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APPROXIMATE CONTROLLABILITY WITH
POSITIVE CONTROLS

NGUYEN KHOA SON

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. In this paper, controllability of the linear discrete-time sys-
tems (A,B,Ω):xk+1=Axk+Buk, xk∈X, uk∈Ω, is studied, where X is a Ba-
nach space and the control set Ω is assumed to be a cone in a Banach
space U . Some criteria for approximate controllability are given. The
case where the operator A is compact is examined in detail by using the
spectral decomposition of the state space X. As a result, a criterion for
approximate controllability of (A,B,Ω) is obtained without imposing a re-
strictive condition that the system with no control constraints (A,B,U) is
exactly controllable. The obtained results are then applied to consider the
problem of controllability for linear functional differential equations with
positive controls. Some necessary and sufficient conditions of approximate
controllability to the state space Rn×Lp are presented and some illustrat-
ing examples are given.

1. Introduction

Consider the following linear discrete-time system (A,B, Ω)

xk+1 = Axk + Buk, xk ∈ X,(1.1)

uk ∈ Ω ⊂ U,(1.2)

where X,U are real Banach spaces, A : X → X and B : U → X are linear
bounded operators, and Ω is a non-empty subset of U .

Infinite-dimensional systems of type (1.1) have been for many years
an object of research, see, e.g. [10, 25, 17, 28]. These investigations
are motivated not only by the interest in obtaining theoretical results.
It has been shown, for example, in [25], [28], that difference equations
in abstracts spaces provide an efficient model for studying some qualita-
tive properties, such as stability, observability, controllability, for systems
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described by functional differential equations or abstract evolution equa-
tions. The problem of controllability for the system (1.1) with restrained
controls (1.2) has been studied, in the abstract setting, by this author
in [19], where some criteria for local controllability have been proved. In
[20] and [21] the property of null-controllability of the system has been
considered. In [22] we give an application of this abstract “discrete-time”
approach: some controllability criteria for infinite-dimensional discrete-
time systems are used to obtain the corresponding results for periodic sys-
tems of ordinary differential equations with restrained controls. Note that
our investigations have so far been concerned mainly with the property
of exact controllability which is known as quite a restrictive concept. It
has been proved, for example, that evolution systems with compact semi-
groups in infinite-dimensional spaces are never exactly controllable in finite
time, [33]. On the other hand, it is well-known, e.g [30], that functional
differential equations can be treated as abstract evolution equations gener-
ating a C0-semigroup of operators S(t) which become compact for t large
enough. This situation suggests that in order to make the discrete-time
approach more applicable to systems of functional differential equations,
the concept of approximate controllability of (A,B, Ω) rather than that
of exact controllability must be considered. This, in fact, is the object of
the present paper.

The main purpose of this paper is to establish some verifiable criteria of
approximate controllability for the class of discrete-time systems (A,B, Ω)
with a compact operator A and with a control set Ω being a cone. We shall
then make use of the obtained criteria to examine the controllability in the
state space Mp = Rn × Lp(−h, 0,Rn) of functional differential equations
of the form

ż(t) =

0∫

−h

dη(θ)z(θ + t) + B0u(t), z(t) ∈ Rn,

u(t) ∈ Ω ⊂ Rm a.e. t ≥ 0,

where Ω is a cone. We note that the problem of approximate controlla-
bility of the above functional differential equations was treated in [23] by
another approach, based on the C0-semigroup theory, and some criteria
of approximate controllability have been obtained. It will be shown in
this paper that the discrete-time theory not only enables us to obtain the
stronger results but also provides us with an insight into the problem.

We list some notations used in this paper. Let R and C denote the fields
of real and complex numbers, respectively. The symbol Rn will denote
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n-dimensional Euclidean space. If X and Y are Banach spaces then we
shall denote by L(X, Y ) the Banach space of all bounded linear operators
from X into Y , and by L(X) the space L(X,X). The identity operator
in L(X) is denoted by I and the spectrum of A ∈ L(X) is denoted by
σ(A). Let X be the topological dual of X and 〈., .〉 be the duality pairing.
If A ∈ L(X, Y ) then A∗ ∈ L(Y ∗, X∗) is the adjoint operator of A. It is
known that σ(A) = σ(A∗). The symbol Ker A and Im A will stand for
the null space and the range of A, respectively. Now, let M be a subset of
a Banach space X. We denote by span M the linear manifold spanned by
M ; the convex hull, the interior and the closure of M are denoted by co
M , int M and cl M , respectively. The negative polar cone of M is defined
by

M0 = {f ∈ X∗ : 〈f, x〉 ≤ 0, ∀x ∈ M}.
It is clear that M0 = (co M)0 = (cl M)0. Besides, if M , N are subset

of X containing 0 then (M + N)0 = (M ∪N)0 = M0 ∩N0. We say that
M is a cone if λM ⊂ M , ∀λ ≥ 0. Finally, the unit ball in X is denoted
by S1 and the set of nonnegative integers is denoted by N.

2. Preliminaries

For a given k ∈ N, let Rk denote the reachable set at time k of the
system (A,B, Ω), i.e. R0 = {0},

(2.1) Rk =
k∑

i=1

Ak−iBΩ, k ≥ 1,

and let

(2.2) R∞ =
⋃
{Rk, k ∈ N}.

The system (A, B, Ω) is said to be approximately controllable if cl R∞ = X
and exactly controllable if R∞ = X.

In [19] the following criterion of exact controllability is given.

Theorem 2.1. Suppose that Ω is a convex cone in U with nonempty
interior. Then the system (A,B, Ω) is exactly controllable if and only
if (i) the corresponding system with unconstrained controls (A,B, U) is
exactly controllable, or, equivalently,

(2.3) ∃m ∈ N : span {BU,ABU, ..., Am−1BU} = X,
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and (ii)

(2.4) Ker (λI∗ −A∗) ∩ (BΩ)0 = {0}, ∀λ ≥ 0.

The proof of the above result based on the theorem due to Krein and
Rutman concerning properties of a convex cone with nonempty interior
invariant under a linear bounded operator. The convexity of Ω and the
condition int Ω 6= ∅ are necessary to ensure that R∞ is convex set with
nonempty interior in X. It turns out that if one replaces the convexity of
Ω by the weaker condition that cl BΩ is convex, the conditions (2.3) and
(2.4) are still sufficient for approximate controllability. More precisely, we
have the following.

Theorem 2.2. Suppose that Ω is a subset of U with nonempty interior
and cl BΩ is a convex cone. If the conditions (2.3) and (2.4) are satisfied
then the system (A,B, Ω) is approximately controllable.

Proof. We give only a sketch since the proof is similar to that of Theorem
2.1 presented in [19]. From the condition int Ω 6= ∅ and (2.3) it follows
that int R∞ 6= ∅. Next, since, clearly,

cl R∞ = cl
⋃
{cl Rk, k ∈ N} and cl Rk = cl (

k∑

i=1

Ak−i cl (BΩ)),

we conclude that cl R∞ is a convex cone with nonempty interior. More-
over, since AR∞ ⊂ R∞, it follows that cl R∞ is invariant under A. Assume
to the contrary that cl R∞ 6= X. This implies, by the Krein-Rutman the-
orem, that there exist a non-zero f ∈ (cl R∞)0 and λ ≥ 0 such that
A∗f = λf . Since BΩ ⊂ R∞ it follows f ∈ (BΩ)0 and, thus, f ∈ Ker
(λI∗ −A∗) ∩ (BΩ)0, contradicting (2.4). This completes the proof.

Theorem 2.2, however, is not convenient for applications since, as noted
above, the condition (2.3) of exact controllability is not fulfilled for many
systems of practical importance. The question arises whether one can
replaces the condition (2.3) in Theorem 2.2 by the following weaker con-
dition

(2.5) cl span {BU,ABU, ...} = X.

The following simple example shows, however, that (2.4) and (2.5), in
general, are not sufficient conditions for approximate controllability. Let
X = l2, U = R1, x = (ξ1, ξ2, ...) ∈ X, A is the left shift operator:
A(ξ1, ξ2, ...) = (ξ2, ξ3, ...), B is defined by Bu = bu, where b = (1, 1/2,
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1/4, ...) and Ω = {u ∈ R1 : u ≥ 0}. Since A∗ has no eigenvectors, the
condition (2.4) is satisfied. Besides, it is easily seen that that cl span
{b, Ab, A2b, ...} = X and hence (2.5) is also fulfilled. However, since
R∞ ⊂ l+2 (the cone of all nonnegative vectors in l2), the system under
consideration is not approximately controllable.

