A UNIQUE RANGE SET OF P-ADIC MEROMORPHIC FUNCTIONS WITH 10 ELEMENTS

PEI-CHU HU AND CHUNG-CHUN YANG

Abstract. In this paper, we will exhibit a unique range set for p-adic meromorphic functions with 10 elements.

1. Introduction

For a non-constant meromorphic function f on \mathbb{C} and a set $S \subset \mathbb{C} \cup \{\infty\}$ we define

$$E_f(S) = \bigcup_{a \in S} \{mz \mid f(z) = a \text{ with multiplicity } m\}.$$

A set $S \subset \mathbb{C} \cup \{\infty\}$ is called an unique range set for meromorphic functions (URSM) if for any pair of non-constant meromorphic functions f and g on \mathbb{C}, the condition $E_f(S) = E_g(S)$ implies $f = g$. A set $S \subset \mathbb{C} \cup \{\infty\}$ is called an unique range set for entire functions (URSE) if for any pair of non-constant entire functions f and g on \mathbb{C}, the condition $E_f(S) = E_g(S)$ implies $f = g$. Gross and Yang [4] showed that the set

Received June 28, 1997

The work of the first author was partially supported by a Post-doctoral Grant of China and the second author was partially supported by UGC Grant of Hong Kong.
\[S = \{ z \in \mathbb{C} \mid z + e^z = 0 \} \]

is a URSE. Recently, URSE and also URSM with finitely many elements have been found by Yi [13, 14], Li and Yang [10, 11], Mues and Reinders [12], Frank and Reinders [3], Hu and Yang [5]. Li and Yang [10] introduced the notation

\[\lambda_M = \inf \{ \# S \mid S \text{ is a URSM } \}, \]
\[\lambda_E = \inf \{ \# S \mid S \text{ is a URSE } \}, \]

where \#S is the cardinality of the set S. The best lower and upper bounds known so far are

\[5 \leq \lambda_E \leq 7, \quad 6 \leq \lambda_M \leq 11. \]

For \(p \)-adic meromorphic (or entire) function \(f \) on \(\mathbb{C}_p \), we can similarly define \(E_f(S) \) for a set \(S \subseteq \mathbb{C}_p \cup \{ \infty \} \), and introduce the notation \(\lambda_M \) and \(\lambda_E \). In [6] we obtained \(\lambda_E \leq 4 \) for \(p \)-adic entire functions and \(\lambda_M \leq 12 \) for \(p \)-adic meromorphic functions. W. Cherry ask us whether the Frank-Reinders’ method gives a \(p \)-adic URSM with 10 elements by using the \(-\log r \) term in their second main theorem. In this paper, we will give a confirmed answer to Cherry’s question, i.e., \(\lambda_M \leq 10 \) for \(p \)-adic meromorphic functions.

2. Nevanlinna Theory of \(p \)-adic Meromorphic Functions

Let \(p \) be a prime number, let \(\mathbb{Q}_p \) be the field of \(p \)-adic numbers, and let \(\mathbb{C}_p \) be the \(p \)-adic completion of the algebraic closure of \(\mathbb{Q}_p \). The absolute value \(| \cdot |_p \) in \(\mathbb{C}_p \) is normalized so that \(| p |_p = p^{-1} \). We further use the notion \(ord_p \) for the additive valuation on \(\mathbb{C}_p \).

