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HOPF’S FORMULA FOR LIPSCHITZ SOLUTIONS
OF HAMILTON-JACOBI EQUATIONS

WITH CONCAVE-CONVEX HAMILTONIAN

HA TIEN NGOAN

Abstract. We extend Hopf’s formula for Lipschitz solutions of Hamilton-

Jacobi equation to the case where the Hamiltonian H(p) = H(p′, p′′) is
a concave-convex function.

1. Introduction

We consider the Cauchy problem for Hamilton-Jacobi equations of the
form

(1.1) ut + H(ux) = 0, (t, x) ∈ Ω,

with initial condition

(1.2) u(0, x) = σ(x), x ∈ Rn,

where Ω = (0, T )×Rn. We denote by Lip (Ω) the set of all locally Lipschitz
continuous functions on Ω.

Definition 1.1. A function u(t, x) ∈ Lip
(
[0, T ) × Rn

)
= Lip (Ω) ∩

C
(
[0, T ) × Rn

)
is said to be a global Lipschitz solution of the problem

(1.1) - (1.2) if u(t, x) satisfies (1.1) a.e. in Ω and u(0, x) = σ(x) for
x ∈ Rn.

In Theorem 5a of the paper [1] E. Hopf proved the followings:
1) If H(p) is a strictly concave function in Rn satisfying the growth

condition:

Received December 23, 1996; in revised form December 30, 1997.
1991 Mathematics Subject Classification. 35F25.
Key words and phrases. Lipschitz solution, concave-convex function, Legendre trans-
formation.
Supported in part by the National Basic Research Program in Natural Science, Viet-
nam.



270 HA TIEN NGOAN

(1.3) lim
|p|→∞

H(p)
|p| = −∞,

and σ(x) is globally Lipschitz continuous in Rn, then the function

(1.4) u(t, x) = sup
ξ∈Rn

(
σ(ξ) + tH∗(x− ξ

t

))

is a global Lipschitz solution of the problem (1.1), (1.2).
2) If H(p) is a strictly convex function in Rn satisfying the growth

condition:

(1.5) lim
|p|→∞

H(p)
|p| = +∞,

and σ(x) is globally Lipschitz continuous in Rn, then the function

(1.6) u(t, x) = inf
ξ∈Rn

(
σ(ξ) + tH∗(x− ξ

t

))

is a global Lipschitz solution of the problem (1.1), (1.2). Here, in the
formulas (1.4), (1.6), H∗(z) is the Legendre transform of the function
H(p).

There are many papers devoted to extensions of Hopf’s formulas (1.4),
(1.6). See [2], [3] and the references therein. In this paper we extend
Hopf’s results just mentioned by permitting the Hamiltonian H(p) to be
a concave-convex function. We assume that the variable p is separated
into two groups: p = (p′, p′′) ∈ Rn = Rn1 ×Rn2 .

Definition 1.2 ([4]). The function H(p′, p′′) is said to be concave-convex
if for each fixed p′′ ∈ Rn2 the function H(p′, p′′) is concave with respect
to p′ and for each fixed p′ ∈ Rn1 the function H(p′, p′′) is convex with
respect to p′′.

In Section 2 we introduce the Legendre transformation for some class of
concave-convex functions. In Section 3 we give a simple version of Hopf’s
Lemma ([1]) for the minimax and maximin cases. In Section 4 we obtain
various intermediate cases of Hopf’s formulas (1.4), (1.6).
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2. The Legendre transformation
for concave-convex functions

In [4] a notion of conjugate for concave-convex functions was intro-
duced. In this paragraph we introduce a notion of Legendre transfor-
mation for some class of concave-convex functions. First we recall some
well-known definitions of Legendre transformation for convex or concave
functions.

For a convex function H(p), defined on Rn, we introduce the following
conditions:

(C1): H(p) is twice continuously differentiable.

(C2): The matrix
∂2H(p)

∂p2
is positively definite on Rn. Besides that,

H(p) is co-finite; i.e.,

lim
|p|→∞

H(p)
|p| = +∞.

The Legendre transform H∗(z) of the convex function H(p) satisfying
the conditions (C1), (C2) is defined by the formula:

(2.1) H∗(z) = −H(p) + 〈z, p〉

where p = p(z) is the solution of the following system of equations:

(2.2)
∂H(p)

∂p
= z.

Here and in what follows
∂H(p)

∂p
, z,... are understood as row-vectors, i.e.

1 × n matrices. Since the matrix
∂2H(p)

∂p2
is continuous and is positively

definite, the solution p = p(z) of (2.2) is unique and is continuously dif-
ferentiable in z. The function H∗(z) is also defined on Rn and is convex.
It coincides with the Fenchel conjugate of H(p); i.e.,

(2.3) H∗(z) = sup
p∈Rn

(〈z, p〉 −H(p)
)
,

where 〈., .〉 is the scalar product. Moreover, there is the following formula:

(2.4)
∂H∗(z)

∂z
= p(z).



272 HA TIEN NGOAN

Indeed, from (2.1) and (2.2) we have

∂H∗(z)
∂z

= −∂H(p(z))
∂p

∂p(z)
∂z

+ p(z) + z
∂p(z)
∂z

= p(z).

From (2.4) it follows that H∗(z) is twice continuously differentiable. It is

also co-finite. The matrix
∂2H∗(z)

∂z2
is positively definite and is equal to

(∂2H(p(z))
∂p2

)−1.

For a concave function H(p), defined on Rn, we introduce the following
condition:

(C3): The matrix
∂2H(p)

∂p2
is negatively definite on Rn. The function

H(p) is co-finite; i.e.,

lim
|p|→∞

H(p)
|p| = −∞.

The Legendre transform H∗(z) of the concave function H(p) satisfying
the conditions (C1), (C3) is defined by the same formulas (2.1)-(2.2). In
this case the function H∗(z) is also defined on Rn and is concave. It
coincides with the Fenchel conjugate of H(p); i.e.,

(2.5) H∗(z) = inf
p∈Rn

(〈z, p〉 −H(p)
)
.

Since the matrix
∂2H(p)

∂p2
is continuous and negatively definite, the so-

lution p = p(z) of (2.2) is unique and is continuously differentiable; and
there holds the formula (2.4). The function H∗(z) is twice continuously

differentiable and is co-finite. The matrix
∂2H∗(z)

∂z2
is negatively definite

and is equal to
(∂2H(p(z))

∂p2

)−1.

