P-ADIC HYPERBOLICITY OF THE COMPLEMENT OF HYPERPLANES IN $P^n(C_p)$

NGUYEN THANH QUANG

ABSTRACT. An algorithm in terms of linear algebra to determine the Brody hyperbolicity of $P^n(C_p) - |\mathcal{H}|$ is given, where \mathcal{H} is a set of hyperplanes in $P^n(C_p)$ which are not necessary in general position.

1. INTRODUCTION

A complex space X is called *Brody hyperbolic* if every holomorphic map $f: C \to X$ is constant. Recent studies suggest that the hyperbolicity of a complex space X is related to the finiteness of the number of rational or integral points of X (see S.Lang's Conjecture in [8]).

For the complex case, the study of hyperbolicity of the complement of hyperplanes has a long history back to Bloch and H. Cartan. Bloch, Dufresnoy, Green, Fujimoto showed that the complement of 2n + 1 hyperplanes in general position in $P^n(C)$ is hyperbolic. However P. Kiernan [5] proved that the complement of 2n hyperplanes in general position in $P^n(C)$ is not hyperbolic.

For the p-adic case, Mai Van Tu [7] found an analogue of Kiernan's result by showing that the complement of n hyperplanes in $P^n(C_p)$ is not hyperbolic. Recall that a variety X is said to be *p*-adic Brody hyperbolic if the only p-adic holomorphic maps $f: C_p \to X$ are the constant maps, where C_p is the completion of algebraic closure of the field Q_p of p-adic numbers (see [3], [4]). In this paper we consider the following general question: Given a set \mathcal{H} of hyperplanes in $P^n(C_p)$ which are not necessary in general position. What is a necessary and sufficient condition for \mathcal{H} such that $P^n(C_p) - |\mathcal{H}|$ is hyperbolic and how do we verify it ? Here $|\mathcal{H}|$ denotes the union of hyperplanes in \mathcal{H} . We answer this question by providing an algorithm of linear algebra to determine the p-adic Brody hyperbolicity of $P^n(C_p) - |\mathcal{H}|$. As a consequense, we obtain a p-adic anologue of Bloch,

Received August 9, 1996; in revised form December 15, 1997.

¹⁹⁹¹ Mathematics Subject Classification. 32P05, 32A22, 11S80

Key words and phrases. p-adic hyperbolicity, complement of hyperplanes Partly supported by the Aubounne grant.

Green, Fujimoto's Theorem in [6] and Mai Van Tu's result in [7].

2. P-ADIC BRODY HYPERBOLICITY OF THE COMPLEMENT OF HYPERPLANES IN THE PROJECTIVE SPACE $P^n(C_p)$

Definition 2.1. *m* hyperplanes of $P^n(C_p)$ are said to be in *general position* if $m \ge n$ and any n+1 of these hyperplanes are linearly independent.

Let f be a p-adic holomorphic curve in the projective space $P^n(C_p)$, i.e. a holomorphic map from C_p to $P^n(C_p)$. We identify f with its representation by a collection of holomorphic functions on C_p :

$$f = (f_0, f_1, ..., f_n),$$

where the functions f_i have no common zero.

Definition 2.2. The holomorphic curve f is said to be *degenerate* if the image of f is contained in some proper subspace of $P^n(C_p)$.

Theorem 2.3 (p-adic Picard's Theorem). Every non-constant holomorphic function on C_p is a surjective map onto C_p .

The proof of Theorem 2.3 is easy by using the geometric interpretation of height (see [1], [2], [7]).

Theorem 2.4 (p-adic analogue of Bloch, Green and Fujimoto's Theorem [6]). The complement in $P^n(C_p)$ of (n+1) hyperplanes in general position is hyperbolic.

Proof. Let

$$f: C_p \to P^n(C_p)$$

be a holomorphic map with the image lying in the complement of n+1 hyperplanes in general position. Then there is a linear change of coordinates such that these hyperplanes are defined by the equations

$$x_0 = 0, \cdots, x_n = 0.$$

Now we can write f in homogeneous coordinates

$$f = (f_0, \dots, f_n).$$

By the hypotheses in the theorem, $f_i(z) \neq 0$ for all *i* and all *z*. By Picard's Theorem, f_i is constant (i = 0, ..., n). So $f = (f_0, ..., f_n)$ is constant.

