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ON A FIXED POINT THEOREM
FOR NONEXPANSIVE NONLINEAR OPERATOR

TRAN QUOC BINH AND NGUYEN MINH CHUONG

Abstract. A new generalized fixed point Edelstein’s theorem and some
results generalizing the ones of W. V. Petryshyn and T. E. Williamson
[10] for nonexpansive and condensing mapping are proved.

1. Introduction

The aim of this note is to study the existence of solutions of the equation

(1) x = T (x, x)

and the approximation for nonlinear nonexpansive operator T .
It is clear that the equation x = T (x, x) contains the equation x = T (x)

as a special case. Instead of Picard iteration (P. it.) which is widely
used in fixed point theory we apply a projection-iteration method (Pr. it.
m.) for approximating the solutions of equation (1). This method was
studied by N. S. Kurpel in his book [8], in which under some assumptions
both P. it. (xn = T (xn−1, xn−1)) and Pr. it. m. (for instance, xn =
T (xn, xn−1)) converge to a solution of (1). Here we shall extend the fixed
point Edelstein’s theorem of [4] to the operator T (., .) and obtain a new
generalized fixed point Edelstein’s theorem. From this theorem and an
example we can see that while the P. it. is not applicable the Pr. it. m.
may be applied. Note that the main results presented here were published
in [2] without proofs.

Our paper is organized as follows. In Section 2 we shall prove the
generalized fixed point Edelstein’s theorem. Section 3 is devoted to a
more general case when T is a nonexpansive and condensing operator.
Finally some examples will be given to illustrate our results.
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2. Generalized fixed point Edelstein’s theorem

Theorem 1. Let D be a closed bounded subset of a normed space X, T
a continuous mapping from D × D into D, which satisfies the following
nonexpansive condition:

(2) ||T (x, y)−T (z, t)||





< max{||x− z||, ||y − t||}, if (x, y) 6= (z, t)
and x 6= y or z 6= t

≤ ||x− z|| = ||y − t||, if x = y and z = t

for all x, y, z, t ∈ D. Suppose further that either D is compact or T maps
D ×D into a compact subset of D. Then equation (1) has a solution on
D. Moreover, every equation xn = T (xn, xn−1) has a unique solution xn,
n ≥ 1, and the sequence {xn} so defined converges to a solution of (1) for
every x0 ∈ D.

Proof. For any fixed v ∈ D let Tv(x) = T (x, v). We can see by (2) that
the operator Tv : D −→ D is strictly nonexpansive, that is

(3) ||Tv(x)− Tv(y)|| < ||x− y||, ∀x, y ∈ D, x 6= y.

Moreover, Tv(D) is a compact set in the case T (D, D) is compact. Hence
by Edelstein’s theorem [4], there exists only a fixed point x of Tv with
x = Tv(x) = T (x, v). So xn = T (xn, xn−1) has a unique solution xn for
any fixed x0 ∈ D, n ≥ 1.

Define an = ||xn+1 − xn||. If for some m, xm+1 = xm, then xm is a
solution of (1). Suppose xm+1 6= xm ∀m. Then

an = ||T (xn+1, xn)− T (xn, xn−1)||
< max{||xn+1 − xn||, ||xn − xn−1||} = max{an, an−1},

hence an < an−1, so an → a0 ≥ 0. By the compactness of D (or T (D, D))
there exist convergent subsequences of {xn}:

xni → u, xni+1 → u1, xni−1 → u−1.

If a0 > 0, then a0 = lim
i

ani = lim
i
||xni+1 − xni || = ||u1 − u||, but

||u1 − u|| = ||T (u1, u)− T (u, u−1)|| < max{||u1 − u||, ||u− u−1||}.
Consequently,

||u1 − u|| < ||u− u−1|| = lim
i
||xn − xni−1|| = lim

i
ani = a0,
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which is a contradiction. Thus a0 = 0 and u1 = u−1 = u is a solution of
x = T (x, x).

Now again by condition (2) it is clear that

||xn − u|| < ||xn−1 − u||.

It follows that lim
n
||xn−u|| exists. Since a0 = 0, we get lim

i
||xni

−u|| = 0,

lim
n
||xn − u|| = 0. Theorem 1 is thus proved.

Remark 1. It is not difficult to see that if under the assumptions of Theo-
rem 1 we use Picard iteration for T ∗(x) = T (x, x) (which has been investi-
gated by M. Edelstein [4], L. P. Belluce and W. A. Kirk [1], F. E. Browder
[3], W. V. Petryshyn and T. E. Williamson [9]) we cannot assert either
the existence of the solution of equation (1) or its approximate solutions.