Now for a concave-convex function H(p′, p′′), defined on Rn = Rn1 ×
Rn2 , we introduce the following conditions:

(C4): H(p′, p′′) is twice continuously differentiable function on Rn =
Rn1 ×Rn2 .

(C5): For each fixed p′′ ∈ Rn2 , the matrix
∂2H(p′, p′′)

∂p′2
is negatively

definite on Rn1 , and H(p′, p′′) is co-finite in p′:

(2.6) lim
|p′|→∞

H(p′, p′′)
|p′| = −∞.



HOPF’S FORMULA FOR LIPSCHITZ SOLUTIONS 273

(C6): For each fixed p′ ∈ Rn1 , the matrix
∂2H(p′, p′′)

∂p′′2
is positively

definite on Rn2 , and H(p′, p′′) is co-finite in p′′:

(2.7) lim
|p′′|→∞

H(p′, p′′)
|p′′| = +∞.

Proposition 2.1. Suppose that the function H(p′, p′′), defined on Rn =
Rn1 ×Rn2 , satisfies the conditions (C4), (C5), (C6). Then the matrix

∂2H(p′, p′′)
∂p2

=




∂2H(p′, p′′)
∂p′2

∂2H(p′, p′′)
∂p′′∂p′

∂2H(p′, p′′)
∂p′∂p′′

∂2H(p′, p′′)
∂p′′2


 =

[−A C
Ct B

]

is nondegenerate on Rn = Rn1×Rn2 , where C =
∂2H(p′, p′′)

∂p′′∂p′
is an n1×n2

matrix and Ct is the transpose of the matrix C.

Proof. Let ξ = (ξ′, ξ′′) ∈ Rn = Rn1 ×Rn2 . If ξ
∂2H(p′, p′′)

∂p2
= 0, then

−ξ′A + ξ′′C = 0′, ξ′Ct + ξ′′B = 0′′.

Here 0′ stands for the zero-vector in Rn1 , 0′′ for the zero-vector in Rn2 ,
respectively. It follows that ξ′ = ξ′′CA−1 and ξ′′(CA−1Ct +B) = 0′′. The

matrix A =
∂2H(p′, p′′)

∂p′2
is positively definite, hence the matrix CA−1Ct

is nonnegatively definite. Since the matrix B =
∂2H(p′, p′′)

∂p′′2
is positively

definite, so is the matrix CA−1Ct + B. Then ξ′′ = 0′′, and ξ′ = 0′. This

proves the nondegenerateness of the matrix
∂2H(p′, p′′)

∂p2
.

Definition 2.1. Suppose that the function H(p′, p′′) defined on Rn =
Rn1 ×Rn2 satisfies the conditions (C4), (C5), (C6). The partial Legendre
transform H∗2(p′, z′′) of the concave-convex function H(p′, p′′) with re-
spect to variable p′′ ∈ Rn2 is defined, for each fixed p′ ∈ Rn1 , by the
formula:

(2.8) H∗2(p′, z′′) = −H(p′, p′′) + 〈z′′, p′′〉,
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where p′′ = p′′(p′, z′′) is the solution of the following system of equations:

(2.9)
∂H(p′, p′′)

∂p′′
= z′′.

Since the matrix
∂2H(p′, p′′)

∂p′′2
is continuous in (p′, p′′) and is positively

definite, the solution p′′ = p′′(p′, z′′) of (2.9) is unique and is continuously
differentiable. We have the following formula:

(2.10)
∂H∗2(p′, z′′)

∂z′′
= p′′(p′, z′′).

For each fixed p′ ∈ Rn1 , the function H∗2(p′, z′′) is convex and is twice
continuously differentiable in z′′, and

(2.11) H∗2(p′, z′′) = sup
p′′∈Rn2

(〈z′′, p′′〉 −H(p′, p′′)
)
.

Moreover, the matrix
∂2H∗2(p′, z′′)

∂z′′2
, which is equal to

(∂2H(p′, p′′(p′, z′′))
∂p′′2

)−1

,

is positively definite; and

(2.12) lim
|z′′|→∞

H∗2(p′, z′′)
|z′′| = +∞.

Definition 2.2. Suppose that the function H(p′, p′′) defined on Rn =
Rn1 ×Rn2 satisfies the conditions (C4), (C5), (C6). The partial Legendre
transform H∗1(z′, p′′) of the concave-convex function H(p′, p′′) with re-
spect to variable p′ ∈ Rn1 is defined, for each fixed p′′ ∈ Rn2 , by the
formula:

(2.13) H∗1(z′, p′′) = −H(p′, p′′) + 〈z′, p′〉,
where p′ = p′(z′, p′′) is the solution of the following system of equations:

(2.14)
∂H(p′, p′′)

∂p′
= z′.

Since the matrix
∂2H(p′, p′′)

∂p′2
is continuous in (p′, p′′) and is negatively

definite, the solution p′ = p′(z′, p′′) of (2.14) is unique and is continuously
differentiable with

(2.15)
∂H∗1(z′, p′′)

∂z′
= p′(z′, p′′).
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For each fixed p′′ ∈ Rn2 , the function H∗1(z′, p′′) is concave, twice contin-
uously differentiable in z′, and

(2.16) H∗1(z′, p′′) = inf
p′∈Rn1

(〈z′, p′〉 −H(p′, p′′)
)
.

Moreover, the matrix
∂2H∗1(z′, p′′)

∂z′2
is negatively definite, and

(2.17) lim
|z′|→∞

H∗1(z′, p′′)
|z′| = −∞.

Proposition 2.2. Suppose that the function H(p′, p′′) satisfies the condi-
tions (C4), (C5), (C6). Then

1) For each fixed z′′ ∈ Rn2 the function H∗2(p′, z′′) is convex and sat-
isfies the conditions (C1) and (C2) with respect to variable p′.

2) Moreover, the function H∗2(p′, z′′) is twice continuously differen-
tiable on Rn = Rn1 ×Rn2 , and is convex in (p′, z′′). The matrix:

G2 =




∂2H∗2(p′, z′′)
∂p′2

∂2H∗2(p′, z′′)
∂z′′∂p′

∂2H∗2(p′, z′′)
∂p′∂z′′

∂2H∗2(p′, z′′)
∂z′′2




is positively definite on Rn = Rn1 ×Rn2 .

