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SOME REMARKS ON
RANDOM SERIES IN BANACH SPACES

MARÍA JESÚS CHASCO, NGUYEN DUY TIEN, AND V. I. TARIELADZE

Abstract. The aim of this note is to give: 1) a characterization of
Banach spaces of cotype 2; 2) an example related to Rademacher series
in the Schatten classes; 3) a characterization of finite dimensional Banach
spaces.

Introduction

The study of convergence of random series in Banach spaces plays the
key role in probability theory in Banach spaces and has a lot of important
applications in functional analysis. Random series of a special form such
as Gaussian, stable and Redemacher ones are the most interesting. Con-
vergence of these series, in general, is related to some geometrical property
of a Banach space. There are three mail results in this note. Theorem 1 of
the note is a comparison theorem for convergence of Gaussian and stable
series. It gives a characterization of Banach spaces of cotype 2. Theorem 2
concerns convergence of Rademacher series in well known Schatten classes
Sp, 1 < p < 2. Finally, we consider some properties of almost p-summing
operators. Theorem 3 gives a characterization of finite dimensional Ba-
nach spaces.

1. Definitions and notation

Throughout this note we make use of the following notation:
X denotes a separable real Banach space, X∗ denotes its dual space.
(εn) denotes a sequence of Bernoulli independent real variables, i.e., a
sequence of i.i.d. real random variables with

P (εn = 1) = P (εn = −1) =
1
2
·
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(γn) denotes a standard Gaussian sequence, i.e., a sequence of i.i.d. ran-
dom real variables with characteristic function (c.f.) e−t2/2.
(γ(p)

n ) denotes a standard p-stable sequence, i.e., a sequence of i.i.d. ran-
dom real variables with c.f. e−|t|

p

, 0 < p ≤ 2.
For our purposes we need the following geometric properties of Banach

spaces.

Definition 1. A Banach space X is said to be of type p, 1 ≤ p ≤ 2, if for
any sequence (xn) in X such that

∞∑
n=1

‖xn‖p < ∞,

the random series

(1.1)
∞∑

n=1

εnxn

converges a.s. in X.
A Banach space X is said to be of cotype q, 2 ≤ q < ∞, if for any

sequence (xn) in X such that the random series (1.1) converges a.s. in X,
we have ∞∑

n=1

‖xn‖q < ∞.

It is well-known that in this definition one can replace the Bernoulli
sequence (εn) by the standard Gaussian sequence (γn). It is also known
that the space Lr, 1 ≤ r < ∞, is of type p = min (2, r) and of cotype
q = max (2, r). In particular, any Hilbert space is of type 2 and of cotype
2.

We refer the reader to [2, 3, 7, 16] for more information on probability
in Banach spaces.

2. A characterization of Banach spaces of cotype 2

In [10] there is the following result:

Proposition 1. Let (xn) be a sequence of elements in X and r, p, q real
numbers with 0 < r < p < 2, 1/r = 1/p+1/q. If (bn) ∈ lq and the random
series ∑

n

γ(p)
n xn
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converges a.s. in X, then so does the random series

∑
n

bnγ(r)
n xn.

It is natural to raise the problem: does hold true the preceding proposi-
tion for p = 2? Let us begin with an example which says that, in general,
the statement in the above proposition is not valid for p = 2. Indeed,
consider, for instance, X = l4, r = 1, p = 2, (an = 1/

√
n), (xn = anen),

where (en) is the natural basis in l4. In this case q = 2 and the random
series ∑

n

γnanen

converges a.s. in l4 as (an) ∈ l4 (according to Vakhania’s Theorem, see
[16, Theorem 5.6, p. 334]). On the other hand, if the random series

∑
n

γ(1)
n anbnen

converges a.s. in l4 for any (bn) ∈ l2, we have:

∑
n

|anbn| < ∞, ∀(bn) ∈ l2,

since any Banach space is of 1-stable cotype (see [8]). This implies that
(an) ∈ l2 which is impossible.