144

Theorem 2.5 (p-adic analogue of Ru's Theorem [8]). Let

$$f: C_p \to P^n(C_p)$$

be a holomorphic map. If the image of f omits at least two distinct hyperplanes in $P^n(C_p)$, then f must be degenerate.

Proof. Let $H_1, ..., H_q, q \ge 2$ be the distinct hyperplanes that the image of f omits. Let $L_1(x), ..., L_q(x)$ denote the linear forms defining the hyperplanes. Then $L_i(f) = L_i of : C_p \to C_p$ is a holomorphic function on $C_p, i = 1, ..., q$, By the hypotheses of the theorem, $L_i(f)(z) \ne 0$ for all i = 1, ..., q and all z. Then, Picard's Theorem implies that $L_i(f)$ is non-zero constant, i = 1, ..., q.

First, let $\mathcal{H} = \{H_1, ..., H_q\}$ be a set of hyperplanes in $P^n(C_p)$ which are linearly dependent. By the linearly dependence assumption, there exist non-zero constants c_i such that

$$\sum_{i=1}^{q} c_i L_i(x) \equiv 0$$

Without loss of generality, we may assume that q is the smallest integer such that we have such a relation (i.e. $c_i \neq 0$ for all i). Because the hyperplanes are distinct, we have $q \geq 3$. Since $c_i L_i(f)$, i = 1, ..., q - 1, are constant, there exist constants d_i , not all zero such that

$$\sum_{i=1}^{q-1} d_i c_i L_i(f) = 0 \quad (q \ge 3).$$

Therefore, the image of f is contained in the subspace (hyperplane) defined by the equation

$$\sum_{i=1}^{q-1} (d_i c_i) L_i(x) = 0 \quad (q \ge 3),$$

and this subspace is a proper subspace, since q was chosen to be minimal.

Now, let $\mathcal{H} = \{H_1, ..., H_q\}$ be a set of hyperplanes in $P^n(C_p)$ which are linearly independent. Since $L_1(f), ..., L_q(f)$ are constants, there exist constants a_i , not all zero such that

$$\sum_{i=1}^{q} a_i L_i(f) = 0.$$

By the independence assumption, $\sum_{i=1}^{q} a_i L_i(x) \neq 0$. Therefore, the image of f is contained in the proper subspace defined by the equation

$$\sum_{i=1}^{q} a_i L_i(x) = 0$$

Definition 2.6. Let \mathcal{H} be a set of hyperplanes in the projective space $P^n(C_p)$ and let V be a subspace of $P^n(C_p)$. The subspace V is called \mathcal{H} admissible if V is not contained in any of the hyperplanes in \mathcal{H} . The set \mathcal{H} is called nondegenerate if for every \mathcal{H} -admissible subspace V of positive dimension, $\mathcal{H} \cap V$ contains at lest two distinct hyperplanes of V.

Remark. If V is \mathcal{H} -admissible, then $H \cap V$ is a hyperplanes of V for any $H \in \mathcal{H}$.

Theorem 2.7. If \mathcal{H} is a set of hyperplanes in $P^n(C_p)$ and $|\mathcal{H}| = \bigcup_{H \in \mathcal{H}} H$, then $P^n(C_p) - |\mathcal{H}|$ is p-adic Brody hyperbolic if and only if \mathcal{H} is nondegenerate.

Proof. Let \mathcal{H} be a set of hyperplanes of $P^n(C_p)$. We first prove that if \mathcal{H} is nondegenerate, then every holomorphic map $f: C_p \to P^n(C_p) - |\mathcal{H}|$ is constant. Since \mathcal{H} is nondegenerate, \mathcal{H} contains at least two distinct hyperplanes of $P^n(C_p)$ (choose $V = P^n(C_p)$). By Theorem 2.5 the image of f is contained in some proper subspace W of $P^n(C_p)$. Since the image of f omits the hyperplanes in \mathcal{H}, W is \mathcal{H} -admissible. We consider $\mathcal{H} \cap W$. Since \mathcal{H} is nondegenerate, $\mathcal{H} \cap W$ still contains at least two distinct hyperplanes of W. So we can apply Theorem 2.5 again. By induction, eventually we can conclude that the image of f is constant.