Similarly as for Theorem 1 we get

Theorem 1’. Let D be a closed bounded subset of a metric space (X, d),
g(., .) a function from D ×D into (0,∞) having the properties

(i) g(x, y) = 0 if and only if x = y, ∀x, y ∈ D,
(ii) g is continuous in the pair (x, y),
(iii) if g(x, y) → 0 then d(x, y) → 0.

Let T be an operator from D×D into D which satisfies the nonexpansive
condition

(1’) g(T (x, y), T (z, t))





< max{g(x, z), g(y, t)}, if (x, y) 6= (z, t)
and x 6= y or z 6= t

≤ g(x, z) = g(y, t), if x = y and z = t

for all x, y, z, t ∈ D. Suppose further that either D is compact or T maps
D × D into a compact subset of D. Then the conclusion of Theorem 1
remains valid.

Remark 2. The function g need not to be a metric. Indeed, g may not
satisfy the triangle inequality or even the identity g(x, y) = g(y, x). For
example, g(x, y) = (x− y)2, or g(x, y) = | exp(x− y)−1|, D = [0, 1] ⊂ lR.

Corollary. Let T = U + S, where U and S are operators from D into D,
D is a subset of a linear metric space X, such that T (x, y) = U(x) + S(y)
satisfies condition (1’) with g(., .) of Theorem 1’. Suppose futher that either
D is compact or D is closed, bounded and U , S are compact. Then T has
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a fixed point on D. Moreover, fixed points of T could be approximated by
the Pr. it. m.

3. Condensing operator

In this section we consider more general cases, when T is a nonex-
pansive and condensing operator. The concept of a condensing mapping
was first introduced by B. N. Sadovsky [12] with the ball-measure of non-
compactness χ(Ω) of a set Ω (χ(Ω) = 0 iff Ω is compact) and later by
M. Furi and A. Vignoli [6] with the set-measure of noncompactness γ(Ω)
(the definitions, differences and common properties of ball-measure and
set-measure can be found in [10], [11] and also in the references of those
papers).

In our paper the same arguments work for condensing operators defined
either in terms of γ or in terms of χ. So we shall use only the notation
γ for both measures. One of the results of W. V. Petryshyn and T. E.
Williamson [10] is an assertion on the convergence of successive approxi-
mations to a fixed point of strictly nonexpansive (or nonexpansive in the
case where X is strictly convex) and γ-condensing self-mappings. We ex-
tend that result to mappings T : D × D → D, and instead of successive
approximation we use the Pr. it. m.

Theorem 2. Let D be a closed bounded convex subset of a Banach space
X. Suppose that the operator T : D × D → D satisfies nonexpansive
condition (1) and the condensing conditions

γ(T (U,U)) < γ(U), for each U of D with γ(U) > 0,(4)

γ(T (U, x)) < γ(U),(5)

for each U of D with γ(U) > 0 and each point x on D. Then every equa-
tion xn = T (xn, xn−1) has a unique solution xn, n ≥ 1, and the sequence
{xn} so defined converges to a solution of (1) for any x0 ∈ D.

Proof. For any fixed v ∈ D, by (2) and (3) we can see that the operator
Tv : D → D, where Tv(x) = T (x, v), is strictly nonexpansive and γ-
condensing. Hence the unique solution of the equation x = Tv(x) follows
from [12].

To verify the convergence of the sequence {xn} to a solution of (1) it
suffices to show its compactness. For we may apply Theorem 1 for the
rest of the proof. Supposing γ

({
xn

}∞
0

)
> 0 and setting C =

{
xn

}∞
1

. By
(4) and (5) and by the properties of the meassure γ we have
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γ({xn}∞0 ) = γ(C) = γ({T (xn, xn−1)}∞1 )

≤ γ(T ({xn}∞1 , {xn−1}∞1 )) = γ(T (C,C) ∪ T (C, x0))

= max{γ(T (C, C)), γ(T (C, x0))} < γ(C),

which is a contradiction. Consequently γ({xn}∞0 ) = 0, so {xn} is compact.
Theorem 2 is thus proved.

We now deal with nonexpansive condensing operator in uniformly con-
vex Banach space, where the condition on T of Theorem 2 can be relaxed.

