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ON CONTINUITY PROPERTIES OF THE SOLUTION
MAP IN QUADRATIC PROGRAMMING

NGUYEN NANG TAM

Abstract. We study in detail the lower semicontinuity and the upper
semicontinuity properties of the set-valued map (D,A,c,b) 7→ sol (D,A,c,b),
where sol(D,A,c,b) denotes the solution set of the quadratic programming
problem

Minimize f(x):=cT x+ 1
2 xT Dx subject to Ax≥b, x≥0.

In particular, a complete characterization for the lower semicontinuity of

the map sol(·) is obtained.

1. Introduction

Let there be given a matrix A ∈ Rm×n and a matrix D from the
subspace Rn×n

S of Rn×n formed by symmetric square matrices of the
order n. Let c ∈ Rn and b ∈ Rm. Consider the following quadratic
programming problem (P ):

Minimize f(x) := cT x +
1
2
xT Dx,

subject to Ax ≥ b, x ≥ 0.

(The superscript T stands for matrix transposition.) Let ∆(A, b),
sol (D, A, c, b), and S(D, A, c, b) denote the constraint set, the solution
set, and the Karush-Kuhn-Tucker points set of (P ), respectively. That is,

∆(A, b) = {x ∈ Rn : Ax ≥ b, x ≥ 0},
sol (D,A, c, b) = {x ∈ ∆(A, b) : f(x) ≤ f(y) for every y ∈ ∆(A, b)},
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and x ∈ S(D, A, c, b) iff there exists λ ∈ Rm such that

Dx−AT λ + c ≥ 0, Ax− b ≥ 0,(1.1)

x ≥ 0, λ ≥ 0,(1.2)

xT (Dx−AT λ + c) + λT (Ax− b) = 0.(1.3)

In [14], [15] we have studied the upper semicontinuity of the set-valued
map

(1.4) (D,A, c, b) 7→ S(D, A, c, b).

In this paper we will examine in detail the upper semicontinuity and the
lower semicontinuity properties of the solution map

(1.5) (D, A, c, b) 7→ sol (D, A, c, b).

If D is positive semidefinite then f(x) is a convex function,

sol (D, A, c, b) = S(D,A, c, b),

and (P ) is a convex quadratic programming problem. For convex qua-
dratic programming problems, continuity and/or differentiability proper-
ties of the solution map have been discussed, for example, in [2], [3], [4],
[6], [7], [8], [13].

When D is not assumed to be positive semidefinite, the objective func-
tion f(x) may be nonconvex, and it may happen that sol (D,A, c, b) 6=
S(D,A, c, b). For this general situation, results on characterizing continu-
ity and differentiability properties of the set-valued map (1.5) seem to be
very limited. We only know a sufficient condition for upper semicontinuity
of the solution map given in [10].

Section 2 of this paper is devoted to the study of the upper semiconti-
nuity of the map (1.5). In Section 3 we obtain a complete characterization
of the lower semicontinuity property of the solution map, our main result.

In what follows, the scalar product and the Euclidean norm in a finite
dimensional Euclidean space are denoted by 〈·T ·〉 and || · ||, respectively.
Vectors in Euclidean spaces are interpreted as columns-vectors. The no-
tation x ≥ y (resp., x > y) means that every component of x is greater
or equal (resp., greater) the corresponding component of y. For each
A ∈ Rm×n,

||A|| := max{||Ax|| : x ∈ Rn, ||x|| = 1}.
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For a matrix D ∈ Rn×n
S the norm ||D|| is defined similarly. Finally, let

E denote the unit matrix in Rn×n
S , and let the symbol |X| stand for the

number of elements in X if X is a finite set.

2. Upper semicontinuity of the solution map

The following is an adaptation of Definition 1.4.1 of [1] to the set-valued
map (1.5).