Now let \mathcal{H} be a set of distinct hyperplanes in $P^n(C_p)$ which is not degenerate. Because \mathcal{H} is not degenerate there exists a positive dimensional subspace V of $P^n(C_p)$ which is \mathcal{H} -admissible, but such that $\mathcal{H} \cap V$ does not contain at least two distinct hyperplanes of V. Without loss of generality, we may assume that $V = P^n(C_p)$. Now, \mathcal{H} contain only one hyperplane H_0 of $P^n(C_p)$. We may assume that H_0 is the hyperplane $x_0 = 0$. Let

$$f: C_p \to P^n(C_p) - |\mathcal{H}|$$

be the holomorphic map: $z \mapsto (1, z, ..., z)$. Then f is not constant, so $P^n(C_p) - |\mathcal{H}|$ is not Brody hyperbolic.

146

For a set \mathcal{L} of linear forms, we denote by (\mathcal{L}) the vector space generated by the linear forms in \mathcal{L} over C_p .

Theorem 2.8 (p-adic analogue of Ru's Theorem [8]). Let \mathcal{H} be a set of hyperplanes in $P^n(C_p)$. Let \mathcal{L} denote the corresponding set of linear forms defining the hyperplanes in \mathcal{H} . The set \mathcal{H} is nondegenerate if and only if

$$\dim(\mathcal{L}) = n + 1.$$

Proof. Since dim(\mathcal{L}) = n + 1, \mathcal{H} contains a subset \mathcal{H}' of n + 1 hyperplanes which are linearly independent. Let $\mathcal{H}' = \{H_0, ..., H_n\}$. There is a linear change of coordinates such that the hyperplanes are defined by the equations:

$$x_0 = 0, \dots, x_n = 0.$$

We have to show that \mathcal{H} is nondegenerate. Let V be an \mathcal{H} -admissible subspace of positive dimension. If $\mathcal{H} \cap V$ contains only one hyperplane of V, then

$$H_0 \cap V = \cdots = H_n \cap V$$

Let $x = (x_0, ..., x_n) \in H_0 \cap V$ be an arbitrary element. Then $x \in H_i \cap V$, which implies $x_i = 0$ for all i = 0, ..., n. Hence x = (0, ..., 0). This is a contradiction. So \mathcal{H} is nondegenerate.

Conversely, if $\mathcal{H} = \{H_1, ..., H_q\}$ is nondegenerate, we are going to prove that dim(\mathcal{L}) = n + 1. Assume dim(\mathcal{L}) < n + 1. Denote by \mathcal{L}^* a maximal subset of \mathcal{L} such that all of the linear forms in \mathcal{L}^* are linearly independent. Let $\mathcal{L}^* = \{L_1, ..., L_r\}$. If $r = \dim(\mathcal{L}) = 1$, then \mathcal{H} contains only one hyperplane. So \mathcal{H} is not degenerate and r > 1. Since there are only finitely many elements in \mathcal{L} and all of the elements in \mathcal{L}^* are linearly independent, there exist non-zero constants $c_2, ..., c_r$ such that

$$(L_2 - c_2 L_1, \dots, L_r - c_r L_1) \cap \mathcal{L} = \emptyset.$$

Put $W = (L_2 - c_2 L_1, ..., L_r - c_r L_1)$ and

$$V = \{ x \in P^n(C_p) : L(x) = 0, \text{ for all } L \in W \}$$

Then dim $V = n - \dim(W) = n - (\dim(\mathcal{L}^*) - 1) = n + 1 - \dim(\mathcal{L}) > 0.$

Assume that V is not \mathcal{H} -admissible. Then V is contained in some hyperplane $H_t \in \mathcal{H}$. Hence $L_t(x) = 0$ for all $x \in V$, where $L_t \in \mathcal{L}$ is the corresponding form to H_t . We consider two systems of linear equation

