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P -ADIC HYPERBOLIC SURFACES

HA HUY KHOAI

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

1. Introduction

A holomorphic curve in a projective variety X is said to be degenerate
if it is contained in a proper algebraic subset of X. In 1979 M. Green and
Ph. Griffiths [GG] conjectured that every holomorphic curve in a complex
projective variety of general type is degenerate. Up to now this conjecture
seems still far from being proved, but some progress have been made. M.
Green [G] proved the degeneracy of holomorphic curves in the Fermat
variety of large degree. To obtain the mentioned results, M. Green used
the Nevanlinna theory for holomorphic curves. In [N] A. M. Nadel gave a
class of projective hypersurfaces for which the conjecture is valid. Using
the results on degeneracy of holomorphic curves Nadel constructed some
explicit examples of hyperbolic hypersurfaces in P3. Nadel’s techniques
are based on Siu’s theory of meromorphic connections. We refer the reader
to the survey [Z2] for related topics.

For the p-adic case, the degeneracy of holomorphic curves in the Fermat
variety of large degree is established in [HM]. In this note we are going to
show that if X is a pertubation of the Fermat variety in Pn(Cp) of degree
large enough with respect to n and to the number of non-zero coefficients
in the defining equation, then every holomorphic curve in X is degenerate.
The proof provides sufficiently precise information on the position of the
curve in X, which will be useful for applications. As a consequence, we
give some explicit examples of p-adic hyperbolic surfaces in P3(Cp) and of
curves in P2(Cp) with hyperbolic complements, and also explicit examples
of hyperbolic surfaces with hyperbolic complements. Recall that a variety
X is said to be p-adic hyperbolic if every holomorphic map from Cp into
X is constant. These examples are different to the ones of [HM], which
were given by using the p-adic Nevanlinna-Cartan theorem. While the de-
gree of surfaces in [HM] as well as in all known explicit examples of complex
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hyperbolic surfaces is divided by some integer > 1, the degree d of the
examples of this note is required only to be not less than 24 for hyperbolic
surfaces and curves with hyperbolic complements or not less than 50 for
hyperbolic surfaces with hyperblic complements. As in [HM] the main tool
of this note is the height function defined in [H1]-[H3], [HM]. This function
plays a role similar to the one of the Nevanlinna characteristic function in
Green’s arguments. Moreover, the height of a p-adic holomorphic function
f(z) gives information on the distribution of zeros of f and describes the
growth of |f(z)|. In many cases we can use the height in the study of
p-adic holomorphic functions such as the degree in the study of complex
polynomials. The proof of Lemma 3.2 is such an example.

The paper is planned as follows. In §2 we recall some facts on heights
of p-adic holomorphic functions and of p-adic holomorphic curves. Sec-
tion 3 is devoted to the proof of the degeneracy of holomorphic curves
in perturbations of the Fermat variety. These results are used in the last
section to give explicit examples of p-adic hyperbolic surfaces in P3(Cp),
curves with hyperbolic complements in P2(Cp), and hyperbolic surfaces
with hyperbolic complements in P3(Cp).

2. Height of p-adic holomorphic functions

We recall some facts on heights of p-adic holomorphic functions for
later use in this note. More details can be found in [H1]-[H3], [HM].

Let p be a prime number, Qp the field of p-adic numbers, and Cp the
p-adic completion of the algebraic closure of Qp. The absolute value in
Qp is normalized so that |p| = p−1. We further use the notion v(z) for the
additive valuation on Cp which extends ordp.

Let f(z) be a p-adic holomorphic function on Cp represented by a
convergent series

f(z) =
∞∑

n=0

anzn.

Since we have
lim

n→∞
{v(an) + nv(z)} = ∞

for every z ∈ Cp, it follows that for every t ∈ R there exists an n for which
v(an) + nt is minimal.