Definition 2.1. The solution map defined in (1.5) is said to be up-
per semicontinuous at (D, A, c, b) if for any open set Ω ⊂ Rn containing
sol(D, A, c, b), there exists δ > 0 such that sol(D′, A′, c′, b′) ⊂ Ω for every
(D′, A′, c′, b′) ∈ Rn×n

S ×Rm×n ×Rn ×Rm satisfying

max{||D′ −D||, ||A′ −A||, ||c′ − c||, |b′ − b||} < δ.

For the inequality system

(2.1) Ax ≥ b, x ≥ 0,

the notion of regularity from [11] (p.755) can be stated equivalently as
follows.

Definition 2.2. The system (2.1) is called regular if there exists x0 ∈ Rn

such that
Ax0 > b, x0 ≥ 0.

The next result is due to Nhan ([10], Theorem 3.4).

Theorem 2.1. Assume that:
(a1) sol (D,A, 0, 0) = {0},
(a2) the system (2.1) is regular.

Then, for any c ∈ Rn, the map sol (·) is upper semicontinuous at (D,A, c, b).

Corollary 2.1. If the system (2.1) is regular and if the set ∆(A, b) is
bounded, then sol (·) is upper semicontinuous at (D, A, c, b).

Proof. Since the system (2.1) is regular, ∆(A, b) is nonempty. Besides,
since

∆(A, b) + ∆(A, 0) ⊂ ∆(A, b),

∆(A, 0) is a cone and ∆(A, b) is bounded, one has ∆(A, 0) = {0}. Hence
sol (D, A, 0, 0) = {0}, and the desired property follows from Theorem 2.1.
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Remark 2.1. Condition (a1) is equivalent to that xT Dx > 0 for every
x ∈ ∆(A, 0) \ {0}, i.e. the quadratic form xT Dx is strictly copositive on
the cone ∆(A, 0).

The next statement is a complement to Theorem 2.1.

Theorem 2.2. Assume that:
(b1) S(D,A, 0, 0) = {0},
(b2) the system Ax ≥ 0, x ≥ 0 is regular.

Then, for any (c, b) ∈ Rn ×Rm, the map sol (·) is upper semicontinuous
at (D, A, c, b).

Proof. Suppose that the assertion of the theorem is false. Then there is
a pair (c, b) ∈ Rn × Rm such that there exist an open set Ω containing
sol (D, A, c, b), a sequence {(Dk, Ak, ck, bk)} converging to (D, A, c, b), and
a sequence {xk} such that

xk ∈ sol (Dk, Ak, ck, bk) \ Ω for every k ∈ N.

If the norms ||xk|| (k ∈ N) are bounded, then, without loss of generality,
we may assume that xk → x0 for some x0 ∈ Rn. Fix any x ∈ ∆(A, b).
By (b2) and Theorem 1 of [11], there exists a sequence ξk ∈ ∆(Ak, bk)
converging to x as k →∞. Since xk ∈ sol (Dk, Ak, ck, bk), we have

cT
k xk +

1
2
xT

k Dkxk ≤ cT
k ξk +

1
2
ξT
k Dkξk.

Letting k →∞ we get

cT x0 +
1
2
xT

0 Dx0 ≤ cT x +
1
2
xT Dx,

which shows that x0 ∈ sol (D,A, c, b) ⊂ Ω. We have arrived at a contra-
diction, because xk /∈ Ω for all k and Ω is open.

Now assume that the norms ||xk|| (k ∈ N) are unbounded. By taking
a subsequence, if necessary, we may assume that ||xk|| → ∞. According
to the first-order necessary optimality condition for quadratic programs
(see [9], p. 491) and since xk ∈ sol (Dk, Ak, ck, bk), for each k there exists
λk ∈ Rm such that

Dkxk −AT
k λk + ck ≥ 0, Akxk − bk ≥ 0,(2.2)

xk ≥ 0, λk ≥ 0,(2.3)

xT
k (Dkxk −AT

k λk + ck) + λT
k (Akxk − bk) = 0.(2.4)



