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RELATIVE PRIMENESS OF ENTIRE FUNCTIONS

JIAZHANG ZHOU AND XIN-HOU HUA

Abstract. In this note, we will discuss the relative primeness of entire
functions. In particular, we will answer a problem due to C. C. Yang.

1. Introduction

In what follows, unless specified, all the functions in this paper are
nonconstant entire functions. Let F (z) be a nonconstant entire function.
A decomposition

F (z) = f(g(z)) = f ◦ g(z)

will be called a factorization of F with f and g being the left and right
factor of F , respectively, where f is meromorphic and g is entire (g may
be meromorphic when f is rational). In particular, we shall use the notion
g|F iff F = f(g) for some f .

Since 1968, the factorization theory has been studied zealously by many
complex analysts and moderate progress has been achieved by utilizing
Nevanlinna theory (see, e.g., [1, 2, 3]). Moreover, the study of factoriza-
tion has utilized and enriched the value distribution theory. In addition,
it has some applications to complex dynamics. In past decades, investiga-
tions have focused on criteria of factorizability and the unique factorizable
property of entire and meromorphic functions. Recently a new type of
question relating to these developments has been tackled; namely whether
greatest common right factor (GCRF) or least common right multiplier
(LCRM) exists for a pair or a set of entire functions (see Yang [4]).

Definition 1. Let F , G be two given functions having h as their common
right factors, i.e. h|F and h|G. h is called a GCRF of F and G iff h1|h to
any common right factor h1 of F and G.

Definition 2. F and G are called relatively prime, if their GCRF is
linear.
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The following result was proved by Yang [4].

Theorem 1. Let F and G be two transcendental entire functions such
that FG is prime. If

(1) T (r, F ) = S(r,G) or T (r,G) = S(r, F ).

Then F and G are relatively prime.

Remark. The same conclusion holds if we replace FG by F/G or F ±G.

Example. cos z and esin z are relatively prime.

In this note, we shall cancel the condition (1) and prove the following
result.

Theorem 2. Let F and G be two transcendental entire functions such
that FG is prime. Then F and G are relatively prime, unless

(2) F = f(h), G = g(h),

where h is a nonlinear prime entire function, f and g satisfy one of the
following cases:

(i) f = Leα and g = e−α;
(ii) f = eα and g = Le−α,

here α(z) is entire, and L is linear.

Corollary 1. Under the assumption of Theorem 2, if

T (r, F ) 6∼ T (r,G)

on a set of r with infinite linear measure, then F and G are relatively
prime.

Remark. The converse of Theorem 2 does not hold.

Example. Let F (z) = cos z, G(z) = cos zesin z. Then G is prime, and
hence F and G are relatively prime. However

FG = (1− w2)ew ◦ sin z.

For any two prime functions f and g, we denote by (f, g) = z the
property that f and g have no common nonlinear factors. In [4], Yang
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asked the following question: Is it possible to construct three transcenden-
tal prime functions f1, f2 and f3 such that (f1, f2) = (f1, f3) = z but
f1 6 \f2(f3) ?

The following result give an affirmative answer to Yang’s question.

Theorem 3. There exist three transcendental prime functions f1, f2 and
f3 such that (f1, f2) = (f1, f3) = z but f1 6 \f2(f3).

2. Proof of Theorem 2

We will follow the proof of Yang [4, Theorem 2]. Suppose that F and
G are not relatively prime. It follows from Definition 2 that F and G have
a common right factor h(z) (say) which is nonlinear. Then

(3) F = f(h), G = g(h)

for some meromorphic functions f and g, in which case FG = (fg) ◦
h. Thus, according to the assumption that FG is prime, there exists a
fractional linear function M(z) such that

(4) fg = M.

This implies that either both f and g are transcendental or both f and g
are rational. Next we consider four cases as follows.

1) f and g are entire. Then M(z) is linear. Since F and G are noncon-
stant, it follows from (4) that both f and g are transcendental. Otherwise,
either f or g is constant, a contradiction. Using (4) again we obtain (i) or
(ii).

2) f is entire but g has poles. Since G is entire, if f and g are tran-
scendental, it follows from (3) that h is entire and g has only pole z0 (say)
such that

h = z0 + eβ

for some entire function β(z). Combining this with (3) and (4) we obtain

FG = M ◦ (z0 + eβ) = M ◦ (w2 + z0) ◦ eβ/2.

This means that FG is not prime, a contradiction. If f and g are not
transcendental, then f is a polynomial and g is rational. Since G is entire,
from (3) we see that g has at most two poles. Moreover, if g has two poles
z1 and z2, then there exists an entire function β(z) such that

L1 ◦ h = eβ , L1(w) =
w − z1

w − z2
·
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Combining this with (3) and (4) we obtain

FG = M ◦ h = M ◦ L−1
1 ◦ eβ = M ◦ L−1

1 ◦ w2 ◦ eβ/2.

Thus FG is not prime, a contradiction. Therefore g has only pole which
is a Picard exceptional value of h. Let z0 be the pole of g. Then there
exists an entire function h0(z) such that

h(z) = z0 +
1
h0

·

Substituting this into (3) we get F = f(z0 + 1/h0). Since F is entire and
f is a polynomial, h0 has no zeros, which implies that h0 = eα for some
entire function α. We thus have

FG = M ◦ h = M ◦ (z0 + w2) ◦ e−α/2,

a contradiction.
3) f has poles but g is entire. Similarly as in the case 2), we can deduce

a contradiction.
4) Both f and g have poles. If f and g have a common pole z0, then fg

can not satisfy (4). If f and g have different poles z1 and z2, respectively,
then by the same method as in 2) we deduce that FG is not prime, a
contradiction.

The proof of Theorem 2 is now complete.

3. Proof of Theorem 3

Let
f1 = z + ez, f2 = zez, f3 = ze2z.

Then fj (j = 1, 2, 3) are prime and (f1, f2) = (f1, f3) = z. If

f1|f2 ◦ f3 = zez(2+e2z),

then there exists a meromorphic function f(z) such that

(5) f ◦ f1 = zez(2+e2z).

Since the right hand side is entire and f1 has no Picard exceptional value,
f should be entire. Furthermore, note that the right hand side of (5) has
only one zero, thus

f(w) = weβ(w)
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for some transcendental entire function β(w). From this and (5) we obtain

(z + ez) exp(β(z + ez)) = zez(2+e2z).

This is impossible since there are infinitely many zeros in the left hand
side.

The proof of Theorem 3 is now complete.
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