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ON F -DISCRETE DISTRIBUTION

PHAM XUAN BINH

Abstract. We investigate a new family of discrete distributions which
are called F -discrete distributions. A moment recursion formula and some
limit theorems for these distributions are proved. These results are similar
to those for the well-known F -distributions in the continuous case.

1. Introduction

Let U be a random variable which has the density

(1) f(x) =





0 if x ≤ 0,

γβΓ(α + β)
Γ(α)Γ(β)

xα−1(x + γ)−α−β if x > 0 (α, β, γ > 0).

We note that when putting α =
n1

2
, β =

n2

2
, γ =

n2

n1
, we obtain the

well-known F -distribution (Fisher-Snedecor distribution) with parameters
(n1, n2). It is easy to check that the density f in (1) satisfies the differential
equation

(2) x(x + γ)f ′(x) = [γ(α− 1)− (β + 1)x]f(x).

So the distribution of U belongs to Pearson’s system (see [4], page 133).
We can write (2) in the following form

(3)

x∫

0

[γα− (β − 1)t]f(t)dt = x(x + γ)f(x), x ≥ 0.

This leads us to consider, in the discrete case, the analogous equation
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(4)
k∑

j=0

[rα− (β − 1)j]pj = (k + r)(k + α)pk, k = 0, 1, 2, . . . ,

where α, β, r > 0.

In this paper we shall show that (4) and the condition
∞∑

k=0

pk = 1

uniquely define the following family of discrete distributions

(5) pk =
Γ(α + β)Γ(β + r)

Γ(α)Γ(β)Γ(r)
Γ(α + k)Γ(r + k)

Γ(α + β + r + k)k!
, k = 0, 1, 2, . . .

It is interesting that we can give a probabilistic model which generates
these distributions. Such a model can be obtained by reviewing Polya’s
one (see [4], Chapter 6, and [2], page 120) in another way (see the model
after Proposition 2.2).

We shall deliver a recursion formula for the moments of these distribu-
tions (Theorem 3.2 ). We shall also prove some limit theorems (Section 4)
which show that Poisson and Pascal distributions can be obtained under
certain conditions. These results show that the new distribution is simi-
lar to the F -distribution in the continuous case. Therefore we call it the
F -discrete distribution.

2. Preliminaries and Definition

Lemma 2.1 (see [1], page 73). We have

Γ(c)
Γ(a)Γ(b)

∞∑

k=0

Γ(a + k)Γ(b + k)
Γ(c + k)k!

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

where Re(c) > Re(b) > 0, Re(c− a− b) > 0.

Theorem 2.1. Let pk, k = 0, 1, 2, ..., be a sequence of real numbers.
Then pk is given by (5) if and only if pk satisfies (4) and the condition
∞∑

k=0

pk = 1.

Proof. Suppose that pk satisfies (4) and the condition
∑

pk = 1. By (4)
we have

[rα− (β − 1)(k + 1)]pk+1 = (k + 1 + r)(k + 1 + α)pk+1 − (k + r)(k + α)pk,



ON F -DISCRETE DISTRIBUTION 249

k = 0, 1, 2, ... or

pk+1 =
(k + α)(k + r)

(k + 1)(k + α + β + r)
pk, k = 0, 1, 2, ...

Hence we get

(6) pk =
Γ(α + β + r)Γ(α + k)Γ(r + k)
Γ(α)Γ(r)Γ(α + β + r + k)k!

p0, k = 0, 1, 2, ...

By Lemma 2.1 we see that

∞∑

k=0

pk =
∞∑

k=0

Γ(α + β + r)Γ(α + k)Γ(r + k)
Γ(α)Γ(r)Γ(α + β + r + k)k!

p0 =
Γ(β)Γ(α + β + r)
Γ(α + β)Γ(β + r)

p0.

By the condition
∞∑

k=0

pk = 1 we obtain

(7) p0 =
Γ(α + β)Γ(β + r)
Γ(β)Γ(α + β + r)

·

From (6) and (7) we get (5).
Now, suppose that pk is given by (5). By Lemma 2.1 we see that the

condition
∞∑

k=0

pk = 1 is satisfied. We shall prove that pk satisfies (4) by

induction. It is easy to verify that (4) holds when k = 0. Assume that (4)
is true when k = n. By noting that

pn =
(n + 1)(n + α + β + r)

(n + r)(n + α)
pn+1 ,

we have
n+1∑

k=0

[rα−(β − 1)k]pk =

= [rα− (β − 1)(n + 1)]pn+1 +
n∑

k=0

[rα− (β − 1)k]pk

= [rα− (β − 1)(n + 1)]pn+1 + (n + α)(n + r)pn

= [rα− (β − 1)(n + 1)]pn+1 + (n + 1)(n + α + β + r)pn+1

= [n2 + (α + r + 2)n + (rα + r + α + 1)]pn+1

= (n + 1 + α)(n + 1 + r)pn+1.
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By Theorem 2.1 we can give the following definition.