Recall that in a metric space whose metric comes from a Non-Archimedean norm, a sequence is Cauchy if and only if the difference between adjacent terms approaches zero; and if the metric space is complete, an infinite sum converges if and only if its general term approaches zero. So if we consider expressions of the form

\[f(Z) = \sum_{n=0}^{\infty} a_n Z^n, \quad (a_n \in \mathbb{C}_p), \]

we can give a value \(\sum_{n=0}^{\infty} a_n z^n \) to \(f(z) \) whenever an \(z \) substituted for \(Z \) for which

\[| a_n z^n |_p \to 0. \]
Define the “radius ρ of convergence” by

$$\frac{1}{\rho} = \lim_{n \to \infty} \sup \left| a_n \right|^{1/n}.$$

Then the series converges if $|z|_p < \rho$ and diverges if $|z|_p > \rho$. Also the function $f(z)$ is said to be p-adic analytic on $B(\rho)$, where

$$B(\rho) = \{ z \in \mathbb{C}_p \ | \ |z|_p < \rho \}.$$

If $\rho = \infty$, the function $f(z)$ also is said to be p-adic entire on \mathbb{C}_p.

Consider non-constant p-adic analytic function

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \ (a_n \in \mathbb{C}_p)$$

on $B(\rho)$ ($0 < \rho \leq \infty$). The essence of the Wiman-Valiron method is the analysis of the behaviour of the function by means of the maximum term:

$$\mu(r, f) = \max_{n \geq 0} |a_n|_p r^n \quad (0 < r = |z|_p < \rho)$$

together with the central index:

$$\nu(r, f) = \max\{n \ | \ |a_n|_p r^n = \mu(r, f)\}.$$

Define

$$\nu(0, f) = \lim_{r \to 0} \nu(r, f).$$

Lemma 2.1 ([6]). The central index $\nu(r, f)$ increases as $r \to \rho$, and satisfies the formula:

$$\log \mu(r, f) = \log |a_{\nu(0, f)}|_p + \int_{0}^{r} \frac{\nu(t, f) - \nu(0, f)}{t} dt + \nu(0, f) \log r. \quad (0 < r < \rho)$$

The following technical lemma can be found in [2]:

Lemma 2.2 (Weierstrass Preparation Theorem). There exists an unique monic polynomial P of degree $\nu(r, f)$ and a p-adic analytic function g on $B[r]$ such that $f = gP$, where

$$B[r] = \{ z \in \mathbb{C}_p \ | \ |z|_p \leq r \}. $$
Furthermore, g does not have any zero inside $B[r]$, and P has exactly $\nu(r, f)$ zeros, counting multiplicity, on $B[r]$.

Let $n(r, 1/f)$ denote the number of zeros (counting multiplicity) of f with absolute value $\leq r$ and define the **valence function** of f for 0 by

$$N(r, 1/f) = \int_0^r \frac{n(t, 1/f) - n(0, 1/f)}{t} dt + n(0, 1/f) \log r \quad (0 < r < \rho).$$

Lemma 2.2 shows that

$$n(r, 1/f) = \nu(r, f).$$

Then Lemma 2.1 imply the **Jensen formula**:

$$(1) \quad N(r, 1/f) = \log \mu(r, f) - \log |a_n(0, \frac{1}{f})|_p.$$

We also denote the number of distinct zeros of f on $B[r]$ by $\pi(r, 1/f)$ and define

$$\overline{N}(r, 1/f) = \int_0^r \frac{\pi(t, 1/f) - \pi(0, 1/f)}{t} dt + \pi(0, 1/f) \log r \quad (0 < r < \rho).$$

For each n we draw the graph $\gamma_n(t)$ which depicts $ord_p(a_n z^n)$ as a function of $t = ord_p(z)$. Then $\gamma_n(t)$ is a straight line with slope n. Let $\gamma(t, f)$ denote the boundary of the intersection of all of the half-planes lying under the lines $\gamma_n(t)$. This line is what we call the Newton polygon of the function $f(z)$ (see [9]). The points t at which $\gamma(t, f)$ has vertices are called the **critical points** of $f(z)$. A finite segment $[\alpha, \beta]$ contains only finitely many critical points. It is clear that if t is a critical point, then $ord_p(a_n) + nt$ attains its minimum at least at two values of n. Obviously, we have

$$\mu(r, f) = p^{-\gamma(t,f)},$$

where $r = p^{-t}$. A basic property of the Newton polygon is that, if $t = ord_p(z)$ is not a critical point, then

$$|f(z)|_p = p^{-\gamma(t,f)},$$
which implies
\[|f(z)|_p = \mu(r, f). \]
Further, we note that if \(h \) is another \(p \)-adic analytic function on \(B(\rho) \), then
\[(2) \quad \mu(r, fh) = \mu(r, f)\mu(r, h). \]

