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RELATION BETWEEN THE SPECTRUM OF
OPERATORS AND LYAPUNOV EXPONENTS

NGUYEN HUU DU AND PHAN LE NA

Abstract. The article concerned with the problem of regarding Lya-
punov exponents of a random difference equation as the spectrum of an
operator acting on a suitable space. Let L be the set of all sequences of
random variables having finite pth−moments for some p small, endowed
with a certain topology. From the difference equation X(n+1)=A(n)X(n) ;
X(0)=x∈Rd, where (A(n),n∈Z) is an i.i.d. sequence of random variables,
we construct an operator T acting on the space L. It is proved that the
spectrum of the operator T is contained in the set of sample Lyapunov
exponents of this random dynamical system.

1. Introduction

As is known, the sample Lyapunov exponents are a useful tool to de-
scribe the growth of stochastic dynamical systems, especially for linear
systems. Therefore, there are many works dealling with the Lyapunov
exponents of difference and differential equations (see [Ar], [Ku]). It is
proved that if the top Lyapunov exponents of linear system is negative
then the system is stable in probability. Thus studying Lyapunov expo-
nents is important both in theory and practice, although it is sometime
not easy to calculate them. On the other hand, in the deterministic cases
there is another approach to study non autonomous systems by enlarging
the phase spaces and relating the stability of a system to the spectrum
of the associated operator. But the relations between the spectrum of
this operator and the Lyapunov exponents of the original system is still
not established, except for some special cases under a strong assumption
on the coefficients (see, for example, [Ar]). In our opinion, this relation
is very important, because one can use functional analysis approaches to
study the problem. We will show that, in a certain context, the Lyapunov
exponents of the product of i.i.d. random matrices or of the solution of
Ito’equations are indeed the spectrum of an operator T acting on a suitable
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space. Unfortunately the space constructed by us is a linear topology
space only. Thus, the spectrum of operators acting on this space must
be understood in a wider sense. The idea of our construction is based
on a relation between the sample Lyapunov exponents and the pth−mean
exponents, when p is small.

The article is organised as follows. In section 2 we recall the Multiplica-
tive Ergodic Theorem of linear systems and make some remarks. Section
3 devote to the main theorem. It gives a necessary condition for which a
complex number λ belongs to the spectrum σ(T ) of the operator T acting
on the space of the union of the spaces Lp as p small. It is proved that
if λ ∈ σ(T ) then ln |λ| is a Lyapunov exponent of this linear system. Un-
fortunately, we don’t know yet if the inverse relation is true or not, i.e.
whether or not the spectrum of T is exactly the Lyapunov spectrum.

2. Cocycles and multiplicative ergodic theorem

Let (Ω,F , µ) be a probability space, and θ : Ω → Ω a random transfor-
mation of (Ω,F , µ) preserving the measure µ, i.e, µ(θ−1A) = µ(A) for any
A ∈ F . Let Gl(d,R) denote the general linear group of d × d-matrices.
We endow Gl(d,R) with its σ-Borel field. Let A(·) be a random variable
defined on (Ω,F , µ) and having values in Gl(d,R). Saying that θ is a
random transformation means that (A(θn(ω)), n ∈ Z) is an independent,
identically distributed sequence where Z is the set of all integer numbers,
and (θn) is defined by θn+1 = θ · θn . We consider the difference equation

(2.1)
{

X(n + 1) = A(θn ω)X(n), n ∈ Z,

X(0) = x ∈ Rd.

For the sack of the simplicity, we suppose that there is a number α0 > 0
such that

(2.2) E
[|A−1(ω)|α0 + |A(ω)|α0

]
< ∞.

The difference equation (2.1) generates a linear cocycle, i.e. a random
dynamical system over the dynamical system (Ω,F , µ) (see, for example,
[AC]), by the following formula

Φ(n, ω) =





A(θn−1ω) ·A(θn−2ω) · · ·A(ω) if n > 0,

Id if n = 0,

A−1(θnω) ·A−1(θn+1ω) · · ·A−1θ−1ω) if n < 0.
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In the other words,
{

Φ(n + 1) = A(θnω)Φ(n, ω), n ∈ Z,

Φ(0, ω) = Id.