ON CONTINUITY PROPERTIES OF THE SOLUTION MAP 51

Since ||(xk, λk)|| =
(||xk||2 + ||λk||2

)1/2 → ∞, we may assume, without
loss of generality, that ||(xk, λk)|| 6= 0 for all k and that the sequence of
vectors

(xk, λk)
||(xk, λk)|| =

(
xk

||(xk, λk)|| ,
λk

||(xk, λk)||
)

converges to some (x̄, λ̄) ∈ Rn × Rm with ||(x̄, λ̄)|| = 1. Dividing both
sides of (2.2) and of (2.3) by ||(xk, λk)||, dividing both sides of (2.4) by
||(xk, λk)||2, and taking the limits as k →∞ we obtain

Dx̄−AT λ̄ ≥ 0, Ax̄ ≥ 0,(2.5)

x̄ ≥ 0, λ̄ ≥ 0,(2.6)

x̄T (Dx̄−AT λ̄) + λ̄T Ax̄ = 0.(2.7)

The system (2.5)–(2.7) proves that x̄ ∈ S(D, A, 0, 0). By (b1), x̄ = 0. Hence

(2.8) −AT λ̄ ≥ 0, λ̄ ≥ 0.

Combining (2.8) and (b2) yields λ̄ = 0 (see Lemma 2.1 in [15]), hence
||(x̄, λ̄)|| = 0, a contradiction. The proof is complete.

Remark 2.2. Since ∆(A, b) + ∆(A, 0) ⊂ ∆(A, b), then (b2) implies (a2) if
∆(A, b) is nonempty. However, (b1) does not imply (a1).

Observe that neither (a1) nor (a2) is a necessary condition for the upper
semicontinuity of the solution map sol (·) at a given point (D,A, c, b).

Example 2.1. Let n = m = 1, D = [0], A = [1], c = 1, b = 1. It can
be easily verified that sol (D,A, c, b) = {1} and the map sol (·) is upper
semicontinuous at (D,A, c, b). Since sol (D, A, 0, 0) = {x ∈ R : x ≥ 0},
(a1) fails to hold.

Example 2.2. Let n = m = 1, A = [−1], b = 0. If A′ = [−1 + α], b′ = β,
where α and β are sufficiently small. Then

∆(A′, b′) =
{
x ∈ R : 0 ≤ x ≤ −β

1− α

} ·

It is easily seen that for arbitrarily chosen D and c, the map sol (·) is upper
semicontinuous at (D,A, c, b), while condition (a2) does not hold.
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3. Lower semicontinuity of the solution map

Specializing the notion of lower semicontinuous set-valued map to the
solution map (1.5) we have the following

Definition 3.1. The solution map (D, A, c, b) 7→ sol (D,A, c, b) is said to
be lower semicontinuous at (D, A, c, b) if sol (D,A, c, b) 6= ∅ and, for each
open set Ω ⊂ Rn satisfying sol (D, A, c, b)∩Ω 6= ∅, there exists δ > 0 such
that sol (D′, A′, c′, b′) ∩ Ω 6= ∅ for every (D′, A′, c′, b′) ∈ Rn×n

S ×Rm×n ×
Rn ×Rm satisfying

max{||D′ −D||, ||A′ −A||, ||c′ − c||, |b′ − b||} < δ.

The map sol (·) is called continuous at (D,A, c, b) if it is simultaneously
upper semicontinuous and lower semicontinuous at that point.

The above definition agrees with the one of [16, pp. 450-451], but differs
slightly from the one stated in [1, Definition 1.4.2, p. 39].

Our main result can be stated as follows.

Theorem 3.1. The solution map sol (·) of the problem (P ) is lower semi-
continuous at (D, A, c, b) if and only if the following three conditions are
satisfied:

(a) the system Ax ≥ b, x ≥ 0 is regular,
(b) sol (D, A, 0, 0) = {0},
(c) |sol (D, A, c, b)| = 1.
For proving Theorem 3.1 we need some lemmas.