By a meromorphic function \(f \) on \(B(\rho) \) we will mean the quotient \(\frac{g}{h} \) of two \(p \)-adic analytic functions \(g \) and \(h \) such that \(g \) and \(h \) have not any common factors in the ring of \(p \)-adic analytic functions on \(B(\rho) \). Note that (2) hold and that greatest common divisors of any two \(p \)-adic analytic functions exist. We can uniquely extend \(\mu \) to meromorphic function \(f = \frac{g}{h} \) by defining
\[\mu(r, f) = \frac{\mu(r, g)}{\mu(r, h)}. \]
Also set
\[\gamma(t, f) = \gamma(t, g) - \gamma(t, h). \]
It is clear that, if \(t = \text{ord}_p(z) \) is not a critical point for \(f(z) \), i.e., \(t \) is not a critical point for either \(g(z) \) or \(h(z) \), then
\[|f(z)|_p = p^{-\gamma(t, f)} = \mu(r, f). \]

Define the counting function \(n(r, f) \) and the valence function \(N(r, f) \) of \(f \) for poles respectively by
\[n(r, f) = n\left(r, \frac{1}{h}\right), \quad N(r, f) = N\left(r, \frac{1}{h}\right). \]
Then applying (1) for \(g \) and \(h \), we obtain the Jensen formula:
\[(3) \quad N\left(r, \frac{1}{f}\right) - N(r, f) = \log \mu(r, f) - C_f, \]
where \(C_f \) is a constant depending only on \(f \). Define
\[m(r, f) = \log^+ \mu(r, f) = \max\{0, \log \mu(r, f)\}. \]
Finally, we define the characteristic function:
\[T(r, f) = m(r, f) + N(r, f). \]
Here we exhibit some basic facts which will be used in the following sections.

Lemma 2.3 (First Main Theorem, cf. [1, 9]). Let f be a non-constant meromorphic function in $B(\rho)$. Then for every $a \in \mathbb{C}_\rho$ we have

$$m\left(r, \frac{1}{f-a}\right) + N\left(r, \frac{1}{f-a}\right) = T(r, f) + O(1) \quad (r \to \rho).$$

Lemma 2.4 (The Lemma of Logarithmic Derivative, cf. [1, 2, 9]). Let f be a nonconstant meromorphic function in $B(\rho)$. Then

$$m\left(r, \frac{f'}{f}\right) = O(1) \quad (r \to \rho).$$

Lemma 2.5 (Second Main Theorem, cf. [1, 2, 9]) Let f be a non-constant meromorphic function in $B(\rho)$ and let a_1, \ldots, a_q be distinct numbers of \mathbb{C}_ρ. Then

$$(q - 1)T(r, f) \leq N(r, f) + \sum_{j=1}^q N\left(r, \frac{1}{f-a_j}\right) - N_1(r, f) - \log r + O(1),$$

where

$$N_1(r, f) = 2N(r, f) - N(r, f') + N\left(r, \frac{1}{f'}\right).$$

Furthermore, we have

$$N(r, f) + \sum_{j=1}^q N\left(r, \frac{1}{f-a_j}\right) - N_1(r, f) \leq N(r, f) + \sum_{j=1}^q N\left(r, \frac{1}{f-a_j}\right) - N_0\left(r, \frac{1}{f'}\right),$$

where

$$N_0\left(r, \frac{1}{f'}\right) \text{ is the valence function of the zeros of } f' \text{ where } f \text{ does not take one of the values } a_1, \ldots, a_q, \text{ and where}$$

$$\Theta_f(a) = 1 - \lim_{r \to \infty} \sup \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)}.$$
3. Uniqueness of \(p \)-adic meromorphic functions

We recall the following useful facts:

Lemma 3.1 ([2]). If \(f \) is a \(p \)-adic entire function on \(\mathbb{C}_p \) that is never zero, then \(f \) is constant.