The full answer to the above problem is:

Theorem 1. Let X be a Banach space and r a number with 1 ≤ r < 2.
The following statements are equivalent:
(a) X is of cotype 2.
(b) The random series ∑

n

bnγ(r)
n xn

converges a.s. in X for all (bn) ∈ lq with 1/r = 1/2+1/q and any sequence
(xn) of X such that ∑

n

γnxn

converges a.s. in X.
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To prove this theorem we need the following result of Mushtari [9]. A
probability measure µ in X is called Gaussian if every x∗ ∈ X∗ (considered
as a random variable from the probability space (X, µ) into the real line)
has Gaussian distribution. It is well-known that a symmetrical probability
measure µ in X is Gaussian if and only if there is a sequence (yn) in X
such that µ is the distribution of the random series

∑
n

γnyn

which is a.s. convergent in X. In this case we have

µ̂(x∗) =
∫

X

exp(i < x∗, x >)dµ(x) = exp
(
− 1

2

∑
n

|〈x∗, yn〉|2
)
.

Let τµ denote the topology generated by the seminorm

‖x∗‖µ =
( ∑

n

|〈x∗, yn〉|2
)1/2

.

By [9, Theorem 1] we have:

Lemma 1. Let X be a Banach space of cotype 2 and µ a Gaussian measure
in X. If (xn) is a sequence in X and r is a real number with 1 ≤ r < 2
such that ∑

n

|〈x∗, xn〉|r < ∞, ∀x∗ ∈ X∗,

and the function ∑
n

|〈< x∗, xn〉|r

is continuous in the topology τµ, then there is a probability measure ν in
X such that

ν̂(x∗) =
∫

X

exp(i〈x∗, x〉)dν(x) = exp(−
∑

n

|〈x∗, xn〉|r).

Proof of Theorem 1.
(a) =⇒ (b). Let X be a Banach space of cotype 2. We must prove that

the random series

(2.1)
∑

n

bnγ(r)
n xn
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converges a.s. in X for all (bn) ∈ lq with 1/r = 1/2 + 1/q and (xn ∈ X)
such that

(2.2)
∑

n

γnxn

converges a.s. in X. Indeed, the a.s. convergence of series (2.2) implies
that (〈x∗, xn〉) ∈ l2. On the other hand, by the Hölder inequality, we have:

( ∑
n

|〈x∗, bnxn〉|r
)1/r

≤
( ∑

n

|bn|q
)1/q( ∑

n

|〈x∗, xn〉|2
)1/2

.

This shows that the function
∑

n

|〈x∗, bnxn〉|r

is continuous in the topology τµ where µ is the distribution of the a.s.
convergent series (2.2). Clearly, µ is Gaussian. By Lemma 1, there is a
probability measure ν in X such that

ν̂(x∗) =
∫

X

exp(i〈x∗, x〉)dν(x) = exp
(
−

∑
n

|〈x∗, bnxn〉|r
)
.

Consequently, series (2.1) converges a.s. in X, by the Ito-Nisio theorem
(see [4]).

(a) =⇒ (b). Let (xn) be a sequence in X such that the series (2.2)
converges a.s. in X. To prove that X is of cotype 2 we must show that
(‖xn‖) ∈ l2. As a matter of fact, by (b), we obtain that the random series

∑
n

bnγ(r)
n xn

converges a.s. in X for all (bn) ∈ lq with 1/r = 1/2+1/q. It is well known
that any Banach space is of r-stable cotype (see [8]), so that we have

∑
n

|bn|r‖xn‖r < ∞

for all (bn) ∈ lq, 1/r = 1/2 + 1/q. Therefore, by Landau’s theorem ∗, this
implies that (‖xn‖) ∈ l2. The proof of Theorem 1 is complete.