The cocycle property means that

Φ(n + m,ω) = Φ(n, θmω) · Φ(m,ω),

or equivalently,

(2.3) Φ(n, ω) · Φ−1(m,ω) = Φ(n−m, θmω),

for any m,n ∈ Z. The solution starting from x at n = 0 of the equation
(2.1) is then Φ(n, ω)x. Applying the Multiplicative Ergodic Theorem for
the case of products of an i.i.d sequence or Ito’ stochastic differential
equations (see [FK]) to the cocycle Φ(n, ω).

Theorem 2.1 (Multiplicative Ergodic Theorem). We get
a) There exists the limit

(2.4) λ[x] = lim
n→±∞

1
n

log |Φ(n, ω)x|,

for each x 6= 0, which takes non-random values

(2.5) λ1 < λ2 < . . . < λr,

called Lyapunov spectrum of A(·)
b) There is a sequence of linear subspaces of Rd (or Lyapunov filtration)

(2.6) {0} = V0 ⊂ V1 ⊂ . . . ⊂ Vr = Rd

associated with (2.5), such that

λ[x] = lim
n→∞

1
n

log |Φ(n, ω)x| ≤ λi, for any x ∈ Vi, i = 1, 2, . . . , r,

and a sequence of linear subspaces of Rd

(2.6’) {0} = Lr ⊂ Lr−1 ⊂ . . . ⊂ L0 = Rd,

such that

λ[x] = lim
n→−∞

1
|n| log |Φ(n, ω)x| ≤ −λi+1, for any x ∈ Li,

i = 0, 1, 2, . . . , r − 1,
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It was shown in [KF] that the linear subspaces Vi and Li are µ - invari-
ant, i.e. µ{ω : A(ω)Vi = Vi} = 1 and µ{ω : A(ω)Li = Li} = 1. Moreover,
for any i = 0, 1, . . . , r, we have

(2.6”) dimVi + dimLi = d.

The difference between the Oseledets’s decomposition and the Furstenberg-
Kiffer one is that (2.6) and (2.6’) are non random filtrations

Beside the sample Lyapunov exponents λ[x] defined by (2.4), we con-
sider also the so-called αth−mean exponents

(2.7) g±(α, x) = lim sup
n→±∞

1
n

log E|Φ(n, ω)|α.

By Hypothesis (2.2), it follows that g(α, x) is finite for all |α| < α0. More-
over, it was proved that

Theorem 2.2 (see [DN] and [Ar]). The function g(α, x) is convex, differ-
entiable with respect to α at α = 0 for any fixed x 6= 0 in Rd, and

(2.8) g′±(α, x)
∣∣
α=0

= λ[x].

3. Relation between the Lyapunov exponents of (2.1)
and the spectrum of operators

It would be important if the Lyapunov exponents of an dynamical sys-
tem would form the spectrum of an operator defined on a topological
linear space, because we could then use the operator theory to solve many
problems. Let us begin with a simple example, when A is not random, i.e.
A ∈ Gl(R, d). It is easy to see that the equation

{
X(n + 1) = A ·X(n), n ∈ Z,

X(0) = x ∈ Rd,

has a bounded solution starting from x 6= 0 if and only if A has an eigen-
value λ belonging to the unit circle S(0, 1) = {z : |z| = 1} on the com-
plex plane and x is in the invariant subspace generated by this eigen-
value. On the other hand, let M be the Banach space of all bounded
sequences (vn)n∈Z equipped by the supremum norm: if v = (vn) ∈ M
then |v| = sup

n∈Z
|vn|. We define an operator T acting on M into itself by

the formula:
(Tv)k+1 = Avk, k ∈ Z.
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Then, a complex number λ is in the spectrum of T iff λ ∈ S(0, |λ0|) =
{z : |z| = |λ0|}, where λ0 is an eigenvalue of A. Thus, the spectrum of
the operator T can be regarded as the spectrum of the matrix A. This
simple result suggests us to use the operator T to describe the Lyapunov
spectrum of the linear difference equation (2.1).

