SOME REMARKS ON
RANDOM SERIES IN BANACH SPACES

MARÍA JESÚS CHASCO, NGUYEN DUY TIEN, AND V. I. TARIELADZE

Abstract. The aim of this note is to give: 1) a characterization of Banach spaces of cotype 2; 2) an example related to Rademacher series in the Schatten classes; 3) a characterization of finite dimensional Banach spaces.

Introduction

The study of convergence of random series in Banach spaces plays the key role in probability theory in Banach spaces and has a lot of important applications in functional analysis. Random series of a special form such as Gaussian, stable and Redemacher ones are the most interesting. Convergence of these series, in general, is related to some geometrical property of a Banach space. There are three main results in this note. Theorem 1 of the note is a comparison theorem for convergence of Gaussian and stable series. It gives a characterization of Banach spaces of cotype 2. Theorem 2 concerns convergence of Rademacher series in well known Schatten classes S_p, $1 < p < 2$. Finally, we consider some properties of almost p-summing operators. Theorem 3 gives a characterization of finite dimensional Banach spaces.

1. Definitions and notation

Throughout this note we make use of the following notation: X denotes a separable real Banach space, X^* denotes its dual space. (ε_n) denotes a sequence of Bernoulli independent real variables, i.e., a sequence of i.i.d. real random variables with

$$P(\varepsilon_n = 1) = P(\varepsilon_n = -1) = \frac{1}{2}.$$
\((\gamma_n)\) denotes a standard Gaussian sequence, i.e., a sequence of i.i.d. random real variables with characteristic function (c.f.) \(e^{-t^2/2}\).

\((\gamma_n^{(p)})\) denotes a standard \(p\)-stable sequence, i.e., a sequence of i.i.d. random real variables with c.f. \(e^{-|t|^p}\), \(0 < p \leq 2\).

For our purposes we need the following geometric properties of Banach spaces.

Definition 1. A Banach space \(X\) is said to be of type \(p\), \(1 \leq p \leq 2\), if for any sequence \((x_n)\) in \(X\) such that

\[\sum_{n=1}^{\infty} \|x_n\|^p < \infty,\]

the random series

\[\sum_{n=1}^{\infty} \varepsilon_n x_n\]

converges a.s. in \(X\).

A Banach space \(X\) is said to be of cotype \(q\), \(2 \leq q < \infty\), if for any sequence \((x_n)\) in \(X\) such that the random series (1.1) converges a.s. in \(X\), we have

\[\sum_{n=1}^{\infty} \|x_n\|^q < \infty.\]

It is well-known that in this definition one can replace the Bernoulli sequence \((\varepsilon_n)\) by the standard Gaussian sequence \((\gamma_n)\). It is also known that the space \(L_r\), \(1 \leq r < \infty\), is of type \(p = \min(2, r)\) and of cotype \(q = \max(2, r)\). In particular, any Hilbert space is of type 2 and of cotype 2.

We refer the reader to [2, 3, 7, 16] for more information on probability in Banach spaces.

2. A characterization of Banach spaces of cotype 2

In [10] there is the following result:

Proposition 1. Let \((x_n)\) be a sequence of elements in \(X\) and \(r, p, q\) real numbers with \(0 < r < p < 2\), \(1/r = 1/p + 1/q\). If \((b_n) \in l_q\) and the random series

\[\sum_n \gamma_n^{(p)} x_n\]

...
converges a.s. in \mathbf{X}, then so does the random series

$$\sum_n b_n \gamma_n^{(r)} x_n.$$

It is natural to raise the problem: does hold true the preceding proposition for $p = 2$? Let us begin with an example which says that, in general, the statement in the above proposition is not valid for $p = 2$. Indeed, consider, for instance, $\mathbf{X} = l_4$, $r = 1$, $p = 2$, $(a_n = 1/\sqrt{n})$, $(x_n = a_n e_n)$, where (e_n) is the natural basis in l_4. In this case $q = 2$ and the random series

$$\sum_n \gamma_n a_n e_n$$

converges a.s. in l_4 as $(a_n) \in l_4$ (according to Vakhania’s Theorem, see [16, Theorem 5.6, p. 334]). On the other hand, if the random series

$$\sum_n \gamma_n^{(1)} a_n b_n e_n$$

converges a.s. in l_4 for any $(b_n) \in l_2$, we have:

$$\sum_n |a_n b_n| < \infty, \forall (b_n) \in l_2,$$

since any Banach space is of 1-stable cotype (see [8]). This implies that $(a_n) \in l_2$ which is impossible.