Proof. 1) Since the function H(p′, p′′) is concave in p′, for z′′ and p′′ fixed
the function 〈z′′, p′′〉 − H(p′, p′′) is convex with respect to p′. So from
(2.11) it follows that for each fixed z′′ ∈ Rn2 the function H∗2(p′, z′′) is
convex with respect to variable p′. The solution p′′ = p′′(p′, z′′) of (2.9) is
unique and is continuously differentiable in (p′, z′′). We now prove that

(2.18)
∂H∗2(p′, z′′)

∂p′
= −∂H(p′, p′′(p′, z′′))

∂p′
·

Differentiating both sides of (2.8) with respect to p′, from (2.9) we obtain

∂H∗2(p′, z′′)
∂p′

= −∂H(p′, p′′(p′, z′′))
∂p′

− ∂H(p′, p′′(p′, z′′))
∂p′′

∂p′′(p′, z′′)
∂p′

+ z′′
∂p′′(p′, z′′)

∂p′
= −∂H(p′, p′′(p′, z′′))

∂p′
;
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i.e., (2.18) is satisfied. Here
∂p′′(p′, z′′)

∂p′
is an n2 × n1 matrix.

By differentiating both sides of (2.18) with respect to p′ we have
(2.19)
∂2H∗2(p′, z′′)

∂p′2
= −∂2H(p′, p′′(p′, z′′))

∂p′2
− ∂2H(p′, p′′(p′, z′′))

∂p′′∂p′
∂p′′(p′, z′′)

∂p′
.

On the other hand, by differentiating both sides of (2.9) with respect to
p′ we have

∂2H(p′, p′′(p′, z′′))
∂p′∂p′′

+
∂2H(p′, p′′(p′, z′′))

∂p′′2
∂p′′(p′, z′′)

∂p′
= 0.

The last equality implies

∂2H(p′, p′′(p′, z′′))
∂p′′∂p′

=
(∂2H(p′, p′′(p′, z′′))

∂p′∂p′′

)t

= −
(∂p′′(p′, z′′)

∂p′

)t ∂2H(p′, p′′(p′, z′′))
∂p′′2

.(2.20)

By (2.19) and (2.20) we obtain

∂2H∗2(p′, z′′)
∂p′2

= −∂2H(p′, p′′(p′, z′′))
∂p′2

+
(∂p′′(p′, z′′)

∂p′

)t
∂2H(p′, p′′(p′, z′′))

∂p′′2
∂p′′(p′, z′′)

∂p′
.(2.21)

The matrix
∂2H(p′, p′′(p′, z′′))

∂p′′2
is positively definite; hence the matrix

(∂p′′(p′, z′′)
∂p′

)t ∂2H(p′, p′′(p′, z′′))
∂p′′2

∂p′′(p′, z′′)
∂p′

is nonnegatively definite. Since the matrix −∂2H(p′, p′′(p′, z′′))
∂p′2

is posi-

tively definite, so is the matrix
∂2H∗2(p′, z′′)

∂p′2
·

From (2.11) it follows that H∗2(p′, z′′) ≥ −H(p′, 0′′). Therefore, (2.6)
shows that for fixed z′′ the function H∗2(p′, z′′) is co-finite.
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2) From (2.18) and (2.10) it follows that H∗2(p′, z′′) is twice continu-
ously differentiable on Rn = Rn1 ×Rn2 . Moreover, (2.10) gives

∂p′′(p′, z′′)
∂p′

=
∂2H∗2(p′, z′′)

∂p′∂z′′
=

(∂2H∗2(p′, z′′)
∂z′′∂p′

)t

·

Further, together with (2.18) it implies that

∂2H∗2(p′, z′′)
∂z′′∂p′

= −∂2H(p′, p′′(p′, z′′))
∂p′′∂p′

∂p′′(p′, z′′)
∂z′′

= −∂2H(p′, p′′(p′, z′′))
∂p′′∂p′

∂2H∗2(p′, z′′)
∂z′′2

.

We denote

A = −∂2H(p′, p′′(p′, z′′))
∂p′2

, B =
∂2H(p′, p′′(p′, z′′))

∂p′′2
,

C =
∂2H(p′, p′′(p′, z′′))

∂p′′∂p′
·

Since
∂2H∗2(p′, z′′)

∂z′′2
= B−1, we have

∂2H∗2(p′, z′′)
∂′∂z′′

= −CB−1,

∂p′′(p′, z′′)
∂p′

=
(∂2H∗2(p′, z′′)

∂z′′∂p′

)t

= (−CB−1)t = −B−1Ct.

From (2.21) it follows that

∂2H∗2(p′, z′′)
∂p′2

= A + CB−1BB−1Ct = A + CB−1Ct.

So

G2 =
[

A + CB−1Ct −CB−1

−B−1Ct B−1

]
.

Let ξ = (ξ′, ξ′′) ∈ Rn = Rn1 ×Rn2 . Then

ξG2 = (ξ′(A + CB−1Ct)− ξ′′B−1Ct,−ξ′CB−1 + ξ′′B−1),
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〈ξG2, ξ〉 = 〈ξ′(A + CB−1Ct)− ξ′′B−1Ct, ξ′〉+ 〈−ξ′CB−1 + ξ′′B−1, ξ′′〉
= 〈ξ′A, ξ′〉+ 〈(ξ′′ − ξ′C)B−1, ξ′′ − ξ′C〉.

Since the matrices A,B−1 are positively definite, the matrix G2 is non-
negatively definite. Suppose that 〈ξG2, ξ〉 = 0. Then 〈ξ′A, ξ′〉 = 0, 〈(ξ′′ −
ξC)B−1, ξ′′ − ξ′C〉 = 0. Consequently ξ′ = 0′, and ξ′′ − ξ′C = 0′′. So
ξ′′ = 0′′ and ξ = 0. That means the matrix G2 is in fact positively definite.

Proposition 2.3. Suppose that the function H(p′, p′′) satisfies the condi-
tions (C4), (C5), (C6). Then

1) For each fixed z′ ∈ Rn2 the function H∗1(z′, p′′) is concave and
satisfies the conditions (C1) and (C3) with respect to variable p′′.

2) Moreover, the function H∗1(z′, p′′) is twice continuously differen-
tiable on Rn = Rn1 ×Rn2 , and is concave in (z′, p′′). The matrix

G1 =




∂2(H∗1(z′, p′′))
∂z′2

∂2(H∗1(z′, p′′))
∂p′′∂z′

∂2(H∗1(z′, p′′))
∂z′∂p′′

∂2(H∗1(z′, p′′))
∂p′′2




is negatively definite on Rn = Rn1 ×Rn2 .
The proof is analogous to that of Proposition 2.2.