The main difficulty, when we want to extend this result to random ma-
trix products or Ito’s equation, is that the sample trajectory of the map
n → A(θnω) is, in general, not bounded, i.e. lim sup |A(θnω)| = ∞ a.s.
Hence, it is impossible to use the same space M . To overcome this diffi-
culty, we can use the so-called random or Lyapunov norms considered by
many authors (see, for example, [Ar]). However this norm depends strictly
on the considered cocycle Φ(n, ω) and sometime it is not convenient. On
the other hand, if we replace M by the metric linear space Lp of all ran-
dom sequences having finite pth- moment for some fixed p, then we can
regard A(·) as a constant matrix. Unfortunately, in this case A(·) does
not act from Lp into Lp and it seems that there is no relation between
the spectrum of T and the sample Lyapunov exponents of the difference
equation (2.1).

Note that the relation (2.8) between Lyapunov sample exponents and
αth-mean exponents says that the αth-mean exponents is closely related
to λ[x], when α is small enough. Based on this relation we introduce the
following space.

Let Lα be the metric linear space of random sequences (vk) where for
any k ∈ Z, vk is a random variable taking values in Cd (C denotes the
complex plane) such that

sup
k∈Z

E|vk|α < ∞.

A sequence (v(n)) of elements of Lα is said to be convergent to 0 if

sup
k∈Z

E|v(n)
k |α → 0 as n →∞.

We denote by Bα the topology of the type of this convergence on Lα and
put

(3.2) L =
∨

0<α≤α0

Lα.

Suppose that L is endowed with the topology B of the following conver-
gence: a sequence (v(n)) ∈ L is said to converge to v ∈ L, if there is a
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sequence of positive numbers (pn) such that: for any ε > 0

(3.3) lim
n→∞

sup
k∈Z

E|v(n)
k − vk|pn · 1{|v(n)−vk|>ε} = 0.

It is easy to show that if the sequence (v(n)) converges to 0 in this sense,
then it is convergent in probability to 0, i.e.:

lim
n→∞

sup
k∈Z

P{|v(n)
k | > ε} = 0, for any ε > 0.

By virtue of the inequality

|x + y| · 1{|x+y|>ε} ≤ 2[|x|1{|x|> ε
2} + |y| · 1{|y|> ε

2}],

it follows that (L,B) is a linear topological space and the topology B is
stronger than the one induced by the family {Bα, 0 < α ≤ α0}. Moreover
for any 0 < α ≤ α0, the space (ÃLα,Bα) is dense in (L,B). On the other
hand, the space L is constructed from the view point of random dynamical
systems and we do not require that every element of (L,B) is adapted with
respect to a filtration. The picture is quite different if we consider the
problem with the last requirement, i.e. from the view point of stochastic
analysis: our conclusions are no more true.

We need an inequality which will be used many times in the sequel.
Let ξ and η be two elements of L. Then there exist two constants α1 and
α2 such that

ξ = (ξk) ∈ Lα1 ; η = (ηk) ∈ Lα2 .

Choose α = max{α1, α2}. Then

(3.4)
(
E|ξk · ηk|α

2
)2 ≤ E|ξk|α · E|ηk|α,

and

(3.5) E|ξk + ηk|α ≤ Ee|ξk|α + E|ηk|α,

for any k ∈ Z. (Hölder’s inequality, see [HS]). This means that (ξk ·ηk) ∈ L
and (ξk + ηk) ∈ L.

We now turn to our problem. We define an operator T acting on L by

(3.6) (Tv)k+1 = A(θkω) · vk, k ∈ Z,
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for any v = (vk) ∈ L. By virtue of Hölder’s inequality, it is easy to show
that the operator T acts from L into itself. Indeed, for any v ∈ Lα we
have

E
∣∣(Tv)k+1

∣∣α
2 = E

∣∣A(θk)vk

∣∣α
2 ≤

√
E|A(θk)|α · E|vk|α, k ∈ Z.