Lemma 3.1. If sol (·) is lower semicontinuous then the system Ax ≥ b,
x ≥ 0 is regular.

Proof. If the system Ax ≥ b, x ≥ 0 is irregular, then according to [12
Lemma 3, p. 439], there exists a sequence (Ak, bk) ∈ Rm×n×Rm tending to
(A, b) such that ∆(Ak, bk) = ∅ for each k. Therefore, sol (D, Ak, c, bk) = ∅
for each k, contrary to the assumed lower semicontinuity of the solution
map.

Lemma 3.2. If the set-valued map sol (·) is lower semicontinuous at
(D,A, c, b) then sol (D, A, 0, 0) = {0}.

Proof. To the contrary, assume that sol (D, A, 0, 0) 6= {0}. Then there is
a nonzero vector x̄ ∈ Rn such that

(3.1) Ax̄ ≥ 0, x̄ ≥ 0, x̄T Dx̄ ≤ 0.
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Since ∆(A, b) 6= ∅, it follows from (3.1) and the inclusion ∆(A, b) +
∆(A, 0) ⊂ ∆(A, b) that ∆(A, b) is unbounded. For every ε > 0, we get
from (3.1) that x̄T (D − εE)x̄ < 0. Hence, for any x ∈ ∆(A, b),

f(x + tx̄) = cT (x + tx̄) +
1
2
(x + tx̄)T (D − εE)(x + tx̄) → −∞

as t →∞. Thus, sol (D−εE, A, c, b) = ∅. This contradicts our assumption
that sol (·) is lower semicontinuous at (D, A, c, b).

Lemma 3.3.
(i) If sol (D, A, 0, 0) = {0} then for any (c, b) ∈ Rn×Rm, sol (D, A, c, b)

is a compact set.
(ii) If sol (D, A, 0, 0) = {0} and if ∆(A, b) is nonempty, then sol (D, A, c, b)

is nonempty for every c ∈ Rn.

Proof. (i) Suppose that sol (D,A, 0, 0) = {0}, but sol (D, A, c, b) is un-
bounded for some (c, b). Then there is a sequence {xk} ⊂ sol (D, A, c, b)
such that ||xk|| → ∞ as k →∞. Fixing any x ∈ ∆(A, b), one has

cT xk +
1
2
xT

k Dxk ≤ cT x +
1
2
xT Dx,(3.2)

Axk ≥ b, xk ≥ 0.(3.3)

Without loss of generality we may assume that the sequence ||xk||−1xk

converges to some x̄ with ||x̄|| = 1. Using (3.2) and (3.3) it is easy to
show that x̄T Dx̄ ≤ 0, Ax̄ ≥ 0, x̄ ≥ 0. This contradicts the fact that
sol (D, A, 0, 0) = {0}. We have thus proved that ∆ := sol (D, A, c, b) is a
bounded set. Fix any x̄ ∈ ∆. Since ∆ = {x ∈ ∆(A, b) : f(x) = f(x̄)}, ∆
is closed. Hence ∆ is a compact set.

(ii) Let sol (D, A, 0, 0) = {0}, ∆(A, b) 6= ∅, and let c ∈ Rn be given
arbitrarily. If the quadratic form f(x) = cT x + 1

2xT Dx is bounded below
on the polyhedron ∆(A, b), then by the Frank-Wolfe theorem (see [6, The-
orem 2.8.1]), the solution set sol (D,A, c, b) is nonempty. Now assume that
there exists a sequence xk ∈ ∆(A, b) such that f(xk) → −∞ as k → ∞.
By taking a subsequence, if necessary, we may assume that

(3.4) cT
k xk +

1
2
xT

k Dxk ≤ 0

for all k, ||xk|| → ∞ and that ||xk||−1xk converges to some x̄ as k → ∞.
It is a simple matter to show that x̄ ∈ ∆(A, 0). Dividing both sides of
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(3.4) by ||xk||2 and letting k → ∞ one gets x̄T Dx̄ ≤ 0. As ||x̄|| = 1,
sol (D, A, 0, 0) 6= {0}, which is impossible.