The full answer to the above problem is:

Theorem 1. Let \mathbf{X} be a Banach space and r a number with $1 \leq r < 2$. The following statements are equivalent:

(a) \mathbf{X} is of cotype 2.

(b) The random series

$$\sum_n b_n \gamma_n^{(r)} x_n$$

converges a.s. in \mathbf{X} for all $(b_n) \in l_q$ with $1/r = 1/2 + 1/q$ and any sequence (x_n) of \mathbf{X} such that

$$\sum_n \gamma_n x_n$$

converges a.s. in \mathbf{X}.

To prove this theorem we need the following result of Mushtari [9]. A probability measure \(\mu \) in \(X \) is called Gaussian if every \(x^* \in X^* \) (considered as a random variable from the probability space \((X, \mu)\) into the real line) has Gaussian distribution. It is well-known that a symmetrical probability measure \(\mu \) in \(X \) is Gaussian if and only if there is a sequence \((y_n)\) in \(X \) such that \(\mu \) is the distribution of the random series

\[
\sum_n \gamma_n y_n
\]

which is a.s. convergent in \(X \). In this case we have

\[
\hat{\mu}(x^*) = \int_X \exp(i \langle x^*, x \rangle) d\mu(x) = \exp \left(-\frac{1}{2} \sum_n |\langle x^*, y_n \rangle|^2 \right).
\]

Let \(\tau_\mu \) denote the topology generated by the seminorm

\[
\|x^*\|_\mu = \left(\sum_n |\langle x^*, y_n \rangle|^2 \right)^{1/2}.
\]

By [9, Theorem 1] we have:

Lemma 1. Let \(X \) be a Banach space of cotype 2 and \(\mu \) a Gaussian measure in \(X \). If \((x_n)\) is a sequence in \(X \) and \(r \) is a real number with \(1 \leq r < 2 \) such that

\[
\sum_n |\langle x^*, x_n \rangle|^r < \infty, \quad \forall x^* \in X^*,
\]

and the function

\[
\sum_n |\langle x^*, x_n \rangle|^r
\]

is continuous in the topology \(\tau_\mu \), then there is a probability measure \(\nu \) in \(X \) such that

\[
\hat{\nu}(x^*) = \int_X \exp(i \langle x^*, x \rangle) d\nu(x) = \exp(-\sum_n |\langle x^*, x_n \rangle|^r).
\]

Proof of Theorem 1.

(a) \(\Rightarrow \) (b). Let \(X \) be a Banach space of cotype 2. We must prove that the random series

(2.1) \[
\sum_n b_n \gamma_n^{(r)} x_n
\]
converges a.s. in X for all $(b_n) \in l_q$ with $1/r = 1/2 + 1/q$ and $(x_n \in X)$ such that

$$\sum_n \gamma_n x_n$$

(2.2) converges a.s. in X. Indeed, the a.s. convergence of series (2.2) implies that $(\langle x^*, x_n \rangle) \in l_2$. On the other hand, by the Hölder inequality, we have:

$$\left(\sum_n |\langle x^*, b_n x_n \rangle|^r \right)^{1/r} \leq \left(\sum_n |b_n|^q \right)^{1/q} \left(\sum_n |\langle x^*, x_n \rangle|^2 \right)^{1/2}.$$

This shows that the function

$$\sum_n |\langle x^*, b_n x_n \rangle|^r$$

is continuous in the topology τ_μ where μ is the distribution of the a.s. convergent series (2.2). Clearly, μ is Gaussian. By Lemma 1, there is a probability measure ν in X such that

$$\hat{\nu}(x^*) = \int_X \exp(i\langle x^*, x \rangle) d\nu(x) = \exp \left(- \sum_n |\langle x^*, b_n x_n \rangle|^r \right).$$