We shall see later that for a class of discrete-time systems associated
with functional differential equations, one can actually replace the condi-
tion (2.3) by the following inclusion

(2.6) ∃m ∈ N : Im Am ⊂ cl span {BU,ABU, ..., Am−1BU},

which is clearly weaker than (2.5), but in combining with (2.4), forms a
necessary and sufficient condition for approximate controllability of the
system (A,B, Ω).

First we prove the following simple characterization of approximate
controllability.

Lemma 2.3. Suppose that cl BΩ is a convex cone. Then the system
(A,B, Ω) is approximately controllable if and only if

(2.7)
⋂
{(AkBΩ)0, k ∈ N} = {0}.

Proof. Obviously, cl R∞ is a convex cone. Further, it is readily verified
that (cl R∞)0 =

⋂{(AkBΩ)0, k ∈ N}. The assertion now follows imme-
diately by the separation principle for convex cones (see, e.g., Theorem
10, p. 458, [9]).

Since f ∈ (AkBΩ)0 iff A∗kf ∈ (BΩ)0, we can reformulate the above
result in the form of the control-observation duality as follows.

Corollary 2.4. The system (A,B, Ω) is approximately controllable iff the
dual system

fk+1 = A∗fk,(2.8)

fk ∈ (BΩ)0 ⊂ X∗(2.9)

is observable (i.e. the only solution of (2.8) remaining in the observation
domain (BΩ)0 for all k ∈ N is f = 0).

Denote

(2.10) H = span {BU,ABU, ...}.
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Approximate controllability of (A,B,U) is equivalent to that cl H = X.
For the system with unconstrained controls (A,B,U) we have the following
simple criterion of approximate controllability.

Theorem 2.5. The system (A,B,U) is approximately controllable if and
only if

(2.11) ∃m ∈ N : Im Am ⊂ cl H

and

(2.12) Ker A∗ ∩ Ker B∗ = {0}.

Proof. Suppose cl H = X, but there exists a nonzero f ∈ X∗ such
that A∗f = B∗f = 0. Then, since B∗A∗if = 0, ∀i ∈ N we have, for

every x ∈ H, 〈f, x〉 =
k∑

i=1

〈f,Ak−iBui〉 =
k∑

i=1

〈B∗A∗k−if, ui〉 = 0 which is

impossible. For the sufficiency, suppose (11) and (2.12) hold. Let f ∈ X∗

such that

(2.13) 〈f, x〉 = 0, ∀x ∈ H.

Since H is invariant under A : AH ⊂ H, (2.13) implies 〈f,Aix〉 = 0,
∀x ∈ H, ∀i ∈ N, or

(2.14) 〈A∗if, x〉 = 0, ∀x ∈ H, ∀i ∈ N.

On the other hand, in combination with (11), (2.13) yields 〈f,Amx〉 =
〈A∗mf, x〉 = 0, ∀x ∈ X, which implies f ∈ Ker A∗m. Denote gk = A∗kf
for k = 0, 1, ...,m. We have gm−1 ∈ Ker A∗. Since BU ⊂ H, it follows
from (2.14) that 〈gm−1, Bu〉 = 0, ∀u ∈ U , or, equivalently, gm−1 ∈ Ker
B∗. But then, by (2.12), gm−1 = 0. By induction, we can prove that
gk = 0 for k = 0, 1, ..., m. In particular, we get g0 = f = 0. This shows
that cl H = X and concludes the proof.

We now recall some properties of the spectral decomposition for com-
pact operators and prove a useful formula for the range of a compact
operator whose adjoint satisfies the so-called small solution condition.

It is well-known that if A is a compact operator then A∗ is also a com-
pact operator and the spectrum σ(A) is a countable set with no accumula-
tion point different from zero. Each nonzero λ ∈ σ(A) is an eigenvalue with
a finite multiplicity kλ and λ is also an eigenvalue of A∗ with the same mul-
tiplicity. It follows that for every r > 0, the set Λ = {λ ∈ σ(A) : |λ| > r}
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consists of a finite number of eigenvalues and the spaces X can be decom-
posed into the direct sum of two A-invariant subspaces

(2.15) X = Pr ⊕Qr

where

Pr = ⊕{Ker (λI −A)kλ , λ ∈ Λ}, Qr =
⋂
{Im (λI −A)kλ , λ ∈ Λ}.

The subspace Pr is finite-dimensional and, if we denote by AP and AQ

the restrictions of A to Pr and Qr, respectively, then σ(AP ) = Λ and
σ(AQ) = σ(A) \ Λ. It follows, in particular, that AP is invertible and

(2.16) σ(A−1
P ) = {λ−1 : λ ∈ Λ}.

From the definition, it is clear that

(2.17) r1 ≤ r2 ⇒ Pr2 ⊂ Pr1 and Qr1 ⊂ Qr2 .

Note that the similar decomposition property holds also for A∗. Let r > 0
be chosen so that {λ ∈ C : |λ| = r} ∩ σ(A) = ∅ and let Λ = {λ ∈ σ(A) :
|λ| > r}. From the properties of σ(A) we can choose δ > 0 small enough
such that σ(AQ) ⊂ {µ ∈ C : |µ| < r − δ} and Λ = σ(AP ) ⊂ {µ ∈ C : |µ| >
r + δ}. Using the Gelfand-Beurling spectral radius formula

(2.18) lim
k→∞

‖Ak‖1/k = max{|λ| : λ ∈ σ(A)},

one can show easily that there exists a number N ∈ N such that

(2.19) ‖Ak
QxQ‖ ≤ (r − δ)k‖xQ‖, ∀xQ ∈ Qr, ∀k ≥ N

and

(2.20) ‖A−k
P xP ‖ ≤ (r − δ)−k‖xP ‖, ∀xP ∈ Pr, ∀k ≥ N.

This implies, in particular, that ‖(A/r)kx‖ → 0 as k →∞ for any x ∈ Qr.
Now, let us define the set

(2.21) X∞ = {x ∈ X : lim
k→∞

‖(A/r)kx‖ = 0, ∀r > 0}.

It is clear, that
⋃{Ker Ai, i ∈ N} ⊂ X∞ and X∞ is a linear subspace

invariant under A. We introduce the following (see, e.g. [27]).
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Definition. We say that A ∈ L(X) satisfies the small solution condition
(SSC) if there exists j ∈ N such that

(2.22) X∞ = Ker Aj .

We remark that the (SSC) means that each solution of the difference
system xk+1 = Axk which tends to zero more rapidly than any rk as
k → ∞ (“small solution”) must vanish identically after a certain finite
time. The following lemma is a discrete-time analog to the known results
due to Henry [11] and Manitius [14].

Lemma 2.6. Let A ∈ L(X) be a compact operator such that A∗ satisfies
the (SSC). Then there exists i0 ∈ N such that

(2.23) cl Im Ai0 = cl span{Pr, r > 0},
where Pr is defined by (2.15) for each r > 0.

Proof. Since Pr ⊂ Im Ak, ∀r ≥ 0, ∀k ∈ N, it suffices to show that for some
i0 ∈ N the inclusion cl Im Ai0 ⊂ cl span {Pr, r > 0} holds. To this end, we
choose a sequence of numbers {ri, i ∈ N} such that 0 < ri+1 < ri, ∀i ∈ N,
and ri → 0 as i → ∞, and {µ ∈ C : |µ| = ri} ∩ σ(A∗) = ∅. By virtue of
the property (2.17) and (2.19) we have

(2.24)
⋂
{Q′r, r > 0} =

⋂
{Q′ri

, i ∈ N} ⊂ X∗
∞

(where X∗
∞ is defined as (2.21) with A replaced by A∗). Now, suppose

〈f, x〉 = 0, ∀x ∈ Pr, ∀r > 0. This implies 〈f, x〉 = 0, ∀x ∈ Ker (λI−A)kλ ,
∀λ ∈ σ(A), λ 6= 0. Since Im (λI∗ − A∗)kλ is closed, it follows that f ∈
Im (λI∗ − A∗)kλ , ∀λ ∈ σ(A), λ 6= 0, or, equivalently, f ∈ ∩{Q′

r, r > 0}.
In view of (2.24), we have that f ∈ X∗

∞ and therefore, f ∈ Ker A∗i0 for
some i0 ∈ N, since A∗ satisfies (SSC). The assertion is now immediate.