Lemma 3.2 ([6]). Let \(f \) be a non-constant \(p \)-adic meromorphic functions on \(\mathbb{C}_p \). Take a positive integer \(n \), \(\{a_0, a_1, ..., a_n\} \subset \mathbb{C}_p \) with \(a_0 \neq 0 \) and set
\[
L[f] = a_0 f^n + a_1 f^{n-1} + \cdots + a_n.
\]
Then
\[
T(r, L[f]) = nT(r, f) + O(1).
\]

Theorem 3.1. Take integer \(n \geq 10 \) and let \(b \in \mathbb{C}_p - \{0, -1\} \). Then the polynomial \(P(z) \) defined by
\[
P(z) = \frac{(n-1)(n-2)}{2} z^n - n(n-2)z^{n-1} + \frac{n(n-1)}{2} z^{n-2} + b
\]
has only simple zeros, and if \(f \) and \(g \) are non-constant \(p \)-adic meromorphic functions on \(\mathbb{C}_p \) such that \(E_f(S) = E_g(S) \), then \(f \equiv g \), where
\[
S = \{ z \in \mathbb{C}_p \mid P(z) = 0 \}.
\]

Proof. Write \(S = \{r_1, r_2, ..., r_n\} \) and define
\[
Q(z) = \frac{(n-1)(n-2)}{2} z^2 - n(n-2)z + \frac{n(n-1)}{2}.
\]
By two main theorems, we have the estimate
\[
(n-2)T(r, g) \leq \sum_{k=1}^{n} N\left(r, \frac{1}{g - r_k}\right) - \log r + O(1)
\]
\[
= \sum_{k=1}^{n} N\left(r, \frac{1}{f - r_k}\right) - \log r + O(1)
\]
\[
\leq nT(r, f) - \log r + O(1).
\]
Similarly we can obtain the estimate
\[
(n-2)T(r, f) \leq nT(r, g) - \log r + O(1).
\]
Define
\[h_1 = \frac{1}{b} f^{n-2} Q(f), \quad h_2 = \frac{h_3}{b} g^{n-2} Q(g), \quad h_3 = \frac{P(f)}{P(g)}. \]

Then we have
\[h_1 + h_2 + h_3 = 1. \]

Write \(f = f_1 f_2 \) and \(g = g_1 g_2 \), where pairs \(f_1, f_2 \) and \(g_1, g_2 \) are \(p \)-adic entire functions on \(\mathbb{C}_p \) without common factors, respectively. Then
\[h_3 = c \left(\frac{g_2}{f_2} \right)^n, \quad c = \frac{P(f) f_2^n}{P(g) g_2^n}. \]

Note that \(c \) is an \(p \)-adic entire function on \(\mathbb{C}_p \) which is never zero, and hence is constant. Thus we have
\[\overline{N}(r, h_3) \leq \overline{N}(r, f), \quad \overline{N}(r, \frac{1}{h_3}) \leq \overline{N}(r, g). \]

In the following, we will prove \(h_3 \equiv 1 \).