(I)
$$\begin{cases} L_i - c_i L_1 = 0, \\ i = 2, ..., r, \end{cases}$$

NGUYEN THANH QUANG

and

(II)
$$\begin{cases} L_i - c_i L_1 = 0, \\ L_t = 0, \\ i = 2, ..., r, \end{cases}$$

Since two systems (I) and (II) are equivalent, the system (II) is linearly dependent. So we can find $a_i \in C_p, i = 2, ..., r$, such that

$$L_t = \sum_{i=2}^r a_i (L_i - c_i L_1).$$

From this it follows that $L_t \in W$, i.e. $W \cap \mathcal{L} \neq \emptyset$. This is a contradiction. Thus V is \mathcal{H} -admissible.

Now we are going to prove that $\mathcal{H} \cap V$ contains only one hyperplane of V. Indeed, for all $x \in V$ and i = 2, ..., r we have $(L_i - c_i L_1)(x) = 0$. Hence $L_i(x) = c_i L_1(x)$.

Let $H \in \mathcal{H}$ and $L \in \mathcal{L}$ be the corresponding linear form. Since \mathcal{L}^* is maximal, the system $\{L_1, ..., L_r, L\}$ is linearly dependent. Therefore one can find $t_i \in C_p, i = 1, ..., r$ such that $L = \sum_{i=1}^{r} t_i L_i$. For all $x \in V$ we then

have:

$$L(x) = \sum_{i=1}^{r} t_i L_i(x) = t_1 L_1(x) + \sum_{i=2}^{r} t_i L_i(x) =$$
$$= t_1 L_1(x) + \sum_{i=2}^{r} (t_i c_i) L_1(x) = t L_1(x),$$

where $t \in C_p$. This means $H \cap V = H_1 \cap V$. Thus the only hyperplane in $\mathcal{H} \cap V$ is the hyperplane $H_1 \cap V$ defined by the linear form L_1 . Theorem 2.8 is proved.

As immediate consequences of Theorem 2.7 and 2.8 we get again Theorem 2.4 and the following extension of [7]:

Corollary 2.9. The complement of at most n hyperplanes in $P^n(C_p)$ is not hyperbolic.

Example. Let

$$\mathcal{L} = \{x_0, x_1, x_2, x_0 + x_1, x_0 + x_1 + x_2\}$$

148

be the set of linear forms associated to five distinct hyperplanes in \mathcal{H} in $P^2(C_p)$. One can check that \mathcal{L} satisfies the conditions of Theorem 2.8. Hence \mathcal{H} is nondegenerate, although the hyperplanes in \mathcal{H} are not in general position. Theorem 2.7 then implies that $P^2(C_p) - |\mathcal{H}|$ is hyperbolic.

References

- Ha Huy Khoai, On p-adic meromorphic function, Duke Math. J. 50 (1983), 695-711.
- Ha Huy Khoai, La hauteur des fonctions holomorphes p-adiques de plusieurs variables, C.R.S. Sc. Paris 312 (1991), 751-754.
- Ha Huy Khoai, *Height of p-adic holomorphic functions and applications*, Inter. Symp. Holomorphic mappings, Diophantine Geometry and Related topics, RIMS. Lect. Note. Ser. 819 Kyoto (1993), 120-135.
- Ha Huy Khoai and Mai Van Tu, P-adic Nevanlinna Cartan Theorem, Inter. J. Math. 6 (1995), 719-731.
- 5. P. Kiernan, *Hyperbolic submanifolds of complex projective space*, Proc. Amer. Math. Soc. **22** (1969), 603-606.
- S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York-Berlin- Heidelberg, 1987.
- Mai Van Tu, A note on p-adic hyperbolic spaces, Vietnam J. Math. 23 (1995), 179-188.
- 8. M. Ru, The geometric and arithmetic aspects of P^n minus hyperplanes, Preprint, 1992.

Department of Mathematics, Pedagogical Institute of Vinh Vinh, Nghe An, Vietnam