Definition 2.3. Under the hypotheses of Proposition 2.2 for each fixed
z′′ ∈ Rn2 we define the partial Legendre transform

(−H∗2(., z′′)
)∗1(z′)

of the function −H∗2(p′, z′′) with respect to variable p′ ∈ Rn1 by the
formula:

(2.22)
(−H∗2(., z′′)

)∗1(z′) = H∗2(p′, z′′) + 〈z′, p′〉,
where p′ = p′(z′, z′′) is the solution of the following system of equations:

(2.23)
∂(−H∗2(p′, z′′))

∂p′
= z′.

Since the matrix
∂2(−H∗2(p′, z′′))

∂p′2
is continuous in (p′, z′′) and is neg-

atively definite, the solution p′ = p′(z′, z′′) of (2.23) is unique and is
continuously differentiable in (z′, z′′). We have the following formulas:

(2.24)
∂
(−H∗2(., z′′)

)∗1(z′)
∂z′

= p′(z′, z′′),
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(2.25)
(−H∗2(., z′′)

)∗1(z′) = inf
p′∈Rn1

(〈z′, p′〉+ H∗2(p′, z′′)
)
.

By a proof analogous to that of (2.18) one can obtain

(2.26)
∂
(−H∗2(., z′′)

)∗1(z′)
∂z′′

=
∂H∗2(p′(z′, z′′), z′′)

∂z′′
·

Let m < 0 be arbitrary. From (2.25) we have

(−H∗2(., z′′)
)∗1(z′) ≤ 〈

z′,m
z′

|z′|
〉

+ H∗2
(
m

z′

|z′| , z
′′
)
,

which implies

(−H∗2(., z′′)
)∗1(z′)

|z′| ≤ m +
1
|z′| max

|ζ′|=−m
H∗2(ζ ′, z′′).

Consequently,

(2.27) lim
|z′|→∞

(−H∗2(., z′′)
)∗1(z′)

|z′| = −∞,

where the convergence is locally uniform with respect to z′′ ∈ Rn2 . For

each fixed z′′ ∈ Rn2 the matrix
∂2

(−H∗2(., z′′)
)∗1(z′)

∂z′2
is negatively defi-

nite and

∂2
(−H∗2(., z′′)

)∗1(z′)
∂z′2

= −
(∂2H∗2(p′(z′, z′′), z′′)

∂p′2
)−1

·

Moreover, from (2.24), (2.26) and from Proposition 2.2 it follows that(−H∗2(., z′′)
)∗1(z′) is twice continuously differentiable in (z′, z′′) ∈ Rn =

Rn1 ×Rn2 .

Definition 2.4. Under the hypotheses of Proposition 2.3 for each fixed
z′ ∈ Rn1 we define the partial Legendre transform

(−H∗1(z′, .)
)∗2(z′′)

of the function −H∗1(z′, p′′) with respect to variable p′′ ∈ Rn2 by the
formula:

(2.28)
(−H∗1(z′, .)

)∗2(z′′) = H∗1(z′, p′′) + 〈z′′, p′′〉,
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where p′′ = p′′(z′, z′′) is the solution of the following system of equations:

(2.29)
∂(−H∗1(z′, p′′))

∂p′′
= z′′.

Since the matrix
∂2(−H∗1(z′, p′′))

∂p′′2
is continuous in (z′, p′′) and is pos-

itively definite, the solution p′′ = p′′(z′, z′′) of (2.29) is unique and is
continuously differentiable in (z′, z′′). We have the following formulas:

∂
(−H∗1(z′, .)

)∗2(z′′)
∂z′′

= p′′(z′, z′′),(2.30)
(−H∗1(z′, .)

)∗2(z′′) = sup
p′′∈Rn2

(〈z′′, p′′〉+ H∗1(z′, p′′)
)
.(2.31)

∂
(−H∗1(z′, .)

)∗2(z′′)
∂z′

=
∂H∗1(z′, p′′(z′, z′′))

∂z′
,(2.32)

lim
|z′′|→∞

(−H∗1(z′, .)
)∗2(z′′)

|z′′| = +∞,

(2.33)

where the convergence is locally uniform with respect to z′ ∈ Rn1 . For

each fixed z′ ∈ Rn1 the matrix
∂2

(−H∗1(z′, .)
)∗2(z′′)

∂z′′2
is positively definite.

Moreover, from (2.30), (2.32) and from Proposition 2.3 it follows that(−H∗1(z′, .)
)∗2(z′′) is twice continuously differentiable in (z′, z′′) ∈ Rn =

Rn1 ×Rn2 .

Definition 2.5. Suppose that the concave-convex function H(p′, p′′) sat-
isfies the conditions (C4), (C5), (C6). The function

(2.34) H
∗
(z′, z′′) ≡ (−H∗2(., z′′)

)∗1(z′)

is called the upper Legendre transform of the function H(p′, p′′). The
function

(2.35) H∗(z′, z′′) ≡ (−H∗1(z′, .)
)∗2(z′′)

is called the lower Legendre transform of the function H(p′, p′′).

Proposition 2.4. Suppose that the function H(p′, p′′) satisfies the condi-
tions (C4), (C5), (C6). Then
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1) The function H
∗
(z′, z′′) satisfies the conditions (C4), (C5).

2) The function H
∗
(z′, z′′) coincides with the upper conjugate ([4]) of

the concave-convex function H(p′, p′′); i.e.,

(2.36) H
∗
(z′, z′′) = inf

p′∈Rn1
sup

p′′∈Rn2

(〈z′, p′〉+ 〈z′′, p′′〉 −H(p′, p′′)
)
.

Moreover,

(2.37) H
∗
(z′, z′′) + H(p′, p′′) = 〈z′, p′〉+ 〈z′′, p′′〉,

where

(2.38)
∂H(p′, p′′)

∂p′
= z′,

∂H(p′, p′′)
∂p′′

= z′′,

or

(2.39)
∂H

∗
(z′, z′′)
∂z′

= p′,
∂H

∗
(z′, z′′)
∂z′′

= p′′.

Proof. The assertion 1) follows from the above-mentioned properties of
the function

(−H∗2(., z′′)
)∗1(z′). We prove the assertion 2). The identity

(2.36) follows from (2.34), (2.25) and (2.11). The identity (2.37) follows
from (2.34), (2.22) and (2.8). The relations (2.38) follow from (2.9), (2.18)
and (2.23). The relations (2.39) follow from (2.34), (2.24) (2.26) and
(2.10).