Assume, to the contrary, that \(h_3 \not\equiv 1 \). First we prove that \(h_1 \) cannot be expressed linearly by \(\{1, h_3\} \) and \(\{1, h_2\} \), respectively. Assume that we have a linear expression
\[h_1 = a_1 h_3 + a_2, \quad a_1, a_2 \in \mathbb{C}_p. \]

Since \(h_1 \) is not constant, then \(a_1 \neq 0 \), and \(h_3 \) is not constant. If \(a_2 \neq 0 \), then the second main theorem implies
\[
nT(r, f) = T(r, h_1) + O(1) \\
\leq \overline{N}(r, \frac{1}{h_1}) + \overline{N}(r, h_1) + \overline{N}(r, \frac{1}{h_1 - a_2}) - \log r + O(1) \\
\leq \overline{N}(r, \frac{1}{f}) + \overline{N}(r, \frac{1}{Q(f)}) + \overline{N}(r, f) + \overline{N}(r, \frac{1}{h_3}) - \log r + O(1) \\
\leq 4T(r, f) + \overline{N}(r, g) - \log r + O(1) \\
\leq 4T(r, f) + T(r, g) - \log r + O(1) \\
\leq \left(4 + \frac{n}{n-2} \right) T(r, f) - \log r + O(1),
\]
which yields \(n < 5 + \frac{2}{n-2} \), a contradiction! If \(a_2 = 0 \), setting

\[
Q(z) = \frac{(n-1)(n-2)}{2}(z-s_1)(z-s_2),
\]

then by \(h_1 = a_1 c \left(\frac{g_2}{f_2} \right)^n \), we see

\[
N \left(r, \frac{1}{f} \right) \geq \frac{n}{2} N \left(r, \frac{1}{f} \right), \quad N \left(r, \frac{1}{f-s_j} \right) \geq n N \left(r, \frac{1}{f-s_j} \right), \quad j = 1,2.
\]

Then

\[
\Theta_f(s_j) = 1 - \lim_{r \to \infty} \sup \frac{N \left(r, \frac{1}{f-s_j} \right)}{T(r,f)} \geq 1 - \frac{1}{n} (j = 1,2), \quad \Theta_f(0) \geq 1 - \frac{2}{n},
\]

and again by the second main theorem,

\[
1 - \frac{2}{n} + 2(1 - \frac{1}{n}) \leq \Theta_f(0) + \sum_{j=1}^{2} \Theta_f(s_j) \leq 2.
\]

This is impossible since \(n \geq 10 \).

Assume that we have a linear expression

\[
h_1 = b_1 h_2 + b_2, \quad b_1, b_2 \in \mathbb{C}_p.
\]

Since \(h_1 \) is not constant, then \(b_1 \neq 0 \), and \(h_2 \) is not constant. If \(b_2 \neq 0 \), then the second main theorem implies

\[
nT(r, f) = T(r, h_1) + O(1)
\]

\[
\leq N \left(r, \frac{1}{h_1} \right) + N(r, h_1) + N \left(r, \frac{1}{h_1-b_2} \right) - \log r + O(1)
\]

\[
\leq N \left(r, \frac{1}{f} \right) + N \left(r, \frac{1}{Q(f)} \right) + N(r, f) + N \left(r, \frac{1}{h_2} \right) - \log r + O(1)
\]

\[
\leq 4T(r, f) + N \left(r, \frac{1}{g} \right) + N \left(r, \frac{1}{Q(g)} \right) - \log r + O(1)
\]

\[
\leq 4T(r, f) + 3T(r, g) - \log r + O(1)
\]

\[
\leq (4 + \frac{3n}{n-2})T(r, f) - \log r + O(1),
\]
which yields $n < 7 + \frac{6}{n - 2}$, a contradiction! If $b_2 = 0$, then we have $(1 + \frac{1}{b_1})h_1 + h_3 = 1$ which is impossible. Thus we proved the claim. In consequence, h_2 and h_3 are not constant.