Lemma 3.4. If the map sol (·) is lower semicontinuous at (D, A, c, b) then
the set sol (D, A, c, b) is finite.

Proof. We define N = n + m,

M =
(

D −AT

A 0

)
, q =

(
c
−b

)
,

and consider the problem of finding vectors z =
(

x
λ

)
∈ RN satisfying

(3.5) Mz + q ≥ 0, z ≥ 0, zT (Mz + q) = 0.

For a nonempty subset α ⊂ {1, 2, . . . , N}, the principal submatrix
(
mij

)
i,j∈α

of M =
(
mij

)
1≤i,j≤N

is denoted by Mα. For a vector p ∈ RN , the
column-vector with the components

(
pi

)
i∈α

is denoted by pα. Let z =
(z1, z2, . . . , zN )T be a nonzero solution of the linear complementary prob-
lem (3.5). Let J = {j : zj = 0}, I = {i : zi > 0}. Since zJ = 0 and
(Mz + q)I = 0, then MIzI = −qI . Therefore, if detMI 6= 0 then z is
defined uniquely via q by the formulas

(3.6) zJ = 0, zI = −M−1
I (qI).

Given any nonempty subset I ⊂ {1, . . . , n} we define

QI := {q ∈ RN : −qI = MIzI for some z ∈ RN}.

If detMI = 0 then QI is a proper subspace of RN . In particular, QI

is nowhere dense in RN . By Baire’s Lemma ([5, p.15]), the union Q :=
∪{QI : I ⊂ {1, 2, . . . , N}, I 6= ∅, detMI = 0} is nowhere dense. Hence,

there exists a sequence q(k) =
(

c(k)

−b(k)

)
converging to q =

(
c
−b

)
such

that q(k) /∈ Q for all k.
Now, fix any x ∈ ∆ = sol (D, A, c, b) and let ε > 0 be given arbitrarily.

Since sol (·) is lower semicontinuous at (D, A, c, b), there exists δε > 0 such
that

x ∈ sol (D, A, c′, b′) + εBRn
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for all (c′, b′) satisfying max{||c′ − c||, ||b′ − b||} < δε, where BRn denotes
the closed unit ball in Rn. Hence, for each k sufficiently large, there exists
x(k) ∈ sol (D, A, c(k), b(k)) such that

(3.7) ||x− x(k)|| ≤ ε.

Since x(k) ∈ sol (D, A, c(k), b(k)), there exists λ(k) such that z(k) :=
(

x(k)

λ(k)

)

is a solution of the linear complementary problem

Mz + q(k) ≥ 0, z ≥ 0, zT (Mz + q(k)) = 0.

(See [9, p. 491]). Let Jk = {j : z
(k)
j = 0}, Ik = {i : z

(k)
i > 0}. If Ik = ∅ then

z(k) = 0. If Ik 6= ∅, then det MIk
6= 0 because q(k) /∈ Q. Consequently,

(3.8) z
(k)
Jk

= 0, z
(k)
Ik

= −M−1
Ik

(
q
(k)
Ik

)
.

Since the set {1, 2, . . . , N} has only 2N subsets, then one can find a subset
I ⊂ {1, 2, . . . , N} and a subsequence {ki} ⊂ {k} such that Iki = I for all
ki. Let Z denote the set of all z ∈ RN such that there exists a nonempty
subset I ⊂ {1, . . . , N} with the property that det MI 6= 0, zI = −M−1

I (qI)
and zJ = 0, where J := {1, . . . , N}\I. It is clear that Z is finite. It follows
from (3.8) that the sequence z

(ki)
Iki

is convergent and that the limit belongs

to the finite set Z̃ := Z∪{0}. For every z =
(

ξ
λ

)
we put pr1(z) = ξ. Since

pr1(z(ki)) = x(ki), from what has been said it follows that the sequence
{x(ki)} has a limit ξ̄ in the finite set X̃ := {pr1(z) : z ∈ Z̃}. By (3.7),
x ∈ X̃ + εBRn . Since ε > 0 can be arbitrarily small, x must belong to X̃ .
We have thus shown that ∆ = sol (D, A, c, b) ⊂ X̃ . Hence ∆ is a finite set,
and the lemma follows.