From the Proposition 2.4 it is easy to get the following

Corollary 2.1. Suppose that the function H(p′, p′′) satisfies the condi-
tions (C4), (C5), (C6). Then for any z = (z′, z′′) ∈ Rn1 ×Rn2 we have

H
∗
(z′, z′′) + H

(∂H
∗
(z′, z′′)
∂z′

,
∂H

∗
(z′, z′′)
∂z′′

)

=
〈
z′,

∂H
∗
(z′, z′′)
∂z′

〉
+

〈
z′′,

∂H
∗
(z′, z′′)
∂z′′

〉·(2.40)

For the function H∗(z′, z′′) we also have:
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Proposition 2.5. Suppose that the function H(p′, p′′) satisfies the condi-
tions (C4), (C5), (C6). Then

1) The function H∗(z′, z′′) satisfies the conditions (C4), (C6).
2) The function H∗(z′, z′′) coincides with the lower conjugate ([4]) of

the concave-convex function H(p′, p′′); i.e.,

(2.41) H∗(z′, z′′) = sup
p′′∈Rn2

inf
p′∈Rn1

(〈z′, p′〉+ 〈z′′, p′′〉 −H(p′, p′′)
)
;

Moreover,

(2.42) H∗(z′, z′′) + H(p′, p′′) = 〈z′, p′〉+ 〈z′′, p′′〉,

where

(2.43)
∂H(p′, p′′)

∂p′
= z′,

∂H(p′, p′′)
∂p′′

= z′′,

or

(2.44)
∂H∗(z′, z′′)

∂z′
= p′,

∂H∗(z′, z′′)
∂z′′

= p′′.

Since the functions H
∗
(z′, z′′) and H∗(z′, z′′) are both defined in whole

Rn = Rn1 × Rn2 , from (2.37), (2.38), (2.42), (2.43) and from the nonde-

generateness of the matrix
∂2H(p′, p′′)

∂p2
it follows that for all (z′, z′′) ∈

Rn = Rn1 ×Rn2 :

(2.45) H
∗
(z′, z′′) = H∗(z′, z′′).

So we can make the following.

Definition 2.6. Suppose that the concave-convex function H(p′, p′′) sat-
isfies the conditions (C4), (C5), (C6). Then the function

H∗(z′, z′′) ≡ H
∗
(z′, z′′) = H∗(z′, z′′)

is called the Legendre transform of the concave-convex function H(p′, p′′).

From Definition 2.6, (2.45), Corollary 2.1 and Propositions 2.4, 2.5 it is
easy to obtain the following.
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Proposition 2.6. Suppose that the function H(p′, p′′) satisfies the condi-
tions (C4), (C5), (C6). Then

1) The function H∗(z′, z′′) satisfies the conditions (C4), (C5), (C6) too.
2) For any ξ = (ξ′, ξ′′) ∈ Rn1 ×Rn2 , the function

v(t, x′, x′′, ξ′, ξ′′) = tH∗
(x′ − ξ′

t
,
x′′ − ξ′′

t

)

is a classical solution of the equation (1.1).

3. Hopf’s Lemma in the minimax and maximin cases

In [1] E. Hopf proved that the infimum or maximum of a family of
Lipschitz solutions of the Hamilton-Jacobi equation is in general also a
Lipschitz solution. In this paragraph we formulate a simple version of his
lemma, applied to the minimax and maximin cases.

Let {v(., ξ′, ξ′′)} be a family of functions defined in D, where D is a
open domain in Rn, and (ξ′, ξ′′) ∈ Rn1 ×Rn2 .

Lemma 3.1. Suppose that the family v(x, ξ′, ξ′′) satisfies the following
conditions:

1) The function v(x, ξ′, ξ′′) is continuously differentiable in D×Rn1 ×
Rn2 , and for any fixed (ξ′, ξ′′) ∈ Rn1 ×Rn2 satisfies every where in D the
equation:

(3.1) F
(
x, v(x, ξ′, ξ′′), vx(x, ξ′, ξ′′)

)
= 0;

2) For each fixed ξ′′ ∈ Rn2 (respectively, ξ′ ∈ Rn1), one has

(3.2) v(x, ξ′, ξ′′) → −∞ as |ξ′| → ∞

(3.3)
(
respectively, v(x, ξ′, ξ′′) → +∞ as |ξ′′| → ∞)

locally uniformly with respect to x ∈ D;
3) For any fixed (x, ξ′′) ∈ D × Rn2 (respectively, (x, ξ′) ∈ D × Rn1),

there exists a unique stationary point ξ′ = ξ′(x, ξ′′) (respectively, ξ′′ =
ξ′′(x, ξ′)) for the function v(x, ξ′, ξ′′). Moreover the function ξ′ = ξ′(x, ξ′′)
(respectively, ξ′′ = ξ′′(x, ξ′)) is differentiable in x;

4) If we set

(3.4) w(x, ξ′′) = sup
ξ′∈Rn1

v(x, ξ′, ξ′′) = v(x, ξ′(x, ξ′′), ξ′′)
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(
respctively,

(3.5) w(x, ξ′) = inf
ξ′′∈Rn2

v(x, ξ′, ξ′′) = v(x, ξ′, ξ′′(x, ξ′))
)
,

then

w(x, ξ′′) → +∞ as |ξ′′| → +∞ locallyuniformly with
(3.6)

respect to x ∈ D
)

(
respectively,

w(x, ξ′) → −∞ as |ξ′| → ∞ locally uniformly with(3.7)

respect to x ∈ D
)
.

Then the function:

u(x) = inf
ξ′′∈Rn2

w(x, ξ′′) = inf
ξ′′∈Rn2

sup
ξ′∈Rn1

v(x, ξ′, ξ′′)

(
respectively, u(x) = sup

ξ′∈Rn1

w(x, ξ′′) = sup
ξ′∈Rn1

inf
ξ′′∈Rn2

v(x, ξ′, ξ′′)
)

is a Lipschitz solution of the equation:

F (x, u(x), ux(x)) = 0

in the domain D.

Proof. From the conditions of the Lemma and Hopf’s Lemma 2.2 in [1]
it follows that for any fixed ξ′′ (resp. ξ′) the function w(x, ξ′′) (resp.
w(x, ξ′)) defined by (3.4) (resp. (3.5)) is differentiable in x and satisfies
everywhere in D the equation:

(3.8) F (x,w(x, ξ′′), wx(x, ξ′′)) = 0.

