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P-ADIC HYPERBOLICITY OF
THE COMPLEMENT OF HYPERPLANES IN Pn(Cp)

NGUYEN THANH QUANG

Abstract. An algorithm in terms of linear algebra to determine the

Brody hyperbolicity of Pn(Cp) − |H| is given, where H is a set of hy-

perplanes in Pn(Cp) which are not necessary in general position.

1. Introduction

A complex space X is called Brody hyperbolic if every holomorphic map
f : C → X is constant. Recent studies suggest that the hyperbolicity of a
complex space X is related to the finiteness of the number of rational or
integral points of X (see S.Lang’s Conjecture in [8]).

For the complex case, the study of hyperbolicity of the complement
of hyperplanes has a long history back to Bloch and H. Cartan. Bloch,
Dufresnoy, Green, Fujimoto showed that the complement of 2n + 1 hy-
perplanes in general position in Pn(C) is hyperbolic. However P. Kiernan
[5] proved that the complement of 2n hyperplanes in general position in
Pn(C) is not hyperbolic.

For the p-adic case, Mai Van Tu [7] found an analogue of Kiernan’s
result by showing that the complement of n hyperplanes in Pn(Cp) is not
hyperbolic. Recall that a variety X is said to be p-adic Brody hyperbolic
if the only p-adic holomorphic maps f : Cp → X are the constant maps,
where Cp is the completion of algebraic closure of the field Qp of p-adic
numbers (see [3], [4]). In this paper we consider the following general
question: Given a set H of hyperplanes in Pn(Cp) which are not necessary
in general position. What is a necessary and sufficient condition forH such
that Pn(Cp)−|H| is hyperbolic and how do we verify it ? Here |H| denotes
the union of hyperplanes in H. We answer this question by providing an
algorithm of linear algebra to determine the p-adic Brody hyperbolicity of
Pn(Cp)− |H|. As a consequense, we obtain a p-adic anologue of Bloch,
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Green, Fujimoto’s Theorem in [6] and Mai Van Tu’s result in [7].

2. P-adic Brody hyperbolicity of the complement
of hyperplanes in the projective space Pn(Cp)

Definition 2.1. m hyperplanes of Pn(Cp) are said to be in general posi-
tion if m ≥ n and any n+1 of these hyperplanes are linearly independent.

Let f be a p-adic holomorphic curve in the projective space Pn(Cp),
i.e. a holomorphic map from Cp to Pn(Cp). We identify f with its repre-
sentation by a collection of holomorphic functions on Cp:

f = (f0, f1, ..., fn),

where the functions fi have no common zero.

Definition 2.2. The holomorphic curve f is said to be degenerate if the
image of f is contained in some proper subspace of Pn(Cp).

Theorem 2.3 (p-adic Picard’s Theorem). Every non–constant holomor-
phic function on Cp is a surjective map onto Cp.

The proof of Theorem 2.3 is easy by using the geometric interpretation
of height (see [1], [2], [7]).

Theorem 2.4 (p-adic analogue of Bloch, Green and Fujimoto’s Theorem
[6]). The complement in Pn(Cp) of (n+1) hyperplanes in general position
is hyperbolic.

Proof. Let
f : Cp → Pn(Cp)

be a holomorphic map with the image lying in the complement of n+1 hy-
perplanes in general position. Then there is a linear change of coordinates
such that these hyperplanes are defined by the equations

x0 = 0, · · · , xn = 0.

Now we can write f in homogeneous coordinates

f = (f0, ..., fn).

By the hypotheses in the theorem, fi(z) 6= 0 for all i and all z. By
Picard’s Theorem, fi is constant (i = 0, ..., n). So f = (f0, ..., fn) is
constant.
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Theorem 2.5 (p-adic analogue of Ru’s Theorem [8]). Let

f : Cp → Pn(Cp)

be a holomorphic map. If the image of f omits at least two distinct hyper-
planes in Pn(Cp), then f must be degenerate.