∗ See G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press,

1988, p. 120.
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3. Rademacher series in the Schatten classes

Let (rn) denote the Rademacher sequence (it is an example of Bernoulli
sequences). It was proved in [11] that:

Proposition 2. Let X be a Banach space, H a separable Hilbert space
and (en) arbitrary fixed orthonormal basis of H. Consider the following
statements:
(a) X is of a finite cotype (i.e., X if of cotype q for some q, 2 ≤ q < ∞).
(b) For a continuous linear operator T : H −→ X the random series

∑
n

rnTen

converges a.s. in X if and only if T ∗ is absolutely 1-summing.
Then (b) =⇒ (a) is always true, and if in addition X is a GL-space,
(a) =⇒ (b) is also true.

We now shall give an example which shows that, in general, (a) =⇒ (b)
is not true if X is not a GL-space (see Theorem 2 below). To do this let
us begin with well-known results on absolutely summing operators (due
to Pietsch).

Definition 2. Let X, Y be two Banach spaces and T a continuous linear
operator from X into Y. T is said to be an absolutely p-summing operator,
1 ≤ p < ∞, if

∑
n
‖Txn‖p < ∞ for any sequence (xn) in X such that

∑
n
|〈xn, x∗〉|p < ∞, for all x∗ ∈ X∗.

The following is a corollary of Pietsch’s domination theorem (see [12,
17.3.7, p. 234], and also [2, p. 44]).

Lemma 2. T ∈ Π2(l2,Y) if and only if T factors through l2 in the form:
T = BA where A is a Hilbert-Schmidt operator from l2 into l2 and B is a
linear continuous operator from l2 into Y.

The following is (probably) known and we give the proof for the sake
of completeness.

Lemma 3. Let T : l2 −→ l2. Then T is a Hilbert-Schmidt operator if and
only if T factors through l1.

Proof. It is known that T is a Hilbert-Schmidt operator if and only if for
all h ∈ l2 we have

Th =
∑

n

λn〈h, gn〉fn
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where (gn) and (fn) are orthonormal bases in l2, (λn) is a sequence of real
numbers with 0 ≤ λn+1 ≤ λn and

∑
n

|λn|2 < ∞.

Put
A : l2 −→ l1

Ah =
(
λn〈h, gn〉

)
,

B : l1 −→ l2

B(an) =
∑

n

anfn, ∀(an) ∈ l1.

Evidently, T = BA. The converse follows from the Grothendieck theo-
rem which says that every continuous linear operator from l1 into l2 is
absolutely 1-summing (see [2, p. 15]).

The following notion is taken from [13] (see also [2, p. 154 and 350]).

Definition 3. A Banach space X is said to be a GL-space if each ab-
solutely 1-summing operator A from X into l2 is absolutely 1-factorable,
i.e. A = CB where B is a continuous linear operator from X into some
L1 and C is a continuous linear operator form L1 into l2.

It is known that any Banach space with local unconditional structure
is a GL-space (see [2]). In particular, Banach spaces with Schauder un-
conditional basis, Banach lattices are examples of GL-spaces. It is also
shown that a Banach space X is a GL-space if and only if so is X∗.

We now come to give examples of Banach spaces which are not GL-
spaces. Let Sp, 1 ≤ p < ∞, denote the Schatten class in l2. Recall that a
continuous linear operator A : l2 −→ l2 belongs to Sp if and only if it can
be represented in the form

Ah =
∑

n

λn〈h, gn〉fn,

where (gn) and (fn) are orthonormal bases in l2, (λn) is a sequence of real
numbers with 0 ≤ λn+1 ≤ λn and

∑
n

|λn|p < ∞
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(see [2, p. 80]).
Put

σp(A) =
( ∑

n

|λn|p
)1/p

.

We need the following properties of Sp.

Lemma 4. 1) Schatten’s Theorem (see [14] or [2, p. 80-81]): (Sp, σp) is
a Banach space for all p, 1 ≤ p < ∞ and the dual space of Sp is Sq with
1/p + 1/q = 1.
2) Tomczak-Jaegermann’s Theorem (see [15]): Sp is of type min (2, p) and
of cotype max (2, p).
3) Pisier’s Theorem (see [13] or [2, Theorem 17.24, p. 363]): If p 6= 2,
Sp is not a GL-space.