Define
\[F = \frac{1}{P(f)}, \quad G = \frac{1}{P(g)}. \]

If $1, F, G$ are linearly independent, then
\[H = \frac{F''}{F'} - \frac{G''}{G'} = -\frac{W}{F'G'} \neq 0, \]

where W is the Wronskian of $1, F, G$. Note that poles of H can only occur where F' or G' has a zero. We write $N_0(r, \frac{1}{F'})$ for the valence function of the zeros of F' where F does not take one of the values $A_1 = 0$, $A_2 = \frac{1}{b}$ and $A_3 = \frac{1}{b + 1}$. $N_0(r, \frac{1}{G'})$ is defined analogously. Then
\[
N(r, H) \leq \sum_{j=1}^{3} \left\{ N_2 \left(r, \frac{1}{F - A_j} \right) - N \left(r, \frac{1}{F - A_j} \right) \\
+ N_2 \left(r, \frac{1}{G - A_j} \right) - N \left(r, \frac{1}{G - A_j} \right) \right\} \\
+ N_0 \left(r, \frac{1}{F'} \right) + N_0 \left(r, \frac{1}{G'} \right),
\]

where $N_k(r, f)$ is the valence function of f which counts a pole according to its multiplicity if the multiplicity is less than or equal to k and counts a pole k times if its multiplicity is great than k. Note that H has a zero at every point where F and G have a simple pole. It follows that
\[
\overline{N}(r, F) + \overline{N}(r, G) \leq N \left(r, \frac{1}{H} \right) + \frac{1}{2} \{ N(r, F) + N(r, G) \}.
\]

By the first main theorem and the lemma of logarithmic derivatives, we see
\[
\overline{N}(r, F) + \overline{N}(r, G) \leq N(r, H) + \frac{1}{2} \{ T(r, F) + T(r, G) \} + O(1).
\]
The second main theorem applied to F and G gives

$$2\{T(r, F) + T(r, G) + \log r\} \leq \sum_{j=1}^{3} \left\{ \mathcal{N}\left(r, \frac{1}{F - A_j}\right) + \mathcal{N}\left(r, \frac{1}{G - A_j}\right) \right\}$$

$$+ \mathcal{N}(r, F) + \mathcal{N}(r, G) - N_0\left(r, \frac{1}{F'}\right)$$

$$- N_0\left(r, \frac{1}{G'}\right) + O(1).$$

Hence we obtain

$$\frac{3}{2} \{T(r, F) + T(r, G)\} + 2\log r \leq \sum_{j=1}^{3} \left\{ N_2\left(r, \frac{1}{F - A_j}\right) + N_2\left(r, \frac{1}{G - A_j}\right) \right\} + O(1).$$

Since

$$P'(z) = \frac{n(n-1)(n-2)}{2} z^{n-3}(z - 1)^2,$$

we have $P(1) = 1 + b$ with multiplicity 3 and $P(0) = b$ with multiplicity $n - 2$. Therefore we can write

$$P(z) - b - 1 = (z - 1)^3 Q_1(z), \quad Q_1(1) \neq 0,$$

$$P(z) - b = z^{n-2} Q(z), \quad Q(0) \neq 0,$$

where $Q_1(z)$ is a polynomial of degree $n - 3$, having only simple zeros. For every $a \in \mathbb{C}_p - \{b, b + 1\}$, $P(z) - a$ has only simple zeros. In particular, $P(z)$ has only simple zeros and thus S has exactly n elements. From the first main theorem we conclude that

$$N_2\left(r, \frac{1}{F - A_1}\right) = N_2\left(r, P(f)\right) = 2\mathcal{N}(r, f)$$

$$\leq 2T(r, f) + O(1),$$

$$N_2\left(r, \frac{1}{F - A_2}\right) = N_2\left(r, \frac{1}{P(f) - b}\right) \leq N_2\left(r, \frac{1}{f}\right) + N_2\left(r, \frac{1}{Q(f)}\right)$$

$$\leq 4T(r, f) + O(1),$$

$$N_2\left(r, \frac{1}{F - A_3}\right) = N_2\left(r, \frac{1}{P(f) - b - 1}\right)$$

$$\leq 2\mathcal{N}\left(r, \frac{1}{f - 1}\right) + N_2\left(r, \frac{1}{Q_1(f)}\right)$$