Lemma 3.5. The set G := {(D, A) : sol (D, A, 0, 0) = {0}} is open in
Rn×n

S ×Rm×n.

Proof. Assume to the contrary that there is a sequence {(Dk, Ak)} con-
verging to (D,A) ∈ G such that sol (Dk, Ak, 0, 0) 6= {0} for all k. Then for
each k there exists a vector xk such that ||xk|| = 1 and

(3.9) Akxk ≥ 0, xk ≥ 0, xT
k Dkxk ≤ 0.
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Without loss of generality we may assume that {xk} converges to some x0

with ||x0|| = 1. Taking the limits in (3.9) as k →∞, we obtain

Ax0 ≥ 0, x0 ≥ 0, xT
0 Dx0 ≤ 0.

This contradicts the assumption that sol (D, A, 0, 0) = {0}.
For each subset α ⊂ {1, . . . , m} with the complement ᾱ and β ⊂

{1, . . . , n} with the complement β̄ let

F (α, β) := {x ∈ Rn : (Ax)α > bα, (Ax)ᾱ = bᾱ, xβ > 0, xβ̄ = 0}.

Obviously,
∆(A, b) =

⋃

(α,β)

F (α, β).

Besides, for every x ∈ ∆(A, b) there exists a unique pair (α, β) such that
x ∈ F (α, β). In addition, if (α, β) 6= (α′, β′) then F (α, β) ∩ F (α′, β′) = ∅.

Lemma 3.6. If the solution set sol (D, A, c, b) is finite, then for any
α ⊂ {1, . . . , m} and for any β ⊂ {1, . . . , n} we have

(3.10) |sol (D,A, c, b) ∩ F (α, β)| ≤ 1.

Proof. For every x ∈ ∆(A, b) we put

I(x) = {i : (Ax)i = bi}, J(x) = {j : xj = 0}.

The cone

Fx = {v ∈ Rn : (Av)i ≥ 0, vj ≥ 0 for all i ∈ I(x), j ∈ J(x)}

is the tangent cone of ∆(A, b) at x. By Theorem 2.8.4 of [6], a point
x ∈ ∆(A, b) is a local minimum of (P ) if and only if

(i) (Dx + c)T v ≥ 0 for every v ∈ Fx,
(ii) If v ∈ Fx and (Dx + c)T v = 0, then vT Dv ≥ 0.

We now suppose that for some α ⊂ {1, . . . , m} and β ⊂ {1, . . . , n} the
set sol (D, A, c, b) ∩ F (α, β) contain two distinct elements x̄, ȳ. Since
x̄, ȳ ∈ F (α, β), I(x̄) = I(ȳ) and J(x̄) = J(ȳ), hence Fx̄ = Fȳ. For any
t ∈ [0, 1], since F (α, β) is convex, xt := tx̄+(1− t)ȳ ∈ F (α, β). Therefore,
I(x̄) = I(ȳ) = I(xt), J(x̄) = J(ȳ) = J(xt), and Fx̄ = Fȳ = Fxt .
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Fix any t ∈ (0, 1). Let v := ȳ − x̄. Since v ∈ Fx̄ and −v ∈ Fȳ, v and
−v belong to Fxt . Since x̄ and ȳ are solutions of (P ),

(3.11) (Dx̄ + c)T v = (Dȳ + c)T v = 0.

This implies that

(3.12) (Dxt + c)T v = t(Dx̄ + c)T v + (1− t)(Dȳ + c)v = 0.