Consequently, series (2.1) converges a.s. in X, by the Ito-Nisio theorem (see [4]),

(a) \implies (b). Let (x_n) be a sequence in X such that the series (2.2) converges a.s. in X. To prove that X is of cotype 2 we must show that $(\|x_n\|) \in l_2$. As a matter of fact, by (b), we obtain that the random series

$$\sum_n b_n \gamma_n^{(r)} x_n$$

converges a.s. in X for all $(b_n) \in l_q$ with $1/r = 1/2 + 1/q$. It is well known that any Banach space is of r-stable cotype (see [8]), so that we have

$$\sum_n |b_n|^r \|x_n\|^r < \infty$$

for all $(b_n) \in l_q$, $1/r = 1/2 + 1/q$. Therefore, by Landau’s theorem *, this implies that $(\|x_n\|) \in l_2$. The proof of Theorem 1 is complete.

* See G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, 1988, p. 120.
3. Rademacher series in the Schatten classes

Let \((r_n)\) denote the Rademacher sequence (it is an example of Bernoulli sequences). It was proved in [11] that:

Proposition 2. Let \(X\) be a Banach space, \(H\) a separable Hilbert space and \((e_n)\) arbitrary fixed orthonormal basis of \(H\). Consider the following statements:

(a) \(X\) is of a finite cotype (i.e., \(X\) if of cotype \(q\) for some \(q, 2 \leq q < \infty\)).

(b) For a continuous linear operator \(T : H \rightarrow X\) the random series

\[
\sum_n r_n T e_n
\]

converges a.s. in \(X\) if and only if \(T^*\) is absolutely 1-summing.

Then \((b) \implies (a)\) is always true, and if in addition \(X\) is a GL-space, \((a) \implies (b)\) is also true.

We now shall give an example which shows that, in general, \((a) \implies (b)\) is not true if \(X\) is not a GL-space (see Theorem 2 below). To do this let us begin with well-known results on absolutely summing operators (due to Pietsch).

Definition 2. Let \(X, Y\) be two Banach spaces and \(T\) a continuous linear operator from \(X\) into \(Y\). \(T\) is said to be an absolutely \(p\)-summing operator, \(1 \leq p < \infty\), if \(\sum_n \|T x_n\|^p < \infty\) for any sequence \((x_n)\) in \(X\) such that \(\sum_n |\langle x_n, x^* \rangle|^p < \infty\), for all \(x^* \in X^*\).

The following is a corollary of Pietsch’s domination theorem (see [12, 17.3.7, p. 234], and also [2, p. 44]).

Lemma 2. \(T \in \Pi_2(l_2, Y)\) if and only if \(T\) factors through \(l_2\) in the form: \(T = BA\) where \(A\) is a Hilbert-Schmidt operator from \(l_2\) into \(l_2\) and \(B\) is a linear continuous operator from \(l_2\) into \(Y\).

The following is (probably) known and we give the proof for the sake of completeness.

Lemma 3. Let \(T : l_2 \rightarrow l_2\). Then \(T\) is a Hilbert-Schmidt operator if and only if \(T\) factors through \(l_1\).

Proof. It is known that \(T\) is a Hilbert-Schmidt operator if and only if for all \(h \in l_2\) we have

\[
Th = \sum_n \lambda_n \langle h, g_n \rangle f_n
\]
where \((g_n)\) and \((f_n)\) are orthonormal bases in \(l_2\), \((\lambda_n)\) is a sequence of real numbers with \(0 \leq \lambda_{n+1} \leq \lambda_n\) and
\[
\sum_n |\lambda_n|^2 < \infty.
\]

Put
\[
A : l_2 \longrightarrow l_1
\]
\[
Ah = \left(\lambda_n \langle h, g_n \rangle\right),
\]
\[
B : l_1 \longrightarrow l_2
\]
\[
B(a_n) = \sum_n a_n f_n, \quad \forall (a_n) \in l_1.
\]

Evidently, \(T = BA\). The converse follows from the Grothendieck theorem which says that every continuous linear operator from \(l_1\) into \(l_2\) is absolutely 1-summing (see [2, p. 15]).