$$\leq (n - 1)T(r, f) + O(1).$$
It follows that
\[\sum_{j=1}^{3} N_{2j}(r, \frac{1}{F - A_j}) \leq (n + 5)T(r, f) + O(1) = (1 + \frac{5}{n})T(r, F) + O(1), \]
and the same inequality holds with \(f \) and \(F \) replaced by \(g \) and \(G \). Thus we would get \(\frac{3}{2} < 1 + \frac{5}{n} \), and hence \(n < 10 \) which is a contradiction to our assumptions. It follows that \(1, F, G \) are linearly dependent. Then there exists \((c_1, c_2, c_3) \in \mathbb{C}_p^3 - \{0\}\) such that
\[c_1 + c_2 F + c_3 G = 0, \]
and hence
\[-bc_1 h_1 + c_3 h_3 = -bc_1 - c_2. \]
This is impossible.

Therefore we must have \(h_3 = 1 \), i.e. \(P(f) = P(g) \). Set \(h = \frac{f}{g} \). We see
\[\frac{(n - 1)(n - 2)}{2} (h^n - 1)g^2 - n(n - 2)(h^{n-1} - 1)g + \frac{n(n - 1)}{2} (h^{n-2} - 1) = 0. \]
If \(h \) is constant, (4) implies \(h^n - 1 = 0 \) and \(h^{n-1} - 1 = 0 \). It follows that \(h = 1 \) and hence \(f = g \).

It remains to consider the case that \(h \) is not constant. We write (4) in the form
\[((h^n - 1)g - \frac{n}{n - 1}(h^{n-1} - 1))^2 = -\frac{n}{(n - 1)^2(n - 2)^2} \varphi(h), \]
where \(\varphi \) is defined by
\[\varphi(z) = (n - 1)^2(z^n - 1)(z^{n-2} - 1) - n(n - 2)(z^{n-1} - 1)^2. \]
An elementary calculation gives
\[\varphi^{(k)}(1) = 0 \quad (0 \leq k \leq 3), \quad \varphi^{(4)}(1) = 2n(n - 1)^2(n - 2) \neq 0. \]
Hence we can write
\[\varphi(z) = (z - 1)^4(z - t_1)(z - t_2) \cdots (z - t_{2n-6}), \]
where \(t_1, \ldots, t_{2n-6} \in \mathbb{C}_p - \{1\} \). Now assume that
\[
\varphi(z) = \varphi'(z) = 0,
\]
for some \(z \in \mathbb{C}_p \). A simple calculation shows that \(z \) satisfies the following equation
\[
(n - 1)(n - 2)(z^n - 1) - 2n(n - 2)(z^{n-1} - 1) + n(n - 1)(z^{n-2} - 1) = 0.
\]
Hence \(\varphi \) has at least \((2n - 6) - (n - 1) = n - 5\) simple zeros in \(\mathbb{C}_p - \{1\} \), w.l.o.g., assume that \(t_1, \ldots, t_{n-5} \) are simple zeros of \(\varphi \). From (5) we see that
\[
\Theta_h(t_j) \geq \frac{1}{2} \quad (1 \leq j \leq n - 5).
\]
Thus the second main theorem yields
\[
2 \geq \sum_{j=1}^{n-5} \Theta_h(t_j) \geq \frac{n - 5}{2},
\]
and hence \(n \leq 9 \) in contradiction to our assumption \(n \geq 10 \). This complete the proof of the theorem. \(\square \)

References

5. P. C. Hu and C. C. Yang, Uniqueness of meromorphic functions on \(\mathbb{C}^m \), Complex Variables 30 (1996), 235-270.
8. Ha Huy Khoai, Heights for p-adic holomorphic functions of several variables, Max-Planck Institut Für Mathematik 89-83 (1989).
11. P. Li and C. C. Yang, *Some further results on the unique range sets of meromorphic functions*, Preprint.

Department of Mathematics
Shandong University
Jinan 250100, Shandong P. R. China

Department of Mathematics
The Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, Hong Kong