As x̄ is a solution of (P ), (3.11) implies that vT Dv ≥ 0. Noting that
ȳ − xt = τv for some τ > 0, one deduces from the last inequality and
(3.12) that

f(ȳ)− f(xt) = (Dxt + c)t(τv) +
1
2
(τv)T D(τv)

= τ2vT Dv ≥ 0.

Then we get xt ∈ sol (D,A, c, b) for all t ∈ (0, 1), which contradicts the
finiteness of sol (D, A, c, b).

Lemma 3.7. If the map sol (·) is lower semicontinuous at (D, A, c, b) then

|sol (D, A, c, b)| = 1.

Proof. On the contrary, suppose that in sol (D, A, c, b) we can find two
distinct vectors x̄, ȳ. Let J(x̄) = {j : x̄j = 0}, J(ȳ) = {j : ȳj = 0}.

If J(x̄) 6= J(ȳ), then there exists j0 such that x̄j0 = 0 and ȳj0 > 0, or
there exists j1 such that x̄j1 > 0 and ȳj1 = 0. By symmetry, it is enough
to consider the first case. As ȳ ∈ sol (D, A, c, b) and yj0 > 0, there is an
open neighborhood U of ȳ such that f(y) ≥ f(ȳ) and yj0 > 0 for every
y ∈ U . Fix any ε > 0 and put c(ε) = (ci(ε)), where

ci(ε) =
{

ci if i 6= j0

ci + ε if i = j0.

Let fε(x) = f(x)+εxj0 , where, as before, f(x) = cT x+
1
2
xT Dx. Consider

the quadratic program

Minimize fε(x) subject to x ∈ ∆(A, b),
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whose solution set is sol (D, A, c(ε), b). For every y ∈ U , we have

fε(y) = f(y) + εyj0 > f(y) ≥ f(ȳ)

= f(x̄) = fε(x̄).

Hence y /∈ sol (D,A, c(ε), b), so

(3.13) sol (D, A, c(ε), b) ∩ U = ∅.

Since ε > 0 can be arbitrarily small, (3.13) contradicts our assumption
that sol (·) is lower semicontinuous at (D, A, c, b).

Now suppose that J(x̄) = J(ȳ). Let α and α′ be the index sets such
that

x̄ ∈ F (α, β), ȳ ∈ F (α′, β),

where β is the complement of J(x̄) = J(ȳ) in {1, . . . , n}. By Lemma 3.4,
sol (D, A, c, b) is a finite set. Then, by Lemma 3.6, α 6= α′. Hence at least
one of the sets α \ α′ and α′ \ α must be nonempty. By symmetry, it
suffices to consider the first case. Let i0 ∈ α \ α′. Then we have

(3.14) (Ax̄)i0 > bi0 , (Aȳ)i0 = bi0 .

As sol (D, A, c, b) is finite, one can find a neighborhood W of ȳ such that

(3.15) sol|, (D, A, c, b) ∩W = {ȳ}.

Fix any ε > 0 and put b(ε) = (bi(ε)), where

bi(ε) =
{

bi if i 6= i0

bi + ε if i = i0.

By (3.14) there exists δ > 0 such that x̄ ∈ ∆(A, b(ε)) for every ε ∈ (0, δ).
Since ∆(A, b(ε)) ⊂ ∆(A, b), then

inf
x∈∆(A,b(ε))

f(x) ≥ inf
x∈∆(A,b)

f(x) = f(x̄).

Therefore, for every ε ∈ (0, δ), x̄ ∈ sol (D, A, c, b(ε)). Moreover,

sol (D, A, c, b(ε)) ⊂ sol (D,A, c, b).
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It is clear that ȳ /∈ ∆(A, b(ε)). Then we have sol (D,A, c, b(ε)) ⊂
sol (D, A, c, b) \ {ȳ}. Hence, by (3.15), sol (D, A, c, b(ε)) ∩ W = ∅ for
every ε ∈ (0, δ). This contradicts the lower semicontinuity of sol (·) at
(D,A, c, b). Lemma 3.7 is proved.