We now are going to prove the following:

Theorem 2. For 1 < p < 2 there exists a continuous linear operator
T : l2 −→ Sp such that T ∗ is absolutely 1-summing, but the random series

∑
n

rnTen

does not converge a.s. in Sp, where (en) is the natural basis of l2.

Proof. Let p, q real numbers with 1 < p < 2, 2 < q < ∞ and 1/p+1/q = 1.
By the Lemma 4, Sp is of cotype 2 and Sq is not a GL-space for any
1 < p < 2. Therefore, by the definition of GL-spaces, there is an operator
T : l2 −→ Sp such that T ∗ ∈ Π1(Sq, l2), but T ∗ can not factors through
l1. It is known that the random series

∑
n

rnTen

converges a.s. in Sp if and only if T ∈ Π2(l2, Sp), since Sp is of cotype 2
(see [11] or [2, Proposition 12.29, p. 251]). By Lemma 2, this implies that
the operator T can be written in the form: T = BA, where A : l2 −→ l2
is a Hilbert-Schmidt operator and B : l2 −→ Sp is a linear continuous
operator. Consequently, we have: T ∗ = A∗B∗, where B∗ : Sq −→ l2 and
A∗ : l2 −→ l2 is also a Hilbert-Schmidt operator. Therefore, A∗ factors
through l1 (by Lemma 3), so that T ∗ factors through l1 as well. Thus, we
have got a contadiction. This ends the proof of Theorem 2.

Remark. The idea of the above proof is borrowed from [6].
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4. A Characterization of finite dimentional
banach spaces

Let us begin with the following

Definition 4. Let X, Y be Banach spaces and p a number with 1 ≤ p
< ∞. A continuous linear operator T : X −→ Y is called almost p-
summing if the random series

∑
n

rnTxn

converges a.s. in Y for all sequences (xn) in X with

∑
n

|〈x∗, xn〉|p < ∞, ∀x∗ ∈ X∗.

By the closed graph theorem, it is easy to prove that:

Lemma 5. If a continuous linear operator T : X −→ Y is almost p-
summing, then there is a number K > 0 such that for all n = 1, 2, ... and
for all x1, x2, ..., xn ∈ X the following inequality holds true

(
E

∥∥∥
n∑

k=1

rkTxk

∥∥∥
2)1/2

≤ K sup
{( n∑

k=1

|〈xk, x∗〉|p
)1/p∣∣∣ ‖x∗‖ ≤ 1

}
.

Note that it was shown in [11] that:

Proposition 3. For a Banach space Y the following statements are equiv-
alent:
(a) Y contains no subspace isomorphic to c0;
(b) A continuous linear operator T from l2 into Y is almost 2-summing
if and only if there is a number K > 0 such that for all n = 1, 2, ... and
for all h1, h2, ..., hn ∈ l2 the following inequality holds true

E
∥∥∥

n∑

k=1

rkThk

∥∥∥
2

≤ K2 sup
{ n∑

k=1

|〈hk, h〉|2
∣∣∣ ‖h‖ ≤ 1

}
.

Remark. The identity of X is not almost p-summing for any 2 < p < ∞.
In fact, choose xk = x, k = 1, 2, ... with x ∈ X, ‖x‖ = 1. By the inequality
in Lemma 5, for all n = 1, 2, ... we have

n1/2 ≤ K.n1/p.
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This is impossible for p > 2.
It was proved in [2, Remark 12.8, p. 235]) that a Banach space X is

finite dimensional if and only if the identity of X is almost 2-summing.
We are now going to study the case 1 ≤ p ≤ 2. Consider first the case
p = 1. It can be checked easily that the identity of the space c0 is not
almost 1-summing. On the other hand, the identity of the space l1 is
almost 1-summing, by the celebrated Schur theorem (see [2, p. 6]). More
generally, we have:

Proposition 4. Let X be a Banach space. The following statements are
equivalent:
(a) X contains no subspace isomorphic to c0.
(b) The identity of X is almost 1-summing.