Proof. Let H1, ..., Hq, q ≥ 2 be the distinct hyperplanes that the image
of f omits. Let L1(x), ..., Lq(x) denote the linear forms defining the hy-
perplanes. Then Li(f) = Liof : Cp → Cp is a holomorphic function
on Cp, i = 1, ..., q, By the hypotheses of the theorem, Li(f)(z) 6= 0 for
all i = 1, ..., q and all z. Then, Picard’s Theorem implies that Li(f) is
non-zero constant, i = 1, ..., q.

First, let H = {H1, ...,Hq} be a set of hyperplanes in Pn(Cp) which are
linearly dependent. By the linearly dependence assumption, there exist
non-zero constants ci such that

q∑

i=1

ciLi(x) ≡ 0.

Without loss of generality, we may assume that q is the smallest integer
such that we have such a relation (i.e. ci 6= 0 for all i). Because the
hyperplanes are distinct, we have q ≥ 3. Since ciLi(f), i = 1, ..., q− 1, are
constant, there exist constants di, not all zero such that

q−1∑

i=1

diciLi(f) = 0 (q ≥ 3).

Therefore, the image of f is contained in the subspace (hyperplane) defined
by the equation

q−1∑

i=1

(dici)Li(x) = 0 (q ≥ 3),

and this subspace is a proper subspace, since q was chosen to be minimal.
Now, let H = {H1, ..., Hq} be a set of hyperplanes in Pn(Cp) which

are linearly independent. Since L1(f), ..., Lq(f) are constants, there exist
constants ai, not all zero such that

q∑

i=1

aiLi(f) = 0.
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By the independence assumption,
q∑

i=1

aiLi(x) 6≡ 0. Therefore, the image

of f is contained in the proper subspace defined by the equation

q∑

i=1

aiLi(x) = 0.

Definition 2.6. Let H be a set of hyperplanes in the projective space
Pn(Cp) and let V be a subspace of Pn(Cp). The subspace V is called H–
admissible if V is not contained in any of the hyperplanes in H. The set H
is called nondegenerate if for every H–admissible subspace V of positive
dimension, H ∩ V contains at lest two distinct hyperplanes of V .

Remark. If V is H–admissible, then H ∩ V is a hyperplanes of V for any
H ∈ H.

Theorem 2.7. If H is a set of hyperplanes in Pn(Cp) and |H| = ⋃
H∈H

H,

then Pn(Cp) − |H| is p-adic Brody hyperbolic if and only if H is nonde-
generate.

Proof. Let H be a set of hyperplanes of Pn(Cp). We first prove that if H
is nondegenerate, then every holomorphic map f : Cp → Pn(Cp)− |H| is
constant. Since H is nondegenerate, H contains at least two distinct hy-
perplanes of Pn(Cp) (choose V = Pn(Cp)). By Theorem 2.5 the image of
f is contained in some proper subspace W of Pn(Cp). Since the image of f
omits the hyperplanes inH, W isH–admissible. We considerH∩W . Since
H is nondegenerate, H∩W still contains at least two distinct hyperplanes
of W . So we can apply Theorem 2.5 again. By induction, eventually we
can conclude that the image of f is contained in a 0–dimensional subspace
of Pn(Cp). This means f is constant.

Now let H be a set of distinct hyperplanes in Pn(Cp) which is not de-
generate. Because H is not degenerate there exists a positive dimensional
subspace V of Pn(Cp) which isH–admissible, but such thatH∩V does not
contain at least two distinct hyperplanes of V . Without loss of generality,
we may assume that V = Pn(Cp). Now, H contain only one hyperplane
H0 of Pn(Cp). We may assume that H0 is the hyperplane x0 = 0. Let

f : Cp → Pn(Cp)− |H|

be the holomorphic map: z 7→ (1, z, ..., z). Then f is not constant, so
Pn(Cp)− |H| is not Brody hyperbolic.
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For a set L of linear forms, we denote by (L) the vector space generated
by the linear forms in L over Cp.

Theorem 2.8 (p-adic analogue of Ru’s Theorem [8]). Let H be a set of
hyperplanes in Pn(Cp). Let L denote the corresponding set of linear forms
defining the hyperplanes in H. The set H is nondegenerate if and only if

dim(L) = n + 1.