The following notion is taken from [13] (see also [2, p. 154 and 350]).

Definition 3. A Banach space \(X\) is said to be a GL-space if each absolutely 1-summing operator \(A\) from \(X\) into \(l_2\) is absolutely 1-factorable, i.e. \(A = CB\) where \(B\) is a continuous linear operator from \(X\) into some \(L_1\) and \(C\) is a continuous linear operator form \(L_1\) into \(l_2\).

It is known that any Banach space with local unconditional structure is a GL-space (see [2]). In particular, Banach spaces with Schauder unconditional basis, Banach lattices are examples of GL-spaces. It is also shown that a Banach space \(X\) is a GL-space if and only if so is \(X^*\).

We now come to give examples of Banach spaces which are not GL-spaces. Let \(S_p, 1 \leq p < \infty\), denote the Schatten class in \(l_2\). Recall that a continuous linear operator \(A : l_2 \longrightarrow l_2\) belongs to \(S_p\) if and only if it can be represented in the form
\[
Ah = \sum_n \lambda_n \langle h, g_n \rangle f_n,
\]
where \((g_n)\) and \((f_n)\) are orthonormal bases in \(l_2\), \((\lambda_n)\) is a sequence of real numbers with \(0 \leq \lambda_{n+1} \leq \lambda_n\) and
\[
\sum_n |\lambda_n|^p < \infty
\]
(see [2, p. 80]).

Put

$$\sigma_p(A) = \left(\sum_n |\lambda_n|^p \right)^{1/p}.$$

We need the following properties of S_p.

Lemma 4. 1) Schatten’s Theorem (see [14] or [2, p. 80-81]): (S_p, σ_p) is a Banach space for all p, $1 \leq p < \infty$ and the dual space of S_p is S_q with $1/p + 1/q = 1$.

2) Tomczak-Jaegermann’s Theorem (see [15]): S_p is of type $\min(2, p)$ and of cotype $\max(2, p)$.

3) Pisier’s Theorem (see [13] or [2, Theorem 17.24, p. 363]): If $p \neq 2$, S_p is not a GL-space.

We now are going to prove the following:

Theorem 2. For $1 < p < 2$ there exists a continuous linear operator $T : l_2 \to S_p$ such that T^* is absolutely 1-summing, but the random series

$$\sum_n r_n T e_n$$

does not converge a.s. in S_p, where (e_n) is the natural basis of l_2.

Proof. Let p, q real numbers with $1 < p < 2$, $2 < q < \infty$ and $1/p + 1/q = 1$.

By the Lemma 4, S_p is of cotype 2 and S_q is not a GL-space for any $1 < p < 2$. Therefore, by the definition of GL-spaces, there is an operator $T : l_2 \to S_p$ such that $T^* \in \Pi_1(S_q, l_2)$, but T^* can not factors through l_1. It is known that the random series

$$\sum_n r_n T e_n$$

converges a.s. in S_p if and only if $T \in \Pi_2(l_2, S_p)$, since S_p is of cotype 2 (see [11] or [2, Proposition 12.29, p. 251]). By Lemma 2, this implies that the operator T can be written in the form: $T = BA$, where $A : l_2 \to l_2$ is a Hilbert-Schmidt operator and $B : l_2 \to S_p$ is a linear continuous operator. Consequently, we have: $T^* = A^*B^*$, where $B^* : S_q \to l_2$ and $A^* : l_2 \to l_2$ is also a Hilbert-Schmidt operator. Therefore, A^* factors through l_1 (by Lemma 3), so that T^* factors through l_1 as well. Thus, we have got a contradiction. This ends the proof of Theorem 2.

