of finite au-
tomata [1], by S. N. Cole for iterative array of finite automata languages
[2], by Phan Dinh Dieu and the author of the present paper for proba-
bilistic finite automaton and probabilistic automaton with a time-variant
structure languages [3, 4, 5].

The definitions of Petri nets and of languages acceptable by them are
recalled in Section 2. In Section 3, a new complexity characteristic of Petri
net languages is introduced. An estimation of this characteristic allows
us to formulate some necessary conditions for Petri net languages from
which a series of rather simple languages not acceptable by Petri nets is
derived. The proof of the above mentioned necessary conditions are given
in Section 4. Finally, in Section 5, some extensions are considered.
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2. Notations and definitions

We first recall some necessary notions and definitions. For a finite
alphabet Σ, Σ∗ (Σr) denotes the set of all words (resp. of all words
of length r) in the alphabet Σ. Let Λ denote the empty word. For any
word ω ∈ Σ∗, l(ω) denotes the length of ω. Every subset L ⊆ Σ∗ is called
a language over the alphabet Σ. Let N be the set of all non-negative
integers and N+ = N\{0}.

Definition 1. A free-labeled Petri net N is given by a list

N = (P, T, I, O, µ0,Mf ),

where
P = {p1, ..., pn} is a finite set of places;
T = {t1, ..., tm} is a finite set of transitions, P ∩ T = ∅;
I : P × T → N is the input function;
O : T × P → N is the output function;
µ0 : P → N is the initial marking;
Mf = {µf1 , ..., µfk

} is a finite set of final marking.

Definition 2. A marking µ (global configuration) of a Petri net N is a
function µ : P → N from the set of places to N.

The marking µ can also be defined as a n-vector µ = (µ1, . . . , µn) with
µi = µ(pi) and |P | = n.

Definition 3. A transition t ∈ T is said to be firable at the marking µ iff

∀p ∈ P : µ(p) ≥ I(p, t).

Let t be firable at µ and if t fires, then the Petri net N shall change its
state from marking µ to a new marking µ′ which is defined as follows:

∀p ∈ P : µ′(p) = µ(p)− I(p, t) + O(t, p).

We set δ(µ, t) = µ′ and the function δ is said to be the function of changing
state of the net.

A firing sequence can be defined as a sequence of transitions such that
the firing of each its prefix will be led to a marking at which the following
transition will be firable. By FN we denote the set of all firing sequences
of the net N .
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We now extend the function δ for a firing sequence by induction as
follows.

Let t ∈ T ∗, tj ∈ T, µ be a marking, at which ttj is a firing sequence,
then {

δ(µ, Λ) = µ

δ(µ, ttj) = δ(δ(µ, t), tj).

Definition 4. The language acceptable by free-labeled Petri net N is the
set:

L(N ) = {t ∈ T ∗
∣∣(t ∈ FN ) ∧ (δ(µ0, t) ∈ Mf )},

The set of all free-labeled Petri net languages is denoted by Lf .

3. A complexity characteristic of
free-labeled petri net languages

Let L ⊆ Σ∗. We define Er (mod L) to be an equivalence relation in Σr

given by

x1Erx2 (mod L) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L

for all x1, x2 ∈ Σr.
It is easy to show that the relation Er (mod L) is reflexive, symmetric

and transitive. Therefore, it is an equivalence relation in Σr.
We define the function HL(r) to be the number of equivalence classes

determined by the relation Er (mod L) in Σr, i.e.

HL(r) = Rank Er(mod L)

Remark that the function HL(r) is not given by an algorithm in general.
Nevertheless, we call HL(r) a function. The function HL(r) is considered
to be a complexity characteristic of the language L over Σr and in the
sequel, we shall use it for formulating some necessary conditions for Petri
net languages.

First we consider the case of Lf (class of free-labeled languages), and
then in the Section 5 we shall consider the case of labeled Petri net lan-
guages.