Proof of Theorem 3.1. If sol (·) is lower semicontinuous at (D, A, c, b)
then from Lemmas 3.1, 3.2, and 3.7, we get (a), (b), and (c).

Conversely, assume that the conditions (a), (b) and (c) are fulfilled.
Let Ω be an open set containing the unique solution x̄ ∈ sol (D,A, c, b).
By (a) and by Lemma 3 of [12], there exists δ1 > 0 such that ∆(A′, b′) 6= ∅
for every pair (A′, b′) satisfying max{||A′ − A||, ||b′ − b||} < δ1. By (b)
and by Lemma 3.5, there exists δ2 > 0 such that sol (D′, A′, 0, 0) =
{0} for every pair (D′, A′) satisfying max{||D′ − D||, ||A′ − A||} ≤ δ2.
For δ := min{δ1, δ2}, by the second assertion of Lemma 3.3 we have
sol (D′, A′, c′, b′) 6= ∅ for every (D′A′, c′, b′) satisfying

(3.16) max{||D′ −D||, ||A′ −A||, ||c′ − c||, ||b′ − b||} < δ.

By (a) and (b), it follows from Theorem 2.1 that sol (·) is upper semicon-
tinuous at (D, A, c, b). Hence sol (D′, A′, c′, b′) ⊂ Ω for every (D′A′, c′, b′)
satisfying (3.16) if δ > 0 is small enough. For such a δ it follows as above
that sol (D′, b′, c′, b′) ∩ Ω 6= ∅ for every (D′, A′, c′, b′) satisfying (3.16).
This shows that sol (·) is lower semicontinuous at (D, A, c, b). The proof
is complete.

The following fact follows directly from Theorems 3.1 and 2.1.

Corollary 3.1. If the map sol (·) is lower semicontinuous at (D, A, c, b)
then it is upper semicontinuous at (D, A, c, b), hence it is continuous at
the point.

Let us mention two other interesting consequences of Theorem 3.1.

Corollary 3.2. If D is a negative semidefinite matrix, then the map
sol (·) is continuous at (D, A, c, b) if and only if the following conditions
are satisfied

(i) the system Ax ≥ b, x ≥ 0 is regular,
(ii) ∆(A, b) is a compact set, and
(iii) |sol (D, A, c, b)| = 1.

Proof. Assume that sol (·) is lower semicontinuous at (D,A, c, b). By
Theorem 3.1, conditions (i) and (iii) are satisfied. Moreover,

(3.17) sol (D,A, 0, 0) = {0}.
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We claim that ∆(A, 0) = {0}. Indeed, by assumption, xT Dx ≤ 0 for
every x ∈ ∆(A, 0). If there exists no x̄ ∈ ∆(A, 0) with the property that
x̄T Dx̄ < 0 then sol (D, A, 0, 0) = ∆(A, 0), and (3.17) forces ∆(A, 0) = {0}.
If x̄T Dx̄ < 0 for some x̄ ∈ ∆(A, 0), then it is obvious that sol (D, A, 0, 0) =
∅, which is impossible. Property (ii) follows easily from the equality
∆(A, 0) = {0}.

Conversely, suppose that (i), (ii) and (iii) are satisfied. As ∆(A, b) 6= ∅
by (i), (ii) implies ∆(A, 0) = {0}. Therefore, sol (D,A, 0, 0) = {0}. Since
the conditions (a), (b) and (c) in Theorem 3.1 are satisfied, sol (·) is lower
semicontinuous at (D,A, c, b). The proof is complete.

Corollary 3.3. If D is a positive definite matrix, then the map sol (·)
is continuous at (D, A, c, b) if and only if the system Ax ≥ b, x ≥ 0 is
regular.

Remarks. We would like to observe that the proof of Theorem 3.1 can
be shortened by using a device shown to us by Hoang Xuan Phu. The
argument for proving Lemma 3.4 can be applied for studying the lower
semicontinuity property of the set of the Karush-Kuhn-Tucker points, and
of the set of the local solutions of (P ).
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