Remark. The idea of the above proof is borrowed from [6].
4. A Characterization of Finite Dimensional Banach Spaces

Let us begin with the following

Definition 4. Let X, Y be Banach spaces and p a number with $1 \leq p < \infty$. A continuous linear operator $T : X \to Y$ is called almost p-summing if the random series

$$\sum_n r_n Tx_n$$

converges a.s. in Y for all sequences (x_n) in X with

$$\sum_n |\langle x^*, x_n \rangle|^p < \infty, \quad \forall x^* \in X^*.$$

By the closed graph theorem, it is easy to prove that:

Lemma 5. If a continuous linear operator $T : X \to Y$ is almost p-summing, then there is a number $K > 0$ such that for all $n = 1, 2, \ldots$ and for all $x_1, x_2, \ldots, x_n \in X$ the following inequality holds true

$$\left(\mathbb{E} \left\| \sum_{k=1}^n r_k Tx_k \right\|^2 \right)^{1/2} \leq K \sup \left\{ \left(\sum_{k=1}^n |\langle x_k, x^* \rangle|^p \right)^{1/p} \parallel x^* \parallel \leq 1 \right\}.$$

Note that it was shown in [11] that:

Proposition 3. For a Banach space Y the following statements are equivalent:

(a) Y contains no subspace isomorphic to c_0;
(b) A continuous linear operator T from l_2 into Y is almost 2-summing if and only if there is a number $K > 0$ such that for all $n = 1, 2, \ldots$ and for all $h_1, h_2, \ldots, h_n \in l_2$ the following inequality holds true

$$\mathbb{E} \left\| \sum_{k=1}^n r_k Th_k \right\|^2 \leq K^2 \sup \left\{ \left(\sum_{k=1}^n |\langle h_k, h \rangle|^2 \right)^{1/2} \parallel h \parallel \leq 1 \right\}.$$

Remark. The identity of X is not almost p-summing for any $2 < p < \infty$. In fact, choose $x_k = x$, $k = 1, 2, \ldots$ with $x \in X$, $\parallel x \parallel = 1$. By the inequality in Lemma 5, for all $n = 1, 2, \ldots$ we have

$$n^{1/2} \leq K n^{1/p}.$$
This is impossible for \(p > 2 \).

It was proved in [2, Remark 12.8, p. 235]) that a Banach space \(X \) is finite dimensional if and only if the identity of \(X \) is almost 2-summing. We are now going to study the case \(1 \leq p \leq 2 \). Consider first the case \(p = 1 \). It can be checked easily that the identity of the space \(c_0 \) is not almost 1-summing. On the other hand, the identity of the space \(l_1 \) is almost 1-summing, by the celebrated Schur theorem (see [2, p. 6]). More generally, we have:

Proposition 4. Let \(X \) be a Banach space. The following statements are equivalent:

(a) \(X \) contains no subspace isomorphic to \(c_0 \).

(b) The identity of \(X \) is almost 1-summing.

This proposition is an easy consequence of the following result due to Bessaga-Pelczynsky (see [1] or [2, p. 22]).

Lemma 6. Let \(X \) be a Banach space. The following statements are equivalent:

(a) \(X \) contains no subspace isomorphic to \(c_0 \).

(b) The series \(\sum_n x_n \) unconditionally converges for any sequence \((x_n) \) in \(X \) such that

\[
\sum_n |\langle x^*, x_n \rangle| < \infty, \quad \forall x^* \in X^*.
\]

However, for \(1 < p \leq 2 \) we have:

Theorem 3. Let \(X \) be a Banach space and \(p \) a real number with \(1 < p \leq 2 \). The following statements are equivalent:

(a) \(\dim X < \infty \).

(b) The identity of \(X \) is almost \(p \)-summing.

To prove this theorem we need the following notion (due to James, see [2, p. 175]).

Definition 5. Let \(X, Y \) be Banach spaces. It is said that \(X \) is finitely representable in \(Y \) if given any \(\varepsilon > 0 \) and \(E \) is a finite dimensional subspace of \(X \) there are a finite dimensional subspace \(F \) of \(Y \) and an isomorphism \(u : E \to F \) such that \(\|u\| \cdot \|u^{-1}\| \leq 1 + \varepsilon \).