Theorem 1. Let L ∈ Lf be accepted by a free-labeled Petri net with m
transitions. Then, there exists a polynomial Pm of degree m such that for
any integer r ≥ 1, we have

HL(r) ≤ Pm(r).
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The proof of Theorem 1 will be presented in Section 4.
By using the above necessary condition, we can give many simple ex-

amples of languages which do not belong to the class of free-labeled Petri
net languages.

Example 1. Let Σ be an alphabet consisting of k ≥ 2 letters and

L1 = {xx
∣∣x ∈ Σ∗}.

We shall prove that L1 /∈ Lf . First we will show that if x1, x2 ∈ Σr,
x1 6= x2, then x1Erx2 (mod L1). In fact, assume to the contrary that
there exists x1, x2 ∈ Σr, x1 6= x2, but x1Erx2 (mod L1). According to the
definition of Er (mod L1) we have

∀ω ∈ Σ∗ : x1ω ∈ L1 ↔ x2ω ∈ L1

Now if we choose ω = x1, then

x1x1 ∈ L1 but x2x1 /∈ L1

This contracdicts the hypothesis x1Erx2 (mod L1), so if x1 6= x2 then
x1Erx2 (mod L1). In the other word, HL1(r) = Rank Er(mod L1) is equal
at least the cardinality of the set Σr, i.e. HL1(r) ≥ kr. For any m ∈ N+,
if we take r enough large, we shall have

HL1(r) ≥ kr ≥ Pm(r) (k ≥ 2).

According to the Theorem 1, the language L1 /∈ Lf .

Example 2. Let Σ be an alphabet consisting of k ≥ 2 letters and

L2 = {xxR
∣∣x ∈ Σ∗},

where xR is the inverse image of x. If x = x1x2 . . . xj , then xR =
xjxj−1 . . . x1.

Example 3. Let Σ = {0, 1, a} and

L3 = {ωak
∣∣ω ∈ {0, 1}∗, k = B(ω)},
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where B(ω) is the integer represented by ω as a binary number. By an
argument analogous to that in Example 1, it is easy to show that L2 /∈ Lf

and L3 /∈ Lf .

Example 4. Let Σ be an alphabet consisting k ≥ 2 letters and

L4,l = {τ1τ2 · · · τnτ0

∣∣∀i : τi ∈ Σ∗, l(τi) = l = const; ∃τi = τ0}.

We shall prove that for l enough large, L4,l /∈ Lf . In fact, each subset
W = {P1, P2, · · · , Pq} ⊆ Σl is associated with a word

α(W ) = P1P2 · · ·Pq Pq · · ·Pq︸ ︷︷ ︸
kl−qtimes

∈ Σr, r = l.kl.

It is easy to verify that

α(W )ω ∈ L4,l ↔ ω ∈ W.

Thus, if W1 6= W2 then α(W1)Erα(W2) (mod L4,l). Therefore, HL4,l
(r) ≥

2kl

= Cr with C = 2
1
l because r = l.kl. So, r is enough large when l is

enough large and we have

HL4,l
≥ Cr ≥ Pm(r).

According to Theorem 1, the language L4,l /∈ Lf .

Finally, we extend the range of application for Theorem 1.

Let Σ≤r =
r⋃

i=1

Σi, and L ⊆ Σ∗. We define the equivalence relation

E≤r (mod L) by

x1E≤rx2 (mod L) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L

for all x1, x2 ∈ Σ≤r and GL(r) = Rank E≤r (mod L) in Σ≤r.

Theorem 1 now will be extended as follows.

Theorem 2. Let L ∈ Lf be accepted by a free-labeled Petri net with m
transitions. Then, there exists a polynomial Pm+1 of degree m + 1 such
that for any integer r ≥ 1, we have

GL(r) ≤ Pm+1(r).
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The proof of Theorem 2 will be presented at the end of Section 4.