3. Criteria of approximate controllability of
linear discrete-time systems with positive controls

The following assertion plays a crucial role in our main theorem. The
continuous-time counterpart of this result was given in [23]

Lemma 3.1. Suppose A ∈ L(X) is a compact operator and cl BΩ is a
closed convex cone in X. Let r > 0 and πP denote the projection operator
onto the invariant subspace Pr defined by (2.15). Let R∞ be the reachable
set of the discrete-time system (A,B, Ω). If πP (cl R∞) = Pr, then

(3.1) Pr ⊂ cl R∞.
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Proof. By the definition, Pr = πP X and πP is completely characterized
by the spectral set Λ, Λ = {λ ∈ σ(A) : |λ| > r}. Since Λ remains clearly
unchanged when one replaces r by r + ε with ε > 0 small enough, we can
assume, without loss of generality, that {µ ∈ C : |µ| = r} ∩ σ(A) = ∅.
Therefore, one can choose δ > 0 to ensure that (2.19) and (2.20) hold for
the spectral decomposition X = Pr ⊕ Qr. Next, since cl R∞ is a closed
convex cone in X and πP : X → Pr is an open linear continuous operator,
by Proposition 2.4 in [23], there exists γ > 0 such that

(3.2) ∀xP ∈ Pr, ∃x̂ ∈ cl R∞ : ‖x̂‖ ≤ ‖xP ‖/γ.

Let πQ be the projection operator onto Qr along Pr (i.e. πQ = I − πP )
and let xQ = πQx̂, then xP + xQ = x̂ and we obtain, by (3.2),

(3.3) ‖xQ‖ ≤ ‖πQ‖ ‖xP ‖/γ.

Now, given any x0
P ∈ Pr and any ε > 0, we choose m ∈ N such that

m > N (where N is chosen to ensure (2.19) and (2.20)) and

(3.4) (r − δ)m‖πQ‖ ‖x0
P ‖/γ(r + δ)m < ε/2.

Putting x1
P = A−m

P x0
P (recall that the operator AP : Pr → Pr is invertible)

then, by (3.2) and (3.3), one can find x1
Q ∈ Qr such that x̂1 ∆= x1

P + x1
Q ∈

cl R∞ and

(3.5) ‖x1
Q‖ ≤ ‖πQ‖ ‖x1

P ‖/γ.

Since x̂1 ∈ cl R∞, there exists xε ∈ R∞ such that

(3.6) ‖xε − x̂1‖ < ε/2‖Am‖.

Defining x = Amxε we have x ∈ AmR∞ ⊂ R∞. On the other hand, by
virtue of (2.19), (2.20) and (3.3)-(3.5), we can write

‖x− x0
P ‖ ≤ ‖x− x0

P −Amx1
Q‖+ ‖Amx1

Q‖
= ‖Amxε −Amx1

P −Amx1
Q‖+ ‖Amx1

Q‖
≤ ‖Am‖ ‖xε − x1

P − x1
Q‖+ (r − δ)m‖x1

Q‖
≤ ε/2 + (r − δ)m‖πQ‖ ‖x1

P ‖/γ

≤ ε/2 + (r − δ)m‖πQ‖ ‖x0
P ‖/γ(r + δ)m < ε/2 + ε/2 = ε.
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So, given any x0
P ∈ Pr and ε > 0 one can find x ∈ R∞ such that

‖x− x0
P ‖ < ε. This means Pr ⊂ cl R∞ and the proof is complete.

We are now in a position to prove the main result (compare with The-
orem 2.1).

Theorem 3.2. Let A ∈ L(X) be a compact operator such that A∗ satisfied
the (SSC). We assume that int Ω 6= ∅ and cl BΩ is a convex cone. Then
the linear discrete-time system (A,B, Ω) is approximately controllable if
and only if

(3.7) ∃m ∈ N : Im Am ⊂ cl H

and

(3.8) Ker (λI∗ −A∗) ∩ (BΩ)0 = {0}, ∀λ ≥ 0.

Proof. Necessity. If (A,B, Ω) is approximately controllable then the sys-
tem with unconstrained controls (A,B,U) is evidently also approximately
controllable. This implies (3.7).

Next, suppose that there exist a nonnegative λ ∈ σ(A) and a nonzero
f ∈ X∗ such that A∗f = λf and f ∈ (BΩ)0. Then, obviously, f ∈
(AkBΩ)0, ∀k ∈ N, which means f ∈ R0

∞ and hence the system (A,B, Ω)
is not approximately controllable.

Sufficiency. Suppose (3.7) and (3.8) hold. Taking any r > 0 we have the
spectral decomposition X = Pr ⊕ Qr as described above. Projecting the
inclusion (3.7) on Pr along Qr and taking into account that the operator
AP is onto, we get

πP Im Am = Im Am
P = Pr ⊂ πP (cl H) ⊂ cl (πP H) = cl HP ⊂ Pr,

denoting HP = span {BP U,AP BP U, ...}, BP = πP B. This implies
clHP = Pr. Since Pr is a finite dimensional subspace, there exists n ≥ 1
such that

(3.9) Pr = span {BP U,AP BP U, ..., An−1
P BP U},

which means, by Kalman’s criterion, that the system (AP , BP , U) is ex-
actly controllable in Pr. Further, from (3.8) it follows

(3.10) Ker (λI∗P −A∗P ) ∩ (BP Ω)0 = {0}, ∀λ ≥ 0.
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Indeed, if f is a nonzero element of P ∗r such that A∗P f = λf , λ ≥ 0 and
〈f, BP u〉 ≤ 0, ∀u ∈ Ω, then putting g = π∗P f we see that g ∈ X∗ and g is
nonzero (since πP is onto). Moreover, A∗g = A∗π∗P f = π∗P A∗f = λπ∗P f =
λg and 〈g, Bu〉 = 〈f, πP Bu〉 = 〈f, BP u〉 ≤ 0, ∀u ∈ Ω. This contradicts
(3.8).

Therefore, by Theorem 2.2, the system (AP , BP ,Ω) is approximately
controllable in Pr. Thus, we can write

Pr = cl
⋃
{Rp

k, k ∈ N} = cl
⋃
{cl Rp

k, k ∈ N},

where Rp
k is the reachable set of (AP , BP , Ω) in time k. Now, since cl

Rp
k ⊂ cl Rp

k+1, ∀k ∈ N and cl Rp
k is convex, it follows from the fact

that Pr is finite dimensional that there must exist k0 ∈ N such that
Pr = cl Rp

k0
. Since πP is an open mapping and Rp

k0
= πP Rk0 , we get

Pr = πP (cl Rk0) which implies

(3.11) πP (cl R∞) = Pr.

Remark that we have established (3.11) for an arbitrary r > 0. By the
properties of σ(A), one can choose a sequence ri → 0 such that 0 < ri+1 <
ri and {µ ∈ C : |µ| = ri} ∩ σ(A) = ∅, ∀i ∈ N. By Lemma 3.1, from (3.11)
we have Pri ⊂ cl R∞. Since Pr ⊂ Pri whenever ri < r, the last inclusion
implies cl span {Pr, r > 0} ⊂ cl R∞. This shows, by virtue of Lemma 2.6,
that

(3.12) ∃i0 ∈ N : cl Im Ai0 ⊂ cl R∞.

Suppose to the contrary that the system (A,B, Ω) is not approximately
controllable, i.e. cl R∞ 6= X. Then, since cl R∞ is a convex cone, Theorem
10, p. 425 in [9], shows that there exists a nonzero f ∈ X∗ such that
f ∈ R0

∞. Since BΩ ⊂ R∞ we have f ∈ (BΩ)0. By (3.12), we get
also that f ∈ Ker A∗i0 . Denote gk = A∗kf , k = 0, 1, ..., i0 − 1. We
have gi0−1 = A∗i0−1f ∈ Ker A∗. On the other hand, it is easily seen
that the negative polar cone R0

∞ is invariant under A∗ : A∗R0
∞ ⊂ R0

∞.
Therefore, gi0−1 ∈ Ker A∗ ∩ (BΩ)0. In view of (3.8) we conclude that
gi0−1 = 0. By induction, we can show that gk = 0 for k = 1, 2, ..., i0 − 1,
and g0 = f ∈ Ker A∗ ∩ (BΩ)0. This contradicts (3.8) and completes the
proof of the theorem.