This proposition is an easy consequence of the following result due to
Bessaga-Pelczynsky (see [1] or [2, p. 22]).

Lemma 6. Let X be a Banach space. The following statements are
equivalent:
(a) X contains no subspace isomorphic to c0.
(b) The series

∑
n

xn unconditionally converges for any sequence (xn) in

X such that ∑
n

|〈x∗, xn〉| < ∞, ∀x∗ ∈ X∗.

However, for 1 < p ≤ 2 we have:

Theorem 3. Let X be a Banach space and p a real number with 1 < p ≤ 2.
The following statements are equivalent:
(a) dimX < ∞.
(b) The identity of X is almost p-summing.

To prove this theorem we need the following notion (due to James, see
[2, p. 175]).

Definition 5. Let X, Y be Banach spaces. It is said that X is finitely
representable in Y if given any ε > 0 and E is a finite dimensional subspace
of X there are a finite dimensional subspace F of Y and an isomorphism
u : E −→ F such that ‖u‖.‖u−1‖ ≤ 1 + ε.

The following is the heart of the proof of the preceding theorem.

Lemma 7. (Dvorezky Theorem [2, p. 396]). The space l2 is finitely
representable in any Banach space X with dim(X) = ∞.
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Proof of Theorem 3.
(a) =⇒ (b) is trivial.
(b) =⇒ (a) is a consequence of the following lemmas. First, note that, by
Lemma 5, we have:

Lemma 8. If the identity of a Banach space X is almost p-summing,
then there is a number K > 0 such that for all n = 1, 2, ... and for all
x1, x2, ..., xn ∈ X the following inequality holds true

(4.1)
(
E

∥∥∥
n∑

k=1

rkxk

∥∥∥
2)1/2

≤ K sup
{( n∑

k=1

|〈xk, x∗〉|p
)1/p∣∣∣ ‖x∗‖ ≤ 1

}
.

By definition, it is obvious to see that:

Lemma 9. If the inequality (4.1) holds true for a Banach space Y, so
does for any Banach space X which is finitely representable in Y.

The following is the key to our purpose.

Lemma 10. The inequality (4.1) does not hold true for l2, for any p with
1 < p ≤ 2.

Proof. Let q denote the real number such that 1/p = 1/q + 1/2. As
1 < p ≤ 2, it easy to check that 2 < q ≤ ∞ (q = ∞ iff p = 2). Choose

xn =
1√
n

en, n = 1, 2, ..., where (en) is the natural basis in l2. If the

inequality (4.1) does hold true for l2, then, by the Hölder inequality, for
any n = 1, 2, ... we have

n∑

k=1

1
k

=
(
E

∥∥∥
n∑

k=1

rkxk

∥∥∥
2)1/2

≤ K sup
{( n∑

k=1

|〈xk, x∗〉|p
)1/p∣∣∣ ‖x∗‖ ≤ 1

}

= K sup
{( n∑

k=1

| 1√
k

< ek, x∗ > |p
)1/p∣∣∣ ‖x∗‖ ≤ 1

}

≤ K sup
{( n∑

k=1

(
1
k

)q/2
)1/q( n∑

k=1

|〈ek, x∗〉|2
)1/2∣∣∣ ‖x∗‖ ≤ 1

}

= K
( n∑

k=1

(
1
k

)q/2
)1/q

.
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This is impossible for q > 2, since

∞∑

k=1

1
k

= ∞

and ∞∑

k=1

1
kq/2

< ∞.

By the Dvorezky theorem and the above lemmas we obtain:

Lemma 11. Let X be a Banach space. If dimX = ∞, then the inequality
(4.1) does not hold true for X, for all p with 1 < p ≤ 2.

The proof of Theorem 3 is complete.
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