From (3.8), (3.6) (resp. (3.7)) and Hopf’s Lemma it follows that u(x) is a
Lipschitz solution of the equation:

F (x, u(x), ux(x)) = 0.
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4. Hopf’s formula in the minimax and maximin cases

In this paragraph we shall prove the following main result:

Theorem 4.1. Assume that the Hamiltonian H(p′, p′′) and the initial
function σ(x′, x′′) satisfy the following conditions:

1) H(p′, p′′) defined on Rn = Rn1 ×Rn2 is a concave-convex function,
satisfying the conditions (C4), (C5), (C6);

2) σ(x′, x′′) defined on Rn = Rn1 × Rn2 is twice differentiable with
respect to x′ and is globally Lipschitz in x′′:

(4.1) |σ(x′, ξ′′)− σ(x′, x′′)| ≤ L(x′).|ξ′′ − x′′|,

where L(x′) ∈ L∞loc(R
n1 , R+);

3) There exists T > 0 such that for any fixed ξ′′ ∈ Rn2 one has

lim
|ξ′|→∞

{
(σ(ξ′, ξ′′)− σ(x′, ξ′′)) + tH∗

(x′ − ξ′

t
,
x′′ − ξ′′

t

)}
= −∞

where the convergence is locally uniform with respect to (t, x′, x′′) ∈ (0, T )×
Rn1 ×Rn2 ;

4) For any (t, x′, x′′, ξ′′) ∈ (0, T ] × Rn × Rn2 the following system of
equations with respect to ξ′:

(4.2) ξ′ − t
∂H∗2

∂p′

(∂σ(ξ′, ξ′′)
∂ξ′

,
x′′ − ξ′′

t

)
= x′

has a unique solution ξ′ = ξ′(t, x′, x′′, ξ′′), which is continuously differen-
tiable in (t, x′, x′′);

5) There exists a constant M1, which can be positive, such that for any
θ′ ∈ Rn1

(4.3) sup
(ξ′,ξ′′)∈Rn

〈
θ′

∂2σ(ξ′, ξ′′)
∂ξ′2

, θ′
〉 ≤ M1|θ′|2;

6) There exists a constant M2 such that for any t ∈ [0, T ], (p′, z′′) ∈
Rn1 ×Rn2

(4.4) H∗2(p′, z′′)− tM1

∣∣∣∂H∗2(p′, z′′)
∂p′

∣∣∣
2

≥ M2.
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Then the function

(4.5) u(t, x) = inf
ξ′′∈Rn2

sup
ξ′∈Rn1

{
σ(ξ′, ξ′′) + tH∗

(x′ − ξ′

t
,
x′′ − ξ′′

t

)}

is a global Lipschitz solution of the problem (1.1), (1.2).

Proof. We set

(4.6) v(t, x′, x′′, ξ′, ξ′′) = σ(ξ′, ξ′′) + tH∗
(x′ − ξ′

t
,
x′′ − ξ′′

t

)
·

We verify that the function v(t, x′, x′′, ξ′, ξ′′) satisfies all the conditions of
Lemma 3.1. According to Proposition 2.6 the function v(t, x′, x′′, ξ′, ξ′′) is
a continuously differentiable function and for any fixed (ξ′, ξ′′) ∈ Rn it is
a solution of the equation:

(4.7) vt + H(vx′ , vx′′) = 0.

From Condition 3) of the theorem, it follows that the condition (3.2) of
Lemma 3.1 for the function v(t, x′, x′′, ξ′, ξ′′) is satisfied. Given any fixed
(t, x′, x′′, ξ′′) ∈ Ω × Rn2 , in order to maximize v(t, x′, x′′, ξ′, ξ′′) over Rn1

we solve the following system of equations

(4.8)
∂v(t, x′, x′′, ξ′, ξ′′)

∂ξ′
= 0

with respect to ξ′. We have

∂v(t, x′, x′′, ξ′, ξ′′)
∂ξ′

=
∂σ(ξ′, ξ′′)

∂ξ′
− ∂H∗

∂z′

(x′ − ξ′

t
,
x′′ − ξ′′

t

)
·

So from (4.8) it follows that

(4.9)
∂H∗

∂z′

(x′ − ξ′

t
,
x′′ − ξ′′

t

)
=

∂σ(ξ′, ξ′′)
∂ξ′

·

Since

(4.10) H∗(z′, z′′) =
(−H∗2(., z′′)

)∗1(z′),
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we may use (2.24) with

z′ =
x′ − ξ′

t
, z′′ =

x′′ − ξ′′

t
, p′(z′, z′′) =

∂σ(ξ′, ξ′′)
∂ξ′

to deduce from (4.9) that

(4.11) −∂H∗2

∂p′

(∂σ(ξ′, ξ′′)
∂ξ′

,
x′′ − ξ′′

t

)
=

x′ − ξ′

t
·

So we have

(4.12) ξ′ − t
∂H∗2

∂p′

(∂σ(ξ′, ξ′′)
∂ξ′

,
x′′ − ξ′′

t

)
= x′.

Condition 4) of the theorem guarantees that the solution ξ′ = ξ′(t, x′, x′′, ξ′′)
of the system (4.12), which is continuously differentiable with respect
to (t, x′, x′′), determines the unique stationary point ξ′ of the function
v(t, x′, x′′, ξ′, ξ′′) for any fixed (t, x′, x′′, ξ′).

Now we set

(4.13) w(t, x′, x′′, ξ′′) = sup
ξ′

v(t, x′, x′′, ξ′, ξ′′).

From (4.10), (4.11) and from the definition (2.22) of
(−H∗2(., z′′)

)∗1(z′)
we have

w(t, x′, x′′, ξ′′) = v(t, x′, x′′, ξ′, ξ′′) = σ(ξ′, ξ′′) + tH∗
(x′ − ξ′

t
,
x′′ − ξ′′

t

)

= σ(ξ′, ξ′′) + t
(
−H∗2(., x′′ − ξ′′

t

))∗1(x′ − ξ′

t

)
(4.14)

= σ(ξ′, ξ′′) + t
〈∂σ(ξ′, ξ′′)

∂ξ′
,
x′ − ξ′

t

〉
+ tH∗2

(∂σ(ξ′, ξ′′)
∂ξ′

,
x′′ − ξ′′

t

)
,

where ξ′ stands for ξ′(t, x′, x′′, ξ′′). On the other hand, for any x′, ξ′ ∈
Rn1 , ξ′′ ∈ Rn2 there exists θ′ ∈ Rn1 such that

σ(x′, ξ′′) = σ(ξ′, ξ′′) +
〈∂σ(ξ′, ξ′′)