Remark 3.3. The requirement intΩ 6= ∅ in the above theorem is rather
restrictive and is not fulfilled for some cases of practical interest. For
example, the set Ω of controls in the space U = Lp(0, h,Rm) define as
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(3.13) Ω = {u(.) ∈ U : ui(t) ≥ 0 a.e. on [0, h], i = 1, ...,m}

has no interior points. In such a situation, the following observation may
be useful. Suppose that there exist a Banach space U1 and a subset
Ω1 ⊂ U1 such that U1 ⊂ U , Ω1 ⊂ Ω and cl U1 = U , cl Ω1 = Ω (the
closure is taken in the topology of U). Suppose further that the embedding
operator E : U1 → U is continuous. In this case, if Ω1 has a nonempty
interior in U1, then the condition (3.7) and (3.8) are also sufficient for
approximate controllability of the system (A, B, Ω). To see this, we notice
that the condition intΩ 6= ∅ has been used in the proof of Theorem 3.2 only
one time: namely, it was required when we applied Theorem 2.2 to assert
that the spectral subsystem (AP , BP ,Ω) is approximately controllable.
Here, we can obtain this as follows. Notice first that the linear operator
B1 ∆= BE : U1 → X is continuous. Since cl U1 = U and Pr is finite
dimensional, from (3.9) it follows that

Pr = span{B1
P U1, AP B1

P U1, ..., An−1
P B1

P U1}.

Further, since cl Ω1 = Ω it is easy to show that (3.10) is also satisfied
when replacing BP Ω by B1

P Ω, that is

Ker (λI∗P −A∗P ) ∩ (B1
P Ω)0 = {0}.

Therefore, by Theorem 2.2, the system (AP , B1
P , Ω1) is approximately

controllable. Since B1Ω1 ⊂ BP Ω it follows that the reachable set of
the system (AP , B1

P , Ω1) is contained in the reachable set of the system
(AP , BP ,Ω). Consequently, (AP , BP ,Ω) is also approximately control-
lable.

For example, in the case of control set (3.11) we can take U1 ∆=
L∞(0, h,R) and

Ω1 = {u(.) ∈ U1 : ui(t) ≥ 0 a.e. , i = 1, ...,m}

and the above remark applies.
Finally, we notice that the condition (3.7) is certainly weaker than (2.5).

Hence, we obtain the following.

Corollary 3.4.Under the assumptions of Theorem 3.2, the system (A,B, Ω)
is approximately controllable if the corresponding system with unconstrained
controls (A,B,U) is approximately controllable and Ker (λI∗ − A∗) ∩
(BΩ)0 = {0}, ∀λ ≥ 0.
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As will be shown in the next section, for the discrete-time system
associated with a functional differential equation, the condition (3.7) is
equivalent to the approximate null-controllability of the system with no
restrictions on controls (A, B,U).

We conclude this section by giving an example, illustrating the use of
the above results. Consider a system (A,B, Ω) in X = l2 with Ω ⊂ U =
R2. Let A ∈ L(X) be defined by Ax = (ξ1, (−1/2)ξ2, (−1/3)ξ3, ...) for
x = (ξ1, ξ2, ξ3, ...) ∈ l2 and B ∈ L(U,X) be defined by Bu = b1u1 + b2u2,
for u = (u1, u2) ∈ U , where b1 = (1, 1/2, 1/3, ...) and b2 = (1, 0, 0, ...).
Notice first that this system is not exactly controllable, even when Ω = U ,
since the operator B is compact. However, it is easily verified that cl
span {b1, Ab1, A

2b1, ...} = X, and hence cl span {BU,ABU, ...} = X.
Therefore, the condition (3.7) is satisfied. Further, we have σ(A∗) =
{1,−1/2,−1/3, ...}, Ker A∗i = {0}, ∀i ∈ N and f = ±(1, 0, 0, ...) are the
eigenvectors of A∗ corresponding to the eigenvalue λ = 1. Consequently,
the condition (3.8) is satisfied if we take

(3.14) Ω = {(u1, u2) ∈ U : u1 ≥ 1/2|u2| ≥ 0},

but (3.8) fails for the set of positive controls

(3.15) Ω = {(u1, u2) ∈ U : u1 ≥ 0, u2 ≥ 0}.

Next, we show that the operator A∗ satisfies the (SSC). Taking any x =
(ξ1, ξ2, ξ3, ...) ∈ X∗

∞ we have, for r > 0,

(A/r)kx = ((1/r)kξ1, (−1/2r)kξ2, (−1/3r)kξ3, ...).

Suppose that x 6= 0 or, equivalently, ξp 6= 0 for some p ∈ N, p ≥ 1. Then,
taking r = (p + 1)−1, we have

‖(A/r)kx‖ ≥ |ξp|((p + 1)/p)k →∞ as k →∞,

conflicting with the definition of X∗
∞. Therefore X∗

∞ = {0} = Ker A∗.
Hence, from the Corollary 3.4, we have that the system (A,B, Ω) under
consideration is approximately controllable if Ω is defined by (3.14) and
is not approximately controllable if Ω is defined by (3.15).

Let A be now the left shift operator A : l2 → l2, A(ξ1, ξ2, ...) =
(ξ2, ξ3, ...). Assume that the operator B is as above and the control set
Ω is defined by (3.14). Then (3.7) and (3.8) are satisfied since cl span
{b1, Ab1, A

2b1, ...} = X and A∗ has no eigenvectors. However, the system
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(A,B, Ω) is not approximately controllable. Indeed, since Aib2 = 0, i =
1, 2, ..., we have that any vector x in R∞ can be written as

x = b2u2 +
k∑

i=1

Ak−ib1u1,i,

with some k ∈ N, u2 ∈ R and u1,i ≥ 0, i = 1, ..., k. Therefore, taking
f = (0,−1, 0, 0, ...) ∈ X∗ we verify that 〈f, x〉 ≤ 0, ∀x ∈ R∞. The reason
for which the approximate controllability fails is that in this case the
adjoint operator A∗ does not satisfy the (SSC) and, hence, the Theorem
3.2 does not apply. Indeed, we have Ker A∗i = {0}, ∀i ∈ N. On the
other hand, since σ(A∗) = {0}, it can be easily shown (by using the
Beurling-Gelfand spectral radius formula) that the set X∗

∞
∆= {f ∈ X∗ :

lim
k→∞

‖(A∗/r)kf‖ = 0, ∀r > 0} coincides with the whole space.

4. Approximate controllability of linear retarded systems

In this section we shall use the results obtained for linear discrete-
time systems in the previous section to examine the controllability of the
linear autonomous retarded functional differential equations (FDE) of the
general form

ż(t) = L(zt) + B0u(t), z(t) ∈ Rn,(4.1)

u(t) ∈ Ω ⊂ Rm,(4.2)

where B0 is a n ×m real matrix. We shall suppose that L is a bounded
linear functional from C = C(−h, 0,Rn) into Rn given by

L(ϕ) =

0∫

−h

dη(θ)ϕ(θ),

where η(·) is a n× n real matrix function of bounded variation such that
η(θ) = 0 for θ ≥ 0, η(θ) = η(−h) for θ ≤ −h and η is left-sided continuous
on (−h, 0). Ω is assumed to be a nonempty subset of Rm such that int co
Ω 6= ∅ and 0 ∈ Ω. For every T > 0, the set of admissible controls on [0, T ]
is defined as

Ω̃T = {u(.) ∈ Lp(0, T,Rm) : u(t) ∈ Ω a.e. t ∈ [0, T ]}.