Proof. Since dim(L) = n + 1, H contains a subset H′ of n + 1 hyper-
planes which are linearly independent. Let H′ = {H0, ..., Hn}. There is a
linear change of coordinates such that the hyperplanes are defined by the
equations:

x0 = 0, ..., xn = 0.

We have to show that H is nondegenerate. Let V be an H–admissible
subspace of positive dimension. If H∩ V contains only one hyperplane of
V , then

H0 ∩ V = · · · = Hn ∩ V.

Let x = (x0, ..., xn) ∈ H0 ∩ V be an arbitrary element. Then x ∈ Hi ∩ V,
which implies xi = 0 for all i = 0, ..., n. Hence x = (0, ..., 0). This is a
contradiction. So H is nondegenerate.

Conversly, if H = {H1, ..., Hq} is nondegenerate, we are going to prove
that dim(L) = n + 1. Assume dim(L) < n + 1. Denote by L∗ a maximal
subset of L such that all of the linear forms in L∗ are linearly independent.
Let L∗ = {L1, ..., Lr}. If r = dim(L) = 1, then H contains only one
hyperplane. So H is not degenerate and r > 1. Since there are only
finitely many elements in L and all of the elements in L∗ are linearly
independent, there exist non-zero constants c2, ..., cr such that

(L2 − c2L1, ..., Lr − crL1) ∩ L = ∅.

Put W = (L2 − c2L1, ..., Lr − crL1) and

V = {x ∈ Pn(Cp) : L(x) = 0, for all L ∈ W}.

Then dim V = n− dim(W ) = n− (dim(L∗)− 1) = n + 1− dim(L) > 0.
Assume that V is not H–admissible. Then V is contained in some

hyperplane Ht ∈ H. Hence Lt(x) = 0 for all x ∈ V , where Lt ∈ L is the
corresponding form to Ht. We consider two systems of linear equation

(I)
{

Li − ciL1 = 0,

i = 2, ..., r,
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and

(II)





Li − ciL1 = 0,

Lt = 0,

i = 2, ..., r,

Since two systems (I) and (II) are equivalent, the system (II) is linearly
dependent. So we can find ai ∈ Cp, i = 2, ..., r, such that

Lt =
r∑

i=2

ai(Li − ciL1).

From this it follows that Lt ∈ W, i.e. W ∩ L 6= ∅. This is a contradiction.
Thus V is H–admissible.

Now we are going to prove that H ∩ V contains only one hyperplane
of V . Indeed, for all x ∈ V and i = 2, ..., r we have (Li − ciL1)(x) = 0.
Hence Li(x) = ciL1(x).

Let H ∈ H and L ∈ L be the coresponding linear form. Since L∗ is
maximal, the system {L1, ..., Lr, L} is linearly dependent. Therefore one

can find ti ∈ Cp, i = 1, ..., r such that L =
r∑

i=1

tiLi. For all x ∈ V we then

have:

L(x) =
r∑

i=1

tiLi(x) = t1L1(x) +
r∑

i=2

tiLi(x) =

= t1L1(x) +
r∑

i=2

(tici)L1(x) = tL1(x),

where t ∈ Cp. This means H ∩ V = H1 ∩ V . Thus the only hyperplane in
H ∩ V is the hyperplane H1 ∩ V defined by the linear form L1. Theorem
2.8 is proved.

As immediate consequences of Theorem 2.7 and 2.8 we get again The-
orem 2.4 and the following extension of [7]:

Corollary 2.9. The complement of at most n hyperplanes in Pn(Cp) is
not hyperbolic.

Example. Let

L = {x0, x1, x2, x0 + x1, x0 + x1 + x2}
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be the set of linear forms associated to five distinct hyperplanes in H
in P 2(Cp). One can check that L satisfies the conditions of Theorem
2.8. Hence H is nondegenerate, although the hyperplanes in H are not in
general position. Theorem 2.7 then implies that P 2(Cp)−|H| is hyperbolic.
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