Definition 2.1. A random variable X is said to have F -discrete distri-
bution (F -d.d.) with parameters (α, β, r) if

P (X = k) =
Γ(α + β)
Γ(α)Γ(β)

Γ(β + r)
Γ(r)

Γ(α + k)Γ(r + k)
Γ(α + β + r + k)k!

, k = 0, 1, 2, ...,

where α, β, r are positive real numbers.

Proposition 2.2. Let U be a random variable which has the density (1).
Suppose that for a random variable X we have

P (X = k | U = x) =
Γ(r + k)
Γ(r)k!

( γ

x + γ

)r( x

x + γ

)k

, k = 0, 1, 2, ..., r > 0.

Then X has F -d.d. with parameters (α, β, r).

Proof. For k = 0, 1, 2, ..., we have

P (X = k) =
γβ+rΓ(α + β)Γ(r + k)

Γ(α)Γ(β)Γ(r)k!

+∞∫

0

xα+k−1(x + γ)−(α+β+r+k)dx

=
Γ(α + β)Γ(r + k)
Γ(α)Γ(β)Γ(r)k!

1∫

0

tα+k−1(1− t)β+r−1dt

=
Γ(α + β)
Γ(α)Γ(β)

Γ(β + r)
Γ(r)

Γ(α + k)Γ(r + k)
Γ(α + β + r + k)k!

.

When α, β, r are integers, F -d.d. can be described as follows. Suppose
that there is an urn which contains α white and β red balls. A ball is drawn
at random. It is replaced and, moreover, one ball of the color drawn is
added. A new random drawing is made from the urn (now containing
α+β +1 balls), and this procedure is repeated until r red balls are drawn.
Let Y be the random variable which represents for the number of drawing.
Then the random variable X = Y −r has F -d.d. with parameters (α, β, r).

This can be proved by induction. It is easy to check that if r = 1 then
X has F -d.d. with parameters (α, β, 1).

Now suppose that X has F -d.d. with parameters (α, β, n − 1) when
r = n − 1 and we find the probability of the event A that the procedure
terminates at the (n+k)-th step, i.e., the n-th red ball is drawn at (n+k)-
th step, n ≥ 2.
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We denote by Hj the events that the (n − 1)-th red ball is drawn at
(j + n− 1)-th step, j = 0, k. Then

P (A) =
k∑

j=0

P (Hj)P (A | Hj)

=
k∑

j=0

Γ(α + β)Γ(β + n− 1)
Γ(α)Γ(β)Γ(n− 1)

Γ(α + j)Γ(n + j − 1)
Γ(α + β + n + j − 1)j!

×

× Γ(α + β + n + j − 1)Γ(α + k)(β + n− 1)
Γ(α + j)Γ(α + β + r + k)

=
Γ(α + β)Γ(β + n)Γ(α + k)
Γ(α)Γ(β)Γ(α + β + r + k)

k∑

j=0

Γ(j + n− 1)
Γ(n− 1)j!

=
Γ(α + β)Γ(β + n)Γ(α + k)Γ(n + k)

Γ(α)Γ(β)Γ(α + β + n + k)k!
·

3. Moment Properties

From now on, we denote by X a random variable which has F -d.d.
with parameters (α, β, r) and we will use the notation pk = P (X = k),
k = 0, 1, 2, ...

By the investigations of [1] (page 70), and [3] (page 280), we see that
the s-th moment of F -d.d. with parameters (α, β, r) is finite if and only
if s < β.

Proposition 3.1. For β − 2 > s ≥ 0, we have

E[(X + 1)s(X + α)(X + r)] = E[Xs+1(X + α + β + r − 1)].

Proof. Note that

(k + α)(k + r)pk = (k + 1)(k + α + β + r)pk+1.

Multiplying the two sides of this equality by (k + 1)s and summing up we
obtain

∞∑

k=0

(k + 1)s(k + α)(k + r)pk =
∞∑

k=0

(k + 1)s+1(k + α + β + r)pk+1.
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Hence we get

E[(X + 1)s(X + α)(X + r)] =
∞∑

k=0

(k + 1)s(k + α)(k + r)pk

=
∞∑

k=0

(k + 1)s+1(k + α + β + r)pk+1

=
∞∑

n=0

ns+1(n + α + β + r − 1)pn

= E[Xs+1(X + α + β + r − 1)].

It is easy to check the validity of the following lemma.

Lemma 3.1. For β − 1 > m ≥ 0, we have

lim
n→∞

nm+2.pn = 0.

Theorem 3.2. For β − 1 > m, m = 0, 1, 2, ..., we have

(β − 1−m)EXm+1 =
m−2∑

j=0

Cj
mEXj+2 + (α + r)

m−1∑

j=0

Cj
mEXj+1

+ αr

m∑

j=0

Cj
mEXj .(8)

Proof. By analogous arguments as in the proof of Proposition 3.1 we have

(9)
n∑

k=0

(k + 1)m(k + α)(k + r)pk =
n∑

k=0

(k + 1)m+1(k + α + β + r)pk+1.