The function space controllability for functional differential equations
(4.1) (with no restrictions on controls) has been studied during the last
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decade by many authors (see e.g., [1, 15, 16, 17, 24, 30]). One of the
most successfull approaches to this problem is based on the use of the
C0-semigroup theory in the state space Mp = Rn × Lp(−h, 0,Rn). For
details and further references on this topic, the reader is referred to [14]
and [30] where some verifiable criteria of approximate controllability for
general systems of type (4.1) are also given. The controllability of FDE
with restrained controls has been so far studied in only very few papers.
In [6], some conditions for exact controllability with positive controls to
the state space W 1

2 (−h, 0,Rn) are given. In [32] the author studied the
problem of approximate controllability to the state space C for the systems
(4.1)-(4.2) with Ω = {u ∈ Rm, ui ≥ 0, i = 1, ..., m}. Some criteria of
controllability are proved by using the analytic methods developed in [12].
In [5] a problem of exact null-controllability of linear delay systems has
been examined, provided that the control set Ω̃T contain 0 in its interior.

In this section, we investigate the approximate controllability with pos-
itive controls for (4.1)-(4.2) in the space Mp (1 < p < ∞). The choice
of the space is motivated by the existence of the well-developed theory of
FDE in this space (see [3, 14, 30]). The consideration of the retarded FDE
(4.1) as an abstract evolution equation generating a C0-semigroup in Mp

allows us to make a natural discretization for the solutions and to use the
controllability tests for discrete-time systems which have been established
in the previous section. This approach enables us to obtain the criteria of
controllability with restrained controls in a simple way. As a corollary, a
verifiable controllability criterion is obtained for the FDE, whose general-
ized eigenfunctions are complete. This criterion extends the results [4] to
the FDE.

We need some more notations, besides those introduced in Section 1.
The state space for the system (4.1) is denoted by X, X

∆= Mp = Rn ×
Lp(−h, 0,Rn), 1 < p < ∞. The element ϕ ∈ X will be denote by (ϕ0, ϕ1)
where ϕ0 ∈ Rn, ϕ1 ∈ Lp(−h, 0,Rn). X is a Banach space with the norm
‖ϕ‖ = ‖ϕ0‖Rn +‖ϕ1‖Lp . The symbol W 1

p will denote the Sobolev space of
absolutely continuous functions from (−h, 0) to Rn with the derivative in
Lp(−h, 0,Rn). We shall denote the system (4.1)-(4.2) briefly by (L,B0, Ω).
The transposed system

ż(t) = L+(zt) + B0u(t), z(t) ∈ Rn,

u(t) ∈ Ω ⊂ Rm,

where L+(ϕ) ∆=
0∫
−h

dη>(θ)ϕ(θ), will be denoted briefly by (L+, B0, Ω).
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The inner product in Rn is denoted by (., .)Rn .
We now recall some elements from theory of linear functional differen-

tial equations which will be used in this paper. It is well-known (e.g., [3])
that the homogeneous equation

(4.3) ż(t) = L(zt)

induces a strongly continuous semigroup {S(t), t ≥ 0} on X. Let A :
D(A) → X be the infinitesimal generator of S(t), then

D(A) = {ϕ ∈ X : ϕ̇1 ∈ W 1
p , ϕ1(0) = ϕ0},

Aϕ = (L(ϕ1), ϕ1) for ϕ ∈ D(A).

Let ∆(λ) be the characteristic matrix of (4.3), i.e.

∆(λ) = λI −
0∫

−h

dη(θ)eλθ.

Then the spectrum of the generator A is a point spectrum and given by
the selfconjugate set of zeros of det ∆(λ):

σ(A) = {λ ∈ C : det ∆(λ) = 0}.

For each eigenvalue λ ∈ σ(A), the eigenspace is given by

Ker (λI −A) = {(ϕ0, ϕ1) ∈ X : ∆(λ)ϕ0 = 0, ϕ1 = ϕ0eλθ, θ ∈ [−h, 0]}.

and the generalized eigenspace is Mλ
∆= Ker (λI − A)kλ , where kλ is the

multiplicity of λ. Let {S+(t), t ≥ 0} denote the C0-semigroup induced by
the transposed equation

ż(t) = L+(zt), z(t) ∈ Rn.

Then the corresponding generator A+ is given by

D(A+) = {ψ ∈ X∗ : ψ̇1 ∈ W 1
q , ψ(0) = ψ0},

A+ψ = (L+(ψ1), ψ1).

Clearly, σ(A+) = σ(A).
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We shall make use the notion of the structural operators F,G ∈ L(X)
associated with the homogeneous equation (4.3). They are defined as
follows (see, e.g. [14]) Given ϕ = (ϕ0, ϕ1) ∈ X, then

(Gϕ)1(θ) = X(h + θ)ϕ0 +

0∫

−h

X(h + θ + s)ϕ1(s)ds, θ ∈ [−h, 0],

(Gϕ)0 = (Gϕ)1(0),

where X(t) denotes the fundamental matrix of the equation (4.3), and

(Fϕ)0 = ϕ0,

(Fϕ)1(θ) ∆= (Hϕ1)(θ),

where the operator H : Lp(−h, 0,Rn) → Lp(−h, 0,Rn) is defined by

(Hϕ1)(θ) =

0∫

−h

dη(s)ϕ1(s− θ), θ ∈ [−h, 0].

It is important to notice that the adjoint operators F ∗ and G∗ are of
the same type as F and G, respectively, except for the transposition of
matrices. Further, by Proposition 3.1 in [14],

(4.4) Im G∗ = D(A+) and Ker G∗ = {0}.

The following relations between the structural operators will be used in
the sequel.

S(h) = GF, S+(h) = G∗F ∗, S∗(h) = F ∗G∗,(4.5)

S∗(t)F ∗ = F ∗S+(t), ∀t ≥ 0,(4.6)

S∗(t) = G∗−1S+(t)G∗, ∀t ≥ 0.(4.7)

Let us now consider the linear control system (L,B0, Ω) described by
(4.1)-(4.2). Let z(t) be a solution of (4.1) corresponding to some initial
condition z(0) = ϕ0, z(θ) = ϕ1, θ ∈ [−h, 0), ϕ = (ϕ0, ϕ1) ∈ X, and to
some control u(.) ∈ Lp(0, T,Rm). Then x(t) = (z(t), zt) is called the mild
solution of the abstract differential equation

ẋ(t) = Ax(t) + Bu(t), x(0) = ϕ, t ∈ [0, T ],
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and x(·) can be represented in the form

x(t) = S(t)x0 +

t∫

0

S(t− s)Bu(s)ds

where x0 = ϕ and B : Rm → X is a bounded linear operator defined as

Bu = (B0u, 0).

For a given T > 0, the reachable set in time T of the system (L,B0, Ω),
corresponding to ϕ = 0 ∈ X, is

RT =
{ T∫

0

S(T − t)Bu(t)dt, u(.) ∈ Ω̃T

}
.

We define
R∞ =

⋃
{RT , T > 0}.

We also consider the set of approximately null-controllable states in time
T ,

CT = {ϕ ∈ X : −S(T )ϕ ∈ cl RT },
and we set

C∞ =
⋃
{CT , T > 0}.

Definition. The system (L,B0, Ω) is said to be approximately control-
lable if cl R∞ = X and approximately null-controllable if C∞ = X.

In what follows we shall frequently make use of properties of the reach-
able set. Some of them are collected in the following

Lemma 4.1.The reachable set of (L,B0, Ω) has the following properties:
(i) cl RT is convex and cl RT remain unchanged when one replaces Ω by
cl co Ω; (ii) cl RT1 ⊂ cl RT2 when T1 ≤ T2 and, hence, cl R∞ is also convex;
(iii) R∞ is invariant under the semigroup S(t), i.e.

(4.8) S(t)R∞ ⊂ R∞, ∀t ≥ 0;

(iv) If Ω = Rm then there exists T1 ≤ (n + 1)h such that

(4.9) cl R∞ = cl Rt, ∀t ≥ T1.
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Proof. Properties (i)-(iii) have been proved in [7] and [13]. The property
(iv) has been proved in [30] for a class of systems more general than (4.1).