Theorem 3. Let D be a closed bounded convex subset of a uniformly
convex Banach space X, T a continuous operator from D × D into D
satisfying the conditions
(6)

||T (x, y)− T (z, t)||
{

< max{||x− z||, ||y − t||}, if ||x− z|| 6= ||y − t||
≤ ||x− z|| = ||y − t||

for all x, y, z, t ∈ D,

(7) γ(T (U, V )) < max{γ(U), γ(V )}

for subsets U , V of D such that γ(U \ V ) > 0. Then there exist numbers
λn, 0 < a < λn < b < 1, n ≥ 1, where a, b are constants, such that the
sequence {xn} defined by

(8) xn = λnxn−1 + (1− λn)xn,

where xn = T (xn, xn−1), converges to a solution of (1) for any x0 ∈ D.

Proof. For any fixed v ∈ D the operator Tv : D −→ D is strictly nonex-
pansive by (6). Note that (5) follows from (7), hence Tv is γ-condensing.
So xn are defined uniquely by xn−1.

Now we will show that there exists λn such that xn 6= xm, ∀n,m. For
any n ≥ 1 we can choose a number λn ∈ (a, b) such that λn ≤ λn−1 and
xn 6= xm, ∀m = 1, 2, . . . , n − 1, i.e. xn 6= xm, ∀m > n. As in the proof
of Theorem 1 we can assume xn 6= xn−1, ∀n ≥ 1. By using the uniform
convexity of X and by a theorem by F. Browder [3], T has solutions on
D. Let p be one of them. By (6) and by the strict convexity of X for any
n ≥ 1 we have

(9) ||xn − p|| = ||T (xn, xn−1)− T (p, p)|| ≤ ||xn−1 − p||
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and

||xn − p|| = ||λn(xn−1 − p) + (1− λn)(xn − p)|| < ||xn−1 − p||.

Hence

||xn − p|| ≤ ||xn−1 − p|| < ||xm − p||,m = 0, 1, . . . , n− 2.

It follows that
xn 6= xm,m = 0, 1, . . . , n− 1.

Besides xn 6= xn, we get xn 6= xm, ∀n, m.
Next we verify the compactness of {xn} and {xn}. Note that the se-

quence {λn} converges to some λ ∈ [a, b] since λn ≤ λn−1. Hence

γ({λnxn−1}) ≤ γ({(λn − λ)xn−1}) + γ({λxn−1})
= γ({λxn−1}) = λγ({xn−1}).

Similarly we get

γ({(1− λn)xn}) ≤ (1− λ)γ({xn}).

Therefore

γ({xn}∞0 ) = γ({xn}∞1 ) = γ({λnxn−1 + (1− λ)xn}∞1 )

≤ γ({λnxn−1}) + γ({(1− λn)xn})
≤ λγ({xn}∞0 + (1− λ)γ({xn}∞1 ).

Thus
γ({xn}) ≤ γ({xn}).

On the other hand, if {xn} is not compact, i.e. γ({xn}) > 0, then by (7)

γ({xn}) = γ({T (xn, xn−1)}) ≤ γ(T ({xn}, {xn}))
< max{γ({xn}, γ({xn})} ≤ γ({xn}),

which is a contradiction. Consequently γ({xn}) = 0 and hence γ({xn}) =
0. So both {xn} and {xn} are compact.

It is easy to see that there exists an index subsequence ni such that
xni → u, xni−1 → u−1, xni → u, λni → λ, as i →∞. By (8) we have

u = λu−1 + (1− λ)u and u = T (u, u−1).
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It will be proved that
u = u−1 = u.

Assume the contrary u 6= u−1. Then by (9) we have

||u− p|| ≤ ||u−1 − p|| = lim
i
||xni−1 − p|| = lim

n
||xn − p||

= lim
i
||xni − p|| = ||u− p||.

By the strict convexity of X,

||u− p|| = ||λ(u−1 − p) + (1− λ)(u− p)||
< ||u−1 − p|| = ||u− p||,

which is a contradiction. So u = u−1 = u is a solution of (1). Finally,
taking u instead of p we get

lim
n
||xn − u|| = lim

i
||xni − u|| = 0.

The proof of Theorem 3 is complete.

4. Examples

Example 1. Let us consider the set D = [0, 1] and

T (x, y) = sin
x + y

2

It is not difficult to show that the operator T satisfies all conditions of
Theorem 1. Note that T is not contractive.

Example 2. Let

D = lp, 1 < p < ∞, T (x, y) =
τy

exp(||x− y||)

where τ : x = (x1, x2, . . . ) → τx = (0, x1, x2, . . . ), x ∈ lp. It is not hard to
check that for arbitrary x0 = (x01, x02, . . . ), x01 6= 0, the sequence defined
by

xn = T (xn, xn−1)

converges to 0 as n →∞, but the sequence constructed by

xn = T (xn−1, xn−1)
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does not.
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