Since

E|A(θkω)|α = E|A(ω)|α ≤ (
E|A|α0

) α
α0 ≤ max(1, E|A(ω)|α0),

it then follows that

(3.7) E
∣∣(Tv)k+1

∣∣α
2 ≤ max(1, E|A(ω)|α0) ·

√
E|vk|α .

This implies that Tv ∈ Lα
2
, i.e. Tv ∈ L.

Theorem 3.2. T is continuous in L.

Proof. It follows immediately from (3.2), (3.3) and Relation (3.7). ♦
Let σ(T ) denote the spectrum of T , i.e. the subset of C such that the

operator
(λI − T )−1

exists for any λ 6= σ(T ). Suppose that

Λ = {λ1, λ2, . . . , λr},

where
−∞ = λ0 < λ1 < . . . < λr < λr+1 = ∞,

is the sample Lyapunov exponents of the system (2.1) associated with the
filtrations of linear subspaces

{0} = V0 ⊂ V1 ⊂ . . . ⊂ Vr = Rd,

and
{0} = Lr ⊂ Lr−1 ⊂ . . . ⊂ L0 = Rd.

From (2.6”) we get
Rd = Vi ⊕ Li.

Theorem 3.3. If λ is a complex number such that ln |λ| /∈ Λ, then λ /∈
σ(T ).
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Proof. Suppose that

(3.8) λi < ln |λ| < λi+1,

for an i, 0 ≤ i ≤ r. To prove that λ /∈ σ(T ) we have to show that the
equation

(λI − T ) v = f

has a unique solution in L for any f ∈ L, and the map f → v (= v(f)) is
continuous. In other words:

(3.9) vk+1 = λ−1A(θkω) · vk + fk

has a unique solution v = (vk) ∈ L. Put

ε = min
{ |λ| − eλi

2
;

eλi+1 − |λ|
2

}
·

We denote by P the projection operator on Vi. Then I−P is the projection
on Li. By the definition of Lyapunov exponents, we have

lim
n→+∞

1
n

log |Φ(n)Px| ≤ λi a.s.,

lim
n→−∞

1
n

log |Φ(n)(I − P )x| ≥ λi+1 a.s.,

for any x ∈ Rd. Hence, it follows that

(3.10) b(ω) = sup
0≤n<∞

|e−(λi+ε) nΦ(n, ω)P | < ∞ a.s.,

(3.11) c(ω) = sup
−∞<n≤0

|e−(λi+1−ε) nΦ(n, ω)(I − P )| < ∞ a.s..

From (3.10) and (3.11) it follows that

|Φ(n, ω)P | ≤ b(ω) · exp(λi + ε)n, for n > 0,

|Φ(n, ω)(I − P )| ≤ c(ω) exp(λi+1 − ε)n for n < 0.

Therefore

(3.12) |λ−nΦ(n, ω)P | ≤ b(ω) · exp(−ε n), for n > 0,
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(3.13) |λ−nΦ(n, ω)(I − P )| ≤ c(ω) · exp(ε n), for n < 0.

Let f = (fk) be an element of L. Then there is β0 such that (fk) ∈ Lβ0 .
Put

vn(ω) =
n∑

m=−∞
λm−nΦ(n−m, θmω) · Pfm(ω)

−
∞∑

m=n+1

λm−nΦ(n−m, θmω)(I − P )fm(ω).

We show that (vn) ∈ L, i.e there exists a constant α > 0 such that

sup
n∈Z

E|vn|α < ∞.

Using (3.12), we get

∣∣∣
n∑

m=−∞
λm−nΦ(n−m, θmω)Pfm| ≤

n∑
m=−∞

|λm−nΦ(n−m, θmω)Pfm|

≤
n∑

m=−∞
b(θmω) · exp{−ε(n−m)} · |Pfm|.