In order to establish a criterion of approximate controllability for
(L,B0, Ω), we shall to construct a linear discrete-time system, which is
equivalent to the retarded system (L, B0, Ω). Let denote U = Lp(0, h,Rm).
Elements of U will be denoted by u(.) or simple by u. We define the op-
erator

A : X → X, Ax = S(h)x,

B : U → X, Bu =

h∫

0

S(h− θ)Bu(θ)dθ,

and the control set

Ω̃ ∆= Ω̃h = {u ∈ U : u(t) ∈ Ω a.e. t ∈ [0, h]},
c̃oΩ = {u ∈ U : u(t) ∈ clcoΩ a.e. t ∈ [0, h]}.

We note that A is a compact operator, by Proposition 4.1 in [3]. Moreover,
from Lemma 4.1 it follows that cl BΩ̃ is convex and

(4.10) cl BΩ̃ = cl B c̃o Ω.

Now, consider the linear discrete-time system (A,B, Ω̃)

xk+1 = Axk + Buk, xk ∈ X

uk ∈ Ω̃.

We say that (A,B, Ω̃) is associated with (L,B0,Ω). The reachable ser of
(A,B, Ω̃) in time k is: Rd

k = {0} for k = 0 and, for k ≥ 1,

Rd
k =

k∑

i=1

Ak−iBΩ̃.

Let us denote Rd
∞ =

⋃{Rd
k, k ∈ N}. Using the transitive property of S(t)

it is easy to show the following

Lemma 4.2. For every k ∈ N

Rkh = Rd
k,
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(where Rkh denotes the reachable set of the system (L,B0,Ω) in time
T = kh).

For the case when Ω = Rm (or, equivalently, Ω̃ = U), from (4.9) and
Lemma 4.2 it follows that cl R∞ = cl Rd

∞ = cl Rd
n+1, which is equivalent

to

(4.11) cl span {AU,ABU, ...} = cl span {BU,ABU, ...,AnBU}.

In [11] it has been shown that any solution of a linear autonomous
retarded FDE (4.3) (in the state space C) which tends to zero more
rapidly than any exponential must vanish in finite time, not exceeding
nh. Since every solution will be in the state space C after the time t = h,
the mentioned result is also valid in the space Mp, where it reads: if
lim

t→∞
eωt‖S(t)ϕ‖ = 0, ∀ω > 0 then ϕ ∈ KerS(t0), for some t0 ≤ (n + 1)h.

This implies that the operator A = S(h) satisfies the small solution con-
dition (SSC) defined in Section 3 of this paper. The analogous prop-
erty is certainly valid for A+ ∆= S+(h) which read: there exists j ∈ N,
j ≥ (n + 1)h such that

X+
∞

∆= {f ∈ X : lim
k→∞

‖(A+/r)kf‖ = 0, ∀r > 0} = Ker (A+)j .

Lemma 4.3. For the discrete-time system (A,B, Ω̃) associated with the
system (L,B0, Ω), the adjoint operator A∗ satisfies the small solution con-
dition.

Proof. Since, obviously, Ker (A∗)i ⊂ X∗
∞ = {f ∈ X∗ : lim

k→∞
‖(A∗/r)kf‖ =

0, ∀r > 0}, ∀i ∈ N, it suffices to show that the inverse inclusion holds
for some j ∈ N. As shown in [14] (Corollary 3.4) there exist a bounded
invertible operator V ∈ L(X∗) such that

(A∗)k = V −1(A+)kV, ∀k ∈ N.

Taking any f ∈ X∗
∞ and denoting g = V f , we have, for every r > 0 and

k ∈ N,

‖(A+/r)kg‖ = ‖(A+/r)kV f‖ = ‖V (A∗/r)kf‖ ≤ ‖V ‖ ‖(A∗/r)kf‖.

Since A+ satisfies the (SSC), the above inequality shows that g ∈ X+
∞ and,

hence, g = V f ∈ Ker (A+)j , since A+ satisfies (SSC). Thus, we obtain
(A∗)jf = V −1(A+)jV f = 0, and so X∗

∞ ⊂ Ker (A∗)j , as required.
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This result combining with (4.10) and (4.11), yields the following.

Lemma 4.4. Let Ω be a cone in Rm such that int co Ω 6= ∅. The discrete-
time system (A,B, Ω̃) associated with the FDE (L,B0,Ω) is approximately
controllable if and only if

(4.12) ∃k ≥ n + 1 : Im A∗ ⊂ cl span {BU,ABU, ...,Ak−1BU},

and
Ker (λI∗ −A∗) ∩ (BΩ̃)0 = {0}, ∀λ ≥ 0.

Proof. Put U1 = L∞(0, h,Rm) and Ω̃1 = {u(.) ∈ U1 : u(t) ∈ cl co Ω} a.e.
t ∈ [0, h]. Then, clearly, Ω̃1 has nonempty interior in U1 and cl U1 = U ,
cl Ω̃1 = c̃oΩ (the closure is taken in the topology of U). The assertion is
now immediate from Theorem 3.2 and Remark 3.3 of the previous section.

We note that the condition (4.12) means that the system (A,B, Ω̃) is
approximately null-controllable in time k. Turning to the continuous time
system (L,B0, Ω) we first note that from Lemma 4.2 it follows obviously

Lemma 4.5. The retarded FDE (L,B0, Ω) is approximately controllable
(respectively, approximately null-controllable in time T = kh) iff the as-
sociated discrete-time system (A,B, Ω) is approximately controllable (re-
spectively, approximately null-controllable in time k).

Therefore, Theorem 3.3 gives the criterion for approximate controlla-
bility of (L,B0, Ω) which we can reformulate as follows.

Theorem 4.6. Let Ω be a cone in Rm such that int co Ω 6= ∅. The
retarded FDE (L,B0, Ω) is approximately controllable if and only if

(i) The corresponding system with no restrictions on controls (L, B0,Rm)
is approximately null-controllable in some time t ≥ (n + 1)h,

(ii)

(4.13) Ker S∗(h) ∩ (BΩ̃)0 = {0},

(iii)

(4.14) Ker (λI∗ − S∗(h) ∩ (BΩ̃)0 = {0}, λ > 0.

The remainder of this section is devoted to translating the above ab-
stract controllability conditions into those expressed in terms of the orig-
inal system matrices.
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First, it is well-known ([26], [30]) that the condition (i) is equivalent to
the condition of spectral controllability

rank (∆(λ), B0) = n, ∀λ ∈ C.

To deal with the conditions (ii) and (iii) we introduce the following
operator D : U → X,

(Du)0 = 0,

(Du)1(θ) = B0u(−θ), −h ≤ θ ≤ 0,

for u ∈ U . The adjoint operator D∗ : X∗ → U∗ is given by

(D∗φ)(θ) = B>
0 φ1(−θ), 0 ≤ θ ≤ h.

It can be easily verified that

B = GD,

where G is the structural operator defined as above (see, e.g. [31]). There-
fore, from the definition of the negative polar cone, we have

(4.15) ϕ ∈ (BΩ̃)0 ⇔ G∗ϕ ∈ (DΩ̃)0.

The following lemma gives the characterization for (DΩ̃)0.

Lemma 4.7.Suppose Ω is a closed cone in Rm. Given a vector g =
(g0, g1) ∈ X∗, we have

g ∈ (DΩ̃)0 ⇔ (g1(θ), B0u)Rn ≤ 0 a.e. θ ∈ [−h, 0], ∀u ∈ Ω.

Proof. From the definition of D, g ∈ (DΩ̃)0 if and only if

0∫

−h

(g1(θ), B0u(−θ))Rndθ ≤ 0, ∀u(.) ∈ Ω̃.
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Therefore it suffices to show that the implication “ ⇒ ” holds. Suppose
to the contrary that there exists δ > 0 such that the set

Eδ = {θ ∈ [−h, 0] : ∃vδ ∈ Ω, (g1(θ), B0vδ)Rn ≥ δ}

is of positive measure: µEδ > 0. Define, for θ ∈ Eδ,

K(θ) = {v ∈ S1 ∩ Ω : (g1(θ), B0v)Rn ≥ δ},

where S1 is the unit ball in Rm. Since Ω is a cone, K(θ) is nonempty for
every θ ∈ Eδ. Thus, K has nonempty compact values and is measurable.
By Theorem 1.7.7 in [34] (due to von Neumann-Aumann-Castaing) there
exists a measurable selection vδ(θ) ∈ K(θ), θ ∈ Eδ. Define

v(θ) =
{

vδ(θ), θ ∈ Eδ,

0, θ ∈ [−h, 0] \ Eδ,

and û(θ) = v(−θ), θ ∈ [0, h]. We observe that û ∈ Ω̃ and

0∫

−h

(g1(θ), B0û(−θ))Rndθ =
∫

Eδ

(g1(θ), B0vδ(θ))Rndθ ≥ δµEδ > 0,

which means that g does not belong to (DΩ̃)0, concluding the proof.