∂ξ′
, x′ − ξ′

〉

+
1
2
〈
(x′ − ξ′)

∂2σ(θ′, ξ′′)
∂ξ′2

, x′ − ξ′
〉
.
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So we have

σ(ξ′, ξ′′) +
〈∂σ(ξ′, ξ′′)

∂ξ′
, x′ − ξ′

〉

= σ(x′, ξ′′)− 1
2
〈
(x′ − ξ′)

∂2σ(θ′, ξ′′)
∂ξ′2

, x′ − ξ′
〉
.(4.15)

From (4.14), (4.15) it follows that

w(t, x′, x′′, ξ′′) = σ(x′, ξ′′) + tH∗2
(∂σ(ξ′, ξ′′)

∂ξ′
,
x′′ − ξ′′

t

)

− 1
2
〈
(x′ − ξ′)

∂2σ(θ′, ξ′′)
∂ξ′2

, x′ − ξ′
〉

= σ(x′, ξ′′) +
t

2
H∗2

(∂σ(ξ′, ξ′′)
∂ξ′

,
x′′ − ξ′′

t

)

+
t

2
H∗2

(∂σ(ξ′, ξ′′)
∂ξ′

,
x′′ − ξ′′

t

)

− 1
2
〈
(x′ − ξ′)

∂2σ(θ′, ξ′′)
∂ξ′2

, x′ − ξ′
〉
.(4.16)

It follows from (4.10) that

−H∗2(p′, z′′) = inf
z′∈Rn1

(〈z′, p′〉 −H∗(z′, z′′)
) ≤ −H∗(0′, z′′).

So we have

(4.17) H∗2
(∂σ(ξ′, ξ′′)

∂ξ′
,
x′′ − ξ′′

t

)
≥ H∗

(
0′,

x′′ − ξ′′

t

)
.

By (4.16), (4.17), (4.11), (4.3), (4.4) and (4.1), for p′ =
∂σ(ξ′, ξ′′)

∂ξ′
and

ξ′ = ξ′(t, x′, x′′, ξ′′), we obtain

w(t, x′, x′′, ξ′′) ≥ σ(x′, ξ′′) +
t

2
H∗

(
0′,

x′′ − ξ′′

t

)
+

+
t

2
H∗2(p′,

x′′ − ξ′′

t
)− 1

2
〈
(x′ − ξ′)

∂2σ(θ′, ξ′′)
∂ξ′2

, x′ − ξ′
〉 ≥

≥ σ(x′, ξ′′) +
t

2
H∗

(
0′,

x′′ − ξ′′

t

)(4.18)
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+
t

2

(
H∗2(p′, x′′ − ξ′′

t

)−M1t
∣∣∣∂H∗2

∂p′
(
p′,

x′′ − ξ′′

t

)∣∣∣
2)
≥

≥ σ(x′, ξ′′) +
t

2
H∗(0′, x′′ − ξ′′

t

)
+

t

2
M2 ≥

≥ σ(x′, x′′) + t
[
− L(x′)

|x′′ − ξ′′|
t

+
1
2
H∗(0′, x′′ − ξ′′

t

)]
+

t

2
M2.

From (4.18) and from the co-finiteness of the function H∗(0′, z′′) it follows
that

w(t, x′, x′′, ξ′′) → +∞ as |ξ′′| → ∞
locally uniformly in (t, x′, x′′) ∈ Ω. So all the conditions of Lemma 3.1
have been verified. This implies that the function

(4.19) u(t, x′, x′′) = inf
ξ′′

w(t, x′, x′′, ξ′′)

is a Lipschitz solution of the equation (1.1). From (4.19), (4.18) it follows
that there exists a constant M3 such that

(4.20) u(t, x′, x′′) ≥ σ(x′, x′′) + tM3.

We denote by ξ′0(t, x
′, x′′) the solution of the system

ξ′ − t
∂H∗2

∂p′

(∂σ(ξ′, x′′)
∂ξ′

, 0′′
)

= x′.

It is clear that as t → 0

(4.21) ξ′0(t, x
′, x′′) → x′;

x′ − ξ′0(t, x
′, x′′)

t
→ −∂H∗2

∂p′

(∂σ(x′, x′′)
∂x′

, 0′′
)
.

By (4.19), (4.13), (4.6) we have

u(t, x′, x′′) ≤ w(t, x′, x′′, ξ′′)|ξ′′=x′′

= v(t, x′, x′′, ξ′(t, x′, x′′, ξ′′), ξ′′)
∣∣
ξ′′=x′′ =

= σ(ξ′0(t, x
′, x′′), x′′) + tH∗

(x′ − ξ′0(t, x
′, x′′)

t
, 0′′

)
.

(4.22)

From (4.20), (4.21), (4.22) we conclude that

u(t, x′, x′′) → σ(x′, x′′) as t → 0.



290 HA TIEN NGOAN

Theorem 4.2. Assume that the Hamiltonian H(p′, p′′) and the initial
function σ(x′, x′′) satisfy the following conditions:

1) The function H(p′, p′′), defined on Rn = Rn1 × Rn2 , is a concave-
convex function satisfying the conditions (C4), (C5), (C6);

2) The function σ(x′, x′′), defined on Rn = Rn1 ×Rn2 , is twice differ-
entiable with respect to x′′ and is globally Lipschitz in x′:

(4.23) |σ(ξ′, x′′)− σ(x′, x′′)| ≤ L(x′′).|ξ′ − x′|
where L(x′′) ∈ L∞loc(R

n2 , R+);
3) There exists T > 0 such that for any fixed ξ′ ∈ Rn1 one has

lim
|ξ′′|→∞

{
(σ(ξ′, ξ′′)− σ(ξ′, x′′)) + tH∗

(x′ − ξ′

t
,
x′′ − ξ′′

t

)}
= +∞,

where the convergence is locally uniform with respect to (t, x′, x′′) ∈ (0, T )×
Rn1 ×Rn2 ;

4) For any (t, x′, x′′, ξ′) ∈ (0, T ] × Rn × Rn1 the following system of
equations with respect to ξ′′:

(4.24) ξ′′ − t
∂H∗1

∂p′′

(x′ − ξ′

t
,
∂σ(ξ′, ξ′′)

∂ξ′′

)
= x′′

has a unique solution ξ′′ = ξ′′(t, x′, x′′, ξ′) which is continuously differen-
tiable in (t, x′, x′′);

5) There exists some constant M1, which can be negative, such that for
any θ′′ ∈ Rn2 :

(4.25) inf
(ξ′,ξ′′)∈Rn

〈
θ′′

∂2σ(ξ′, ξ′′)
∂ξ′′2

, θ′′
〉 ≥ M1|θ′′|2;

6) There exists a constant M2 such that for any t ∈ [0, T ], (z′, p′′) ∈
Rn1 ×Rn2

(4.26) H∗1(z′, p′′)− tM1

∣∣∣∂H∗1(z′, p′′)
∂p′′

∣∣∣
2

≤ M2.