Example 5. Let Σ be an alphabet consisting k ≥ 2 letters and c /∈ Σ.
We define

L5,l = {τ1cτ2c · · · cτncτ0/∀i : τi ∈ Σ∗, l(τi) ≤ l = const; ∃τi = τ0}.

Using Theorem 2 we shall prove that L5,l /∈ Lf for l enought large. As in
Example 4, each subset W = {P1, P2, · · · , Pq} ⊆ Σ≤l is associated with a
word

α(W ) = P1cP2c · · · cPqc ∈ Σ≤r,

where r = (|Σ≤l|)(l + 1) =
(k(kl − 1)

k − 1
)
(l + 1) with k = |Σ|. It is easy to

see that
α(W )ω ∈ L5,l ↔ ω ∈ W

Therefore
GL5,l

(r) ≥ 2|Σ
≤l| = 2

1
l+1 (|Σ≤l|)(l+1) = Cr

with C = 2
1

l+1 . Thus, if l is enough large then so does r and we have

GL5,l
≥ Cr ≥ Pm+1(r).

According to Theorem 2, L5,l /∈ Lf .

4. Proofs of theorems 1 and 2

Proof of Theorem 1. The proof is divided into 4 steps:
Step 1: Establishing an equation of changing state of a Petri net. Let

N = (P, T, I, O, µ0,Mf ), where |P | = n; |T | = m. We define the matrices
I− , O+ , D as follows:

I−[j, i] = (I(pi, tj))m×n,

O+[j, i] = (O(tj , pi))m×n,

D = O+ − I−,

and set:
e[j] = (0, · · · , 0, 1︸︷︷︸

j−th

, 0, · · · , 0)1×m.

It is easy to verify the following properties:
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• Transition tj is firable at marking µ if

µ ≥ e[j]I−.

• The result of firing for firable transition tj at marking µ is

µ′ = δ(µ, tj) = µ− e[j]I− + e[j]O+ = µ + e[j]D.

• The result of firing for a firing sequence of transitions x = tj1tj2 · · · tjr

is
µ′ = δ(µ, x) = µ + e[j1]D + · · ·+ e[jr]D.

We set e[j]D = νj , j = 1, · · · ,m = |T |, and fj is the number of times
the transition tj occurs in x. We can now express the equation of changing
state in the following form

µ′ = δ(µ, x) = µ +
m∑

j=1

fjνj(1)

m∑

j=1

fj = r(2)

Step 2: Estimating the number of reachable states of a Perti net after a
sequence of r transitions fired. Let Sr denote the set of all reachable states
after firing r transitions of a Petri net. From the system of equations (1) -
(2) it is clear that |Sr| equals at most the number of non-negative integer

solutions of the equation
m∑

j=1

fj = r. Each distinct solution of the equation

m∑
j=1

fj = r is one-to-one associated with an unordered repetition sample of

size r from m-element set {f1, f2, . . . , fm}. It follows that the number of

distinct solutions of
m∑

j=1

fj = r equals the number of unordered repetion

samples of size r from m-element set and equals

Cr
m+r−1 =

(m + r − 1)!
(m− 1)!r!

=
(m + r − 1) · · · (r + 1)

(m− 1)!
≤ (m + r)m.

Therefore |Sr| ≤ Pm(r).

Step 3: Extending the partial function δ to a total function over T r. We
assume that µ is fixed, x ∈ T r, and we remark that the function δ(µ, x) is
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only defined with firing sequence x of N . We could extend δ to a totally
defined δ̃ by adding a new marking µε defined as follows
• If x is a firing sequence of N at µ, then

δ̃(µ, x) = δ(µ, x).

• If x is not a firing sequence of N at µ, then

δ̃(µ, x) = µε.

• For all x ∈ T r, δ̃(µε, x) = µε.
• µε /∈ Mf .

Set S̃r = Sr ∪ {µε}. Then δ̃ is a totally defined funtion from T r into
S̃r and |S̃r| = |Sr|+ 1. Hence |S̃r| ≤ Pm(r).