We now prove the main result of this section.

Theorem 4.8. Let Ω be a cone in Rm such that int co Ω 6= ∅. The retarded
functional differential equation (L, B0, Ω) is approximately controllable if
and only if

(i)1 rank (∆(λ), B0) = n, ∀λ ∈ C,

(ii)1 There exists no nonzero vector φ ∈ Lq(−h, 0,Rn) such that

(H∗φ)(θ) =

0∫

−h

dη>(s)g1(s− θ) = 0, θ ∈ [−h, 0]

and

(4.16) (φ(θ), B0u)Rn ≤ 0 a.e. θ ∈ [−h, 0], ∀u ∈ Ω,
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(iii)1 There exists no nonzero vector ϕ0 ∈ Rn such that ∆>(λ)ϕ0 = 0
for some λ ∈ R and

(ϕ0, Bu)Rn ≤ 0, ∀u ∈ Ω.

Proof. It suffices to show that the conditions (ii)1 and (iii)1 of Theorem
4.8 are equivalent, respectively, to the conditions (ii) and (iii) of Theorem
4.6. In view of Lemma 4.1, we can assume without loss of generality that
Ω is closed and convex. Then, by Lemma 4.7, (ii)1 is equivalent to the
condition

(4.17) Ker F ∗ ∩ (DΩ̃)0 = {0},

where F is the structural operator defined as above. Further, if ϕ0 ∈
Rn satisfies (iii)1 then the function ϕ = (ϕ0, ϕ1), ϕ1(θ) = ϕ0eλθ, θ ∈
[−h, 0] is an eigenfunction of A+, i.e. ϕ ∈ Ker (λI∗ − A+), and, clearly,
(ϕ1(θ), B0u)Rn ≤ 0, ∀u ∈ Ω, ∀θ ∈ [−h, 0]. Therefore, by Lemma 4.7,
ϕ ∈ (DΩ̃)0. The converse is also true. In other words, (iii)1 is equivalent
to the condition

(4.18) Ker (λI∗ −A+) ∩ (DΩ̃)0 = {0}, ∀λ ∈ R.

Consequently, the proof of the theorem is reduced to showing that (4.17)
is equivalent to (4.13) and (4.18) is equivalent to (4.14).

(4.13) ⇔ (4.17) : Suppose that there exists a nonzero f ∈ X∗ f ∈
KerS∗(h) ∩ (BΩ̃)0. Then taking g = G∗f we have g 6= 0 since G∗ is
injective, and F ∗g = F ∗G∗f = S∗(h)f = 0, by (4.5). Further, in view
of (4.15), f ∈ (BΩ̃)0 implies G∗f ∈ (DΩ̃)0. Hence, g ∈ KerF ∗ ∩ (DΩ̃)0.
Conversely, let there exist a nonzero g ∈ X∗ such that F ∗g = 0 and
g ∈ (DΩ̃)0. Then, we have g = (0, g1), g1 ∈ Lq(−h, 0,Rn), g1 6= 0, and

(H∗g1)(θ) =

0∫

−h

dη>(s)g1(s− θ) = 0, θ ∈ [−h, 0].

Define

ϕ1(θ) =

0∫

θ

g1(s)ds, θ ∈ [−h, 0],



APPROXIMATE CONTROLLABILITY 613

and set ϕ = (0, ϕ1). Then, clearly, ϕ ∈ D(A+) and ϕ 6= 0. Moreover,
it can be verified that ϕ ∈ KerF ∗ (see the proof of Theorem 1 in [16]).
Further, since g ∈ (DΩ̃)0, in view of Lemma 4.7, we have

(ϕ1(θ), B0u)Rn =

0∫

θ

(g1(s), B0u)Rnds ≤ 0, ∀u ∈ Ω,

which implies, again by Lemma 4.7 that ϕ ∈ (DΩ̃)0. Next, since ϕ ∈
D(A+), there exists, by (4.4), a nonzero ψ ∈ X∗ such that ϕ = G∗ψ.
Therefore, we obtain, by (4.5), that S∗(h)ψ = F ∗G∗ψ = F ∗ϕ = 0 and
ϕ = G∗ψ ∈ (DΩ̃)0. This gives ψ ∈ KerS∗(h)∩(BΩ̃)0, as was to be shown.

(4.14) ⇔ (4.18) : Suppose that there exists a nonzero f ∈ X∗ such that
S∗(h)f = λf , λ > 0 and f ∈ (BΩ̃)0. Then, clearly, f ∈ (S(h)kBΩ̃)0,
∀k ∈ N. On the other hand, by Lemma 4.2, we have R∞ = Rd

∞ =
⋃{Rd

k, k ∈ N}, where Rd
k =

k∑
i=1

S(h)k−iBΩ̃. Therefore f ∈ R0
∞. Put

γ = (1/h) ln λ, we have
S∗(h)f = eγhf.

Let us define an element g ∈ X∗ by

〈g, x〉 =

h∫

0

〈f, e−γθS(θ)x〉dθ, ∀x ∈ X.

Then, clearly, f 6= 0. Besides, by (4.8), it follows that g ∈ R0
∞. In

particular, g ∈ (BΩ̃)0. Further, for any x ∈ X and t ≥ 0, we have

〈S∗(t)g, x〉 =

h∫

0

〈f, e−γθS(θ + t)x〉dθ

= eγt
( h∫

t

〈f, e−γθS(θ)x〉dθ +

h+t∫

h

〈f, e−γθS(θ)x〉dθ
)

= eγt
( h∫

t

〈f, e−γθS(θ)x〉dθ +

t∫

0

〈S∗(h)f, e−γ(θ+h)S(θ)x〉dθ
)
.

Hence we have
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〈S∗(t)g, x〉 = eγt

h∫

0

〈f, e−γθS(θ)x〉dθ = eγt〈g, x〉,

which implies S∗(t)g = eγtg, ∀t ≥ 0.
Therefore, by (4.7), S∗(t)g = G∗−1S+(t)G∗g = eγtg and consequently,

S+(t)G∗g = eγtG∗g, ∀t ≥ 0. Denote ϕ = G∗g. Then, by (4.4), ϕ 6= 0 and
ϕ ∈ D(A+). Hence A+ϕ = γϕ. Thus, we have found a nonzero ϕ ∈ X∗

such that ϕ ∈ Ker (γI∗ −A+) ∩ (DΩ̃)0.
Conversely, let there exist a nonzero ϕ ∈ X∗ such that A+ϕ = γϕ,

γ ∈ R and ϕ ∈ (DΩ̃)0. Since ϕ ∈ D(A+, by (4.4), we can find a nonzero
ψ ∈ X∗ such that G∗ψ = ϕ. We have S+(h)ϕ = S+(h)G∗ψ = eγhG∗ψ
and hence, by (4.7), S∗(h)ψ = λψ, with λ = eγh > 0. Furthermore,
ϕ = G∗ψ ∈ (DΩ̃)0 implies, by (4.15), ψ ∈ (BΩ̃)0. Thus ψ ∈ Ker (λI∗ −
S∗(h)) ∩ (BΩ̃)0. This completes the proof of the theorem.

We note that the above result is stronger than Theorem 4.3 in [23]
because it gives us a necessary and sufficient condition of approximate
controllability without imposing the condition that the homogeneous FDE
(4.3) is complete.

We consider some corollaries of the above theorem. First, notice that
if Ω = Rm then, obviously, the condition (iii)1 is included in the condi-
tion (i)1. Moreover, in this case, (DΩ̃)0 = Ker D∗ and, hence, (4.17) (or
equivalently, (ii)1) is equivalent to that Ker F ∗∩ Ker D∗ = {0}. Therefore,
Theorem 4.8 yields the following known result due to Manitius [16] and
Salamon [31].