By Lemma 3.4 below, there is a number β such that E|b(ω)|β < ∞. Let
2α = min(β, β0). Then

E
∣∣∣

n∑
m=−∞

λm−nΦ(n−m, θmω)Pfm

∣∣∣
α

≤
n∑

m=−∞
exp{−εα(n−m)}E|b(θmω)Pfm

∣∣∣
α

(3.14)

≤ [
E|b(·)|β] α

2β · sup
m∈Z

(
E|Pfm|β0

) α
2β0

n∑
m=−∞

exp{−εα(n−m)}

≤ K

1− exp{−εα} ,

where K is a certain constant. Similarly, using again Lemma 3.4 we get

(3.15) E
∣∣∣

∞∑
m=n+1

λm−nΦ(n−m, θm)(I − P )fm

∣∣∣
α

≤ K

1− exp{−εα} ,
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which implies that
sup
n∈Z

E|vn|α < ∞.

This means (vn) ∈ Lα ⊂ L.
We now prove that T is an one to one map. For this purpose we show

that for any random variable x such that E|x|α < ∞ for some 0 < α ≤ α0,
we have

sup
n∈Z

E|λ−nΦ(n, ω)x|β = ∞,

for any 0 < β ≤ α0. Without loss of generality, suppose that (I−P )x 6= 0
with a positive probability. Then, by using the Fatou’s lemma, it yields

lim sup
n→∞

E|λ−nΦ(n, ω)(I − P )x|β ≥ E lim inf
n→∞

|λ−nΦ(n, ω)(I − P )x|β = ∞.

Combining above results, we get λ /∈ σ(T ). Theorem 3.3 is proved ♦.
In proof of the above theorem we have used the following lemma.

Lemma 3.4. There exists a constant 0 < β < α0 such that E|b(ω)|β < ∞
and E|c(ω)|β < ∞.

Proof. We only show that E|b(ω)|β < ∞. The proof of E|c(ω)|β < ∞ is
similar. Putting

bn(ω) = sup
0≤k<n

|e−(λi+ε) kΦ(k, ω)P |.

Then bn(ω) ↑ b(ω) as n →∞. On the other hand, by (2.8) we have

d

dα

(
lim sup

1
n

log E
[
e−(λi+ε) n|Φ(n, ω) P |]α

)∣∣∣
α=0

≤ −(λi + ε) + λi = −ε < 0.

Therefore, there exists a constant β > 0 such that

lim sup
1
n

log E
[
e−(λi+ε) n|Φ(n, ω)P |

]β

≤ −εβ

2
,

or equivalently, there is a constant M such that

E
[
e−(λi+ε) n|Φ(n, ω)P |

]β

≤ M · exp
{−εβ · n

2

}
, ∀n ≥ 0.



RELATION BETWEEN THE SPECTRUM 105

This implies that

E|bn(ω)|β

≤ E

[
n∑

k=1

e−(λi+ε) k|Φ(k, ω)P |
]β

≤
n∑

k=1

E
[
e−(λi+ε) k|Φ(k, ω)P |

]β

≤ M

n∑

k=1

exp{−εβk

2
} ≤ M

1− exp
{−εβ

2

} ·

Using a theorem for monotonous sequences, we get

E|b(ω)|β = E lim |bn|β = lim E|bn|β ≤ M

1− exp
{
−εβ

2

} ·

Hence, the statement follows. ♦
Theorem 3.4. If λ /∈ σ(T ), then eiφλ /∈ σ(T ), for any 0 ≤ φ ≤ 2π.

Proof. It follows immediately from the definition. ♦
Remark 3.5. From (3.14) and (3.15), it follows that the map

Tλ : f → Tλf,

where Tλf is the solution of (3.9) associated with λ, satisfies the condition

sup
k∈Z

E|(Tλf)k|α ≤ K · sup
k∈Z

E|fk|2α.

Therefore, by virtue of (3.2) and (3.3), it follows that the map f → Tλf
is continuous.

Open Problem. Is it true that

σ(T ) = ∪r
i=1S(0, exp{λi})?

Remark. It can be proved that the picture is quite different when we
require that every element of L is adapted to the filtration generated by
the sequence (A(θn), n = 1, 2, . . . ).
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