But

n∑

k=0

(k + 1)m(k + α)(k + r)pk =
n∑

k=0

m∑

j=0

Cj
mkj [k2 + (α + r)k + α r]pk

=
m∑

j=0

Cj
m

n∑

k=0

kj+2pk + (α + r)
m∑

j=0

Cj
m

n∑

k=0

kj+1pk + α r

m∑

j=0

Cj
m

n∑

k=0

pk
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=
m−2∑

j=0

Cj
m

n∑

k=0

kj+2pk + (α + r)
m−1∑

j=0

Cj
m

n∑

k=0

kj+1pk

+ α r

m∑

j=0

Cj
m

n∑

k=0

pk +
n∑

k=0

km+2pk + m

n∑

k=0

km+1pk

+ (α + r)
n∑

k=0

km+1pk,(10)

and

n∑

k=0

(k + 1)m+1(k + α + β + r)pk+1

=
n∑

k=0

(k + 1)m+2pk+1 + (α + β + r − 1)
n∑

k=0

(k + 1)m+1pk+1

=
n+1∑

k=0

km+2pk + (α + β + r − 1)
n+1∑

k=0

km+1pk

=
n∑

k=0

km+2pk + (α + β + r − 1)
n∑

k=0

km+1pk+

+ (n + 1)m+2pn+1 + (α + β + r − 1)(n + 1)m+1pn+1.

(11)

From (9), (10), (11), we get

(β − 1−m)
n∑

k=0

km+1pk + (n + 1)m+2pn+1

+ (α + β + r − 1)(n + 1)m+1pn+1 =
m−2∑

j=0

Cj
m

n∑

k=0

kj+2pk

+ (α + r)
m−1∑

j=0

Cj
m

n∑

k=0

kj+1pk + αr

m∑

j=0

Cj
m

n∑

k=0

pk.

(12)

By Lemma 3.1 we get (8) when taking the limit as n →∞ in (12).
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Remark.
(i) If β > 1 then EX =

rα

β − 1

(ii) If β > 2 then EX2 =
rα(rα + α + β + r − 1)

(β − 1)(β − 2)
and

Var(X) =
rα[rα + (β − 1)(α + β + r − 1)]

(β − 1)2(β − 2)
.

4. Some Limit Theorems

Theorem 4.1. For c > 0, we have

lim
β,r→∞

β
r→c

P (X = k) =
Γ(α + k)
Γ(α)k!

pαqk, k = 0, 1, 2, ...,

where p =
c

1 + c
and q = 1− p.

Proof. When β, r are large, β = cr + ε(β, r), where

lim
β,r→∞

β
r→c

ε(β, r) = 0.

Then

P (X = k) =
Γ(α + k)Γ(α + β)Γ(r + k)Γ[(1 + c)r + ε(β, r)]
k!Γ(α)Γ(β)Γ(r)Γ[(1 + c)r + α + k + ε(β, r)]

·

By the continuity of Gamma function and the well-known limit

lim
x→+∞

Γ(x + a)
xaΓ(x)

= 1, we have

lim
β,r→∞

β
r→c

P (X = k) = lim
β,r→∞

β
r→c

Γ(α + k)βαrk

k!Γ(α)(1 + c)αrα(1 + c)krk

=
Γ(α + k)
Γ(α)k!

( c

1 + c

)α( 1
1 + c

)k

=
Γ(α + k)
Γ(α)k!

pαqk.
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Remark. Let f as in (1). For c > 0 we have

lim
β,γ→∞

β
γ→c

f(x) =





0 if x ≤ 0,

cα

Γ(α)
xα−1e−cx if x > 0.

The next result is analogous to Theorem 4.1

Theorem 4.2. For c > 0, we have

lim
α,β→∞

β
α→c

P (X = 0) =
Γ(r + k)
Γ(r)k!

prqk, k = 0, 1, 2, ...,

where p =
c

1 + c
and q = 1− p.

Theorem 4.3. For λ > 0, we have

(13) lim
α,β,r→∞

rα
β →λ

P (X = k) =
λke−λ

k!
, k = 0, 1, 2, ...

Proof. For k = 0, 1, 2, ..., we have

P (X = k) =
Γ(α + β)Γ(β + r)Γ(α + k)Γ(r + k)

Γ(β)Γ(α + β + r)αkΓ(α)rkΓ(r)
×

×
( αr

α + β + r

)k (α + β + r)kΓ(α + β + r)
Γ(α + β + r + k)k!

·(14)

By using Stirling formula, we get

(15) lim
α,β,r→∞

rα
β →λ

Γ(α + β)Γ(β + r)
Γ(β)Γ(α + β + r)

= e−λ.

On the other hand

lim
α,β,r→∞

αr
β →λ

Γ(α + k)Γ(r + k)
αkΓ(α)rkΓ(r)

= 1,(16)

lim
α,β,r→∞

αr
β →λ

(α + β + r)kΓ(α + β + r)
Γ(α + β + r + k)

= 1,(17)

lim
α,β,r→∞

αr
β →λ

( rα

α + β + r

)k

= λk.(18)
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From (14), (15), (16), (17), (18) we get (13). .
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