Step 4: Proving the inequality HL(r) ≤ |S̃r|. Assume to the contrary
that HL(r) > |S̃r|, where L = L(N ). There exist x1, x2 ∈ T r such
that x1Erx2 (mod L) and δ̃(µ0, x1) = δ̃(µ0, x2). It follows from the last
equation that both x1, x2 are (or are not) firing sequences and we could
verify that

∀ω ∈ T ∗ : x1ω ∈ L ↔ x2ω ∈ L.

According to the definition, it follows that x1Erx2 (mod L) which contra-
dicts the hypothesis x1Erx2 (mod L). Therefore

HL(r) ≤ |S̃r| ≤ Pm(r).

So Theorem 1 is proved.

Proof of Theorem 2. In this case, the equation of state change (1)-(2) has
the following form

µ′ = δ(µ, x) = µ +
m∑

j=1

fjνj ,(1)

m∑

j=1

fj ≤ r.(3)

We can prove that the number of distinct solutions of the equation
m∑

j=1

fj ≤ r equals the one of the equation
m+1∑
j=1

fj = r and equals

Cr
(m+1)+r−1 ≤ Pm+1(r).
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We set S≤r =
r⋃

i=1

Si. It follows that

|S≤r| = Pm+1(r).

The rest of the proof is analogous to that of Theorem 1.

5. An extension to labeled petri net languages

We recall some definitions for labeled Petri net.

Definition 5. A labeled Petri net is a system

N =< P, T, I, O, σ, µ0,Mf >,

where P, T, I, O, µ0,Mf are the sames in the Definition 1.
Let σ : T → Σ, where Σ is a finite alphabet (output alphabet). We

also extend the function σ for a firing sequence as follows:

if t = t1t2...tn then σ(t) = σ(t1)σ(t2)...σ(tn).

Definition 6. The language acceptable by labeled Petri net N is a set

L(N ) = {x ∈ Σ∗/∃t ∈ T ∗ : (x = σ(t)) ∧ (t ∈ FN ) ∧ (δ(µ0, t) ∈ Mf )}.

The set of all labeled Petri net languages is denoted by L. It is clear that
Lf ⊆ L.

Now we generalize Theorems 1 and 2 for labeled Petri net languages.

Theorem 3. If L ∈ L be accepted by a labeled Petri net with m transitions.
Then, there exist polynomials Pm and Pm+1 such that for any integer
r ≥ 1, we have

HL(r) ≤ Pm(r),

GL(r) ≤ Pm+1(r).

Proof (Sketch). It consists of the following steps:
• Remark that σ is a non-erasing mapping. If x = σ(t), then l(x) = l(t).

Let Sr denote the set of all reachable marking after firing r transitions

and S≤r =
r⋃

i=1

Si, S̃r = Sr ∪ {µε}. Let µε be a new added marking,

µε /∈ Sr; S̃≤r = S≤r ∪ {µε}.
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• From σ−1 : Σr → T r and δ̃ : T r → S̃r we define ∆ : Σr → S̃r by
∆ = δ̃.σ−1. The mapping ∆ may not be defined over all Σr. We could
extend ∆ to a totally defined function ∆̃ as follows. For any x ∈ Σr, if
σ−1(x) exists then

∆̃(µ0, x) = δ̃(µ0, σ
−1(x)).

If σ−1(x) does not exist then

∆̃(µ0, x) = µε.

• From the inequalities |S̃r| ≤ Pm(r) , |S̃≤r| ≤ Pm+1 and arguing as in
proof of Theorems 1 and 2 we can prove that

HL(r) ≤ |S̃r| ≤ Pm(r),

GL(r) ≤ |S̃≤r| ≤ Pm+1(r).

The proof is completed.

As an immediate consequence of Theorem 3 and of the estimate of the
functions HL1(r), HL2(r), HL3(r), HL4,l

(r) and GL5,l
(r) in Section 3, we

can see that the languages L1, L2, L3, L4,l, L5,l do not belong to L.
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