The following is the heart of the proof of the preceding theorem.

Lemma 7. (Dvorezky Theorem [2, p. 396]). The space \(l_2 \) is finitely representable in any Banach space \(X \) with \(\dim(X) = \infty \).
Proof of Theorem 3.

(a) \Rightarrow (b) is trivial.

(b) \Rightarrow (a) is a consequence of the following lemmas. First, note that, by Lemma 5, we have:

Lemma 8. If the identity of a Banach space X is almost p-summing, then there is a number $K > 0$ such that for all $n = 1, 2, \ldots$ and for all $x_1, x_2, \ldots, x_n \in X$ the following inequality holds true

$$
(4.1) \quad \left(E \left\| \sum_{k=1}^{n} r_k x_k \right\|^{2} \right)^{1/2} \leq K \sup \left\{ \left(\sum_{k=1}^{n} |\langle x_k, x^* \rangle|^p \right)^{1/p} \left\| x^* \right\| \leq 1 \right\}.
$$

By definition, it is obvious to see that:

Lemma 9. If the inequality (4.1) holds true for a Banach space Y, so does for any Banach space X which is finitely representable in Y.

The following is the key to our purpose.

Lemma 10. The inequality (4.1) does not hold true for l_2, for any p with $1 < p \leq 2$.

Proof. Let q denote the real number such that $1/p = 1/q + 1/2$. As $1 < p \leq 2$, it easy to check that $2 < q \leq \infty$ ($q = \infty$ iff $p = 2$). Choose $x_n = \frac{1}{\sqrt{n}} e_n$, $n = 1, 2, \ldots$, where (e_n) is the natural basis in l_2. If the inequality (4.1) does hold true for l_2, then, by the Hölder inequality, for any $n = 1, 2, \ldots$ we have

$$
\sum_{k=1}^{n} \frac{1}{k} = \left(E \left\| \sum_{k=1}^{n} r_k x_k \right\|^{2} \right)^{1/2}
\leq K \sup \left\{ \left(\sum_{k=1}^{n} |\langle x_k, x^* \rangle|^p \right)^{1/p} \left\| x^* \right\| \leq 1 \right\}
= K \sup \left\{ \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} < e_k, x^* > |p \right)^{1/p} \left\| x^* \right\| \leq 1 \right\}
\leq K \sup \left\{ \left(\sum_{k=1}^{n} \left(\frac{1}{k} \right)^{q/2} \right)^{1/q} \left(\sum_{k=1}^{n} |\langle e_k, x^* \rangle|^2 \right)^{1/2} \left\| x^* \right\| \leq 1 \right\}
= K \left(\sum_{k=1}^{n} \left(\frac{1}{k} \right)^{q/2} \right)^{1/q}.
$$
This is impossible for $q > 2$, since
\[\sum_{k=1}^{\infty} \frac{1}{k} = \infty\]
and
\[\sum_{k=1}^{\infty} \frac{1}{k^{q/2}} < \infty.\]

By the Dvoretsky theorem and the above lemmas we obtain:

Lemma 11. Let \mathbf{X} be a Banach space. If $\dim \mathbf{X} = \infty$, then the inequality (4.1) does not hold true for \mathbf{X}, for all p with $1 < p \leq 2$.

The proof of Theorem 3 is complete.

References

6. T. Kühn, γ-summing operators in Banach spaces of type p, 1 < $p \leq 2$, and cotype q, 2 < $q \leq \infty$, *Theory Probab. Appl.* 26 (1981), 118-129.

Universidad de vigo
departamento de matematica aplicada
36200 Vigo, España
E-mail adress: mjchasco@dma.uvigo.es

Faculty of Mathematics, University of Hanoi
90 Nguyen Trai, Hanoi, Vietnam
E-mail adress: ndtien@it-hu.ac.vn

Muskhelishvili Institute of Computational Mathematics
Georgian Academy of Sciences
Tbilisi-93, Republic of Georgia
E-mail adress: tar@compmath.acnet.ge