Then the function

(4.27) u(t, x) = sup
ξ′∈Rn1

inf
ξ′′∈Rn2

{
σ(ξ′, ξ′′) + tH∗(x′ − ξ′

t
,
x′′ − ξ′′

t

)}

is a global Lipschitz solution of the problem (1.1), (1.2).

Proof. The proof is analogous to that of Theorem 4.1.
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5. An example

We consider the following Cauchy problem

(5.1)
∂u

∂t
− 1

2

( ∂u

∂x′

)2

+
1
2

( ∂u

∂x′′

)2

+ λ
∂u

∂x′
∂u

∂x′′
= 0,

(t, x′, x′′) ∈ (0, T )×R×R,

(5.2) u(t, x′, x′′)
∣∣
t=0

= h0(x′′) + h1(x′′)x′ +
1
2
h2(x′′)(x′)2,

(x′, x′′) ∈ R×R,
where λ = const, the functions h0(x′′), h1(x′′), h2(x′′) are globally Lip-
schitz, and

(5.3) h2(x′′) ≤ M1.

In this case,

H(p′, p′′) = −1
2
(p′)2 +

1
2
(p′′)2 + λp′p′′,(5.4)

σ(x′, x′′) = h0(x′′) + h1(x′′)x′ +
1
2
h2(x′′)(x′)2,(5.5)

H∗2(p′, z′′) =
1
2
(1 + λ2)(p′)2 +

1
2
(z′′)2 − λp′z′′,(5.6)

H∗1(z′, p′′) = −1
2
(1 + λ2)(p′′)2 − 1

2
(z′)2 + λp′′z′,(5.7)

H∗(z′, z′′) =
1

2(1 + λ2)
(−(z′)2 + (z′′)2 + 2λz′z′′

)
.(5.8)

We have

∂σ(x′, x′′)
∂x′

= h1(x′′) + h2(x′′)x′,(5.9)

∂2σ(x′, x′′)
∂x′2

= h2(x′′),(5.10)

∂H∗2(p′, z′′)
∂p′

= (1 + λ2)p′ − λz′′,(5.11)

∣∣∣∂H∗2(p′, z′′)
∂p′

∣∣∣
2

= (1 + λ2)2(p′)2(5.12)

− 2λ(1 + λ2)p′z′′ + λ2(z′′)2.



292 HA TIEN NGOAN

One can verify that all the conditions of Theorem 4.1 are satisfied.
Indeed,

1) The function H(p′, p′′) is concave-convex and satisfies the conditions
(C4), (C5), (C6).

2) From (5.5) it follows that the condition 2) is satisfied.

3) We choose T =
1

2M1(1 + λ2)
if M1 > 0, and T arbitrary if M1 ≤ 0.

Then for ξ′′ ∈ R fixed

lim
|ξ′|→∞

(
h0(ξ′′) + h1(ξ′′)ξ′ +

1
2
h2(ξ′′)(ξ′)2+

+
1

2(1 + λ2)t
(−(x′ − ξ′)2 + (x′′ − ξ′′)2 + 2λ(x′ − ξ′)(x′′ − ξ′′)

)
= −∞,

where the convergence is locally uniform with respect to (t, x′, x′′) ∈
(0, T )×R×R.

4) The equation (4.2) takes the form

(5.13) ξ′ − t
(
(1 + λ2)

(
h1(ξ′′) + h2(ξ′′)ξ′

)− λ
x′′ − ξ′′

t

)
= x′.

This equation has the unique solution:

ξ′ =
t(1 + λ2)h1(ξ′′) + x′ − λ(x′′ − ξ′′)

1− t(1 + λ2)h2(ξ′′)
,

which is continuously differentiable in t, x′, x′′, where (t, x′, x′′) ∈ [0, T ]×
R×R.

5) Since h2(x′′) ≤ M1, from (5.10) it is easy to see that the condition
(4.3) is fulfilled with the same M1 as in (5.3).

6) By (5.6) and (5.12), (4.4) clearly holds if we choose M2 = 0. Indeed,

H∗2(p′, z′′)− tM1

∣∣∣∂H∗2(p′, z′′)
∂p′

∣∣∣
2

=
1
2
(1 + λ2)(1− 2tM1(1 + λ2))(p′)2

− λ(1− 2tM1(1 + λ2))p′z′′ +
1
2
(1− 2tM1λ

2)(z′′)2.

Since the discriminant of the quadratic form in the right side is equal to
−1 + 2tM1(1 + λ2), the condition (4.4) is satisfied with M2 = 0 for all

t ≥ 0 if M1 ≤ 0 and for all t ∈ [0, T ], where T =
1

2M1(1 + λ2)
, if M1 > 0.
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From Theorem 4.1 we conclude that the function

u(t, x′, x′′) = inf
ξ′′∈R

sup
ξ′∈R

{
h0(ξ′′) + h1(ξ′′)ξ′ +

1
2
h2(ξ′′)(ξ′)2+

+
1

2(1 + λ2)t
(−(x′ − ξ′)2 + (x′′ − ξ′′)2 + 2λ(x′ − ξ′)(x′′ − ξ′′)

)}
(5.14)

is a solution of the problem (5.1), (5.2) in the domain Ω = (0, T ) × R2,
where T is arbitrary if M1 ≤ 0, and T = 1

2M1(1+λ2) if M1 > 0.
There are the following two particular cases of the formula (5.14):
1) If h0(x′′) = h1(x′′) = 0, then

u(t, x′, x′′) = inf
ξ′′∈R

{ 1
2(1− t(1 + λ2)h2(ξ′′))

[
(h2(ξ′′)(x′)2

− 2λh2(ξ′′)x′(x′′ − ξ′′) + (
1
t
− h2(ξ′′))(x′′ − ξ′′)2

]}
;

2) If h0(x′′) = h2(x′′) = 0, h1(x′′) = ax′′, a = const, then

u(t, x′, x′′) =
a

2
(
a2t2 + (1 + λat)2

)(− at(x′)2 + 2(1 + λat)x′x′′+ at(x′′)2
)
.
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