Corollary 4.9. The retarded system with unconstrained controls
(L,B0,Rm) is approximately controllable to Mp if and only if

(i)2 rank (∆(λ), B0) = n, ∀λ ∈ C,

(ii)2 Ker F ∗∩ Ker D∗ = {0}.
It worths noticing that the above result can not be derived from The-

orem 4.3 in [23]. Next, we say that the FDE (4.3) is complete if the
generalized eigenfunctions of the corresponding generator A forms a com-
plete set in the state space Mp, i.e. cl span {Mλ, λ ∈ σ(A)} = Mp. It
is known (e.g. [14]) that the completeness is equivalent to the condition
KerH∗ = {0}. Therefore, for the complete system, the condition (ii)1 is
automatically satisfied, and we obtain

Corollary 4.10. Let the FDE ż = L(zt) be complete. Then the system
(L,B0, Ω) is approximately controllable iff the conditions (i)1 and (iii)1 of
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Theorem 4.8 are satisfied.

In particular, if L(zt) = A0z(t), where A0 is n × n real matrix, then
∆(λ) = λI−A0. In this case, the condition (i)1 is equivalent to the Kalman
rank condition rank B0, A0B0, ..., A

n−1
0 B0} = n and (iii)1 reads: there

exists no real eigenvector of A>0 supporting B0Ω at the origin. Therefore,
Corollary 4.10 can be considered as an extension of the result of [4] to
linear autonomous retarded systems.

The completeness of the retarded FDE has been studied in [8] and [14]
where some verifiable criteria for this property are given.

We assume now that η is of the form

(4.19) η(θ) = −A0χ(−∞,0)(θ)−
N∑

i=1

Aiχ(−∞,−hi)(θ)−
0∫

θ

A01(α)dα,

where χI denotes the characteristic function of the set I,Ai are n×n real
matrices, A01(.) ∈ Lp(−h, 0,Rn×n) and 0 = h0 < h1 < ... < hN = h. In
this case, the system (L,B0,Ω) has the form

(4.20) ż(t) = A0z(t) +
N∑

i=1

Aiz(t− hi) +

0∫

−h

A01(α)z(t + α)dα + B0u,

(4.21) u(t) ∈ Ω ⊂ Rm.

Then, the null space Ker H∗ is given by the set of all functions φ ∈
Lq(−h, 0,Rn) satisfying the equation

(4.22)
N∑

i=1

A>i φ(−θ − hi)χ[hi,0](θ) +

θ∫

−h

A>01(α)φ(α− θ)dα = 0

a.e. θ ∈ [−h, 0], see [8].

Theorem 4.11. Consider the system (4.20)-(4.21). Let Ω be a cone with
int co Ω 6= ∅. Suppose, in addition, that A01(α) ≡ 0 in [−h,−h + ε) for
some ε > 0. Then the system is approximately controllable if and only if

(i)3 rank (∆(λ), B0) = n, ∀λ ∈ C,

(ii)3 There exists no nonzero vector φ ∈ Rn such that

(4.23) A>Nφ = 0 and (φ0, B0u)Rn ≤ 0, ∀u ∈ Ω,
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(iii)3 There exists no nonzero vector ϕ0 ∈ Rn such that ∆>(λ)ϕ0 for
some λ ∈ R and (ϕ0, B0u)Rn ≤ 0, ∀u ∈ Ω.

Proof. It suffices to show that (ii)1 implies (ii)3. Indeed, if there exists
a nonzero vector φ0 ∈ Rn satisfying (4.23) then, setting θ0 = min{ε, h1}
and

φ(θ) =
{

φ0, θ ∈ [−h,−h + θ0]
0, θ ∈ (−h + θ0, 0]

we readily verify that φ is an element in Ker H∗ (given by (4.23)) satisfying
(4.16).

Therefore, in particular, we obtain

Corollary 4.12. For differential-difference system (i.e. when η is given
by (4.19) with A01 ≡ 0, θ ∈ [−h, 0]), the conditions (i)3-(iii)3 are necessary
and sufficient for approximate controllability.

Note that for differential-difference systems, the characteristic matrix
has the form

∆(λ) = λI −
N∑

i=0

Aie
−λhi .

Finally, consider the differential-difference system with a single positive
input (L, b,R1

+)

ż(t) = A0z(t) +
N∑

i=1

Aiz(t− hi) + bu, u ≥ 0.

We observe that for any nonzero vector y ∈ Rn, either y order −y belongs
to the negative polar cone of the ray {bu, u ≥ 0}. Therefore, in this case,
the condition (ii)3 is equivalent to

(4.24) det AN 6= 0

and the condition (iii)3 is equivalent

det ∆(λ) 6= 0, ∀λ ∈ R.

As has been shown in [14], (4.24) is a necessary and sufficient condition
of completeness of differential difference equations. Thus, we obtain

Corollary 4.13. Differential-difference system (L0, b,R1
+) is approxi-

mately controllable iff

(i)4 rank (∆(λ), b) = n, ∀λ ∈ C,
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(ii)4 det AN 6= 0,

(iii)4 The characteristic polynom det ∆(λ) has no real zeros.

We illustrate the results by two simple examples.

Example 1. Consider two-dimensional system with two delays h1 = 1,
h2 = 2. Let

A0 =
(

0 −1
1 0

)
, A1 =

(−1 0
0 1

)
, A2 =

(
0 −1
0 0

)
, B0 =

(
1 0
0 1

)
.

We have

∆(λ) =
(

λ + e−λ 1 + e−2λ

−1 1− e−λ

)
,

det ∆(λ) = λ2 + 1. Therefore, this system satisfies the condition (i)3
and (iii)3. Since any vector φ0 in R2 satisfying A>2 φ0 = 0 has the form
φ0 = γ(0 1)>, γ ∈ R, the condition (ii)3 fails if

(4.25) Ω =
{(

u1

u2

)
: u1 ≥ 0, u2 ≥ 0

}
,

but is satisfied if we take, for example,

Ω =
{(

u1

u2

)
: u1 ≥ |u2|, u2 ∈ R

}
,

Thus, by Corollary 4.12, we obtain that the system is not approximately
controllable (to Mp) with the positive controls u1 ≥ 0, u2 ≥ 0, but is
approximately controllable with the controls u1 ≥ 0 and u2 ∈ R satisfying
u1 ≥ |u2|.

Let now A2 depend of a parameter α :

A2(α) =
(

0 −1
0 α

)
, α ∈ R.

The vectors φ0, satisfying the equation A>2 (α)φ0 = 0, have the form φ0 =
γ(α 1)>, γ ∈ R. Therefore, for the set of positive controls (4.25), the
conditions (ii)3 is satisfied for every α < 0 and fails whenever α ≥ 0.
Computation det∆α(λ) gives

det ∆α(λ) = λ2 − αλ + 1− αe−λ.
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One can easily verify that, for α < 0, det ∆α(λ) > 0, ∀λ ∈ R, and hence
(iii)3 is also satisfied. Consequently, the system (with the matrix A2(α))
is approximately controllable with positive controls (4.25) for all α < 0,
but is not approximately controllable whenever α ≥ 0.

Example 2. Consider a two-dimensional system with one delay h = 1
and a single input u ∈ R1. Let

A0 =
(

1 0
0 2

)
, A1 =

(−1 0
0 1

)
, B0 = b =

(
1

3 + α

)
.

We have det ∆(λ) = λ2 − 3λ − e−λ − e−2λ + 2 and det ∆(λ) has 0 as
the only real zero. As pointed out in [15], this system is approximately
controllable with controls u ∈ R for every α 6= 0. This system is how-
ever not approximately controllable with positive controls u ≥ 0 since the
condition (iii)4 of Corollary 4.13 is not satisfied: det ∆(0) = 0. Let take
now

B0 =
(

1 0
3 + α 1

)
, and Ω =

{(
u1

u2

)
: u1 ≥ 0, u2 ≥ 0

}
.

We have ∆(0) =
(
0 −1
0 −3

)
and, hence, the vectors ϕ0 satisfying the equation

∆>(0)ϕ0 = 0 have the form ϕ0 = γ(−3 1)>, γ ∈ R. Consequently, (iii)4
is satisfied. Since (i)4 and (ii)4 also hold, we conclude that in this case the
system is approximately controllable.
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