Definition 2.1. The height of f(z) is defined by

h(f, t) = min
0≤n<∞

{v(an) + nt}.
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Now let us give a geometric interpretation of height. For each n we draw
the graph Γn which depicts v(anzn) as a function of v(z). This graph is a
straight line with slope n. Then h(f, t) is the boundary of the intersection
of all of the half-planes lying under the lines Γn. In any finite segment
[r, s], 0 < r, s < +∞, there are only finitely many Γn which appear in
h(f, t). Thus, h(f, t) is a polygonal line. The point t at which h(f, t) has
vertices is called the critical point of f(z). A finite segment [r, s] contains
only finitely many critical points. It is clear that if t is a critical point,
then v(an) + nt attains its minimum at least at two values of n.

If v(z) = t is not a critical point, then f(z) 6= 0 and |f(z)| = p−h(f,t).
The function f(z) has zeros when v(z) = ti, where to > t1 > . . . is the
sequence of critical points; and the number of zeros (counting multiplicity)
for which v(z) = ti is equal to the difference ni+1 − ni between the slope
of h(f, t) at ti − 0 and its slope at ti + 0. It is easy to see that ni and
ni+1, respectively, are the smallest and the largest values of n at which
v(n) + nt attains minimum.

Lemma 2.2. Let f(z) be a non-constant holomorphic function on Cp.
Then for t sufficiently small we have

h(f ′, t)− h(f, t) ≥ −t.

Lemma 2.3. For a non-constant holomorphic function f(z) in Cp,
h(f, t) −→ −∞ as t → −∞.

Lemma 2.4. For holomorphic functions f(z), g(z) in Cp we have
(i) h(f + g, t) ≥ min{h(f, t), h(g, t)}.
(ii) h(fg, t) = h(f, t) + h(g, t).

The proofs of Lemmas 2.2-2.4 follow immediately from Definition 2.1
and the geometric interpretation of height.

Now let f be a p-adic holomorphic curve in the projective space Pn(Cp),
i.e., a holomorphic map from Cp to Pn(Cp). We identify f with its rep-
resentation by a collection of holomorphic functions on Cp:

f = (f1, f2, . . . , fn+1),

where the functions fi have no common zeros.

Definition 2.5. The height of the holomorphic curve f is defined by

h(f, t) = min
1≤i≤n+1

h(fi, t).
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We need the following lemma.

Lemma 2.6. Let (g1, . . . , gn+1) be a representation of the same projective
map as (f1, . . . , fn+1), where gi are holomorphic functions. Then

h(f, t) = min
1≤i≤n+1

h(gi, t) + C,

where C is a constant.

Proof. By the hypothesis there is a meromorphic function λ(z) such that
for every i = 1, . . . , n + 1 we have

gi(z) = λ(z)fi(z).

Since gi(z) are holomorphic functions, and fi(z) have no common zeros, λ
is a holomorphic function. Then by Lemma 2.3, h(λ, t) < 0 for t sufficiently
small, or λ(z) is constant. Lemma 2.6 is proved.

From Lemma 2.6 we can see that the height of a holomorphic curve is
well defined modulo a bounded value.

3. Degeneracy of holomorphic curves

Let
Mj = z

αj,1
1 . . . z

αj,n+1
n+1 , 1 ≤ j ≤ s,

be distinct monomials of degree d with non-negative exponents. Let X be
a hypersurface of degree d of Pn(Cp) defined by

X : c1M1 + · · ·+ csMs = 0,

where cj ∈ C∗
p are non-zero constants. We call X a perturbation of the

Fermat hypersurface of degree d if s ≥ n + 1 and

Mj = zd
j , j = 1, . . . , n + 1.

Theorem 3.1. Let X be a perturbation of the Fermat hypersurface of
degree d in Pn(Cp) and let f be a holomorphic curve in X. Assume that

d ≥ (n + 1)(s− 1)(s− 2)
2

.

Then the image of f lies in a proper algebraic subset of X.
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If there is fi ≡ 0, then f is degenerate, and we can assume that any
fi 6≡ 0. The proof of Theorem 3.1 uses the following lemmas.

Lemma 3.2. Let f = (f1, . . . , fn+1) be a holomorphic curve and let M
be a monomial as above. Then for every k ≥ 0 we have the following
representation

(M ◦ f)(k)

M ◦ f
=

Qk

fk
1 . . . fk

n+1

,

where Qk is a holomorphic function and

h(Qk, t) ≥ k

n+1∑

i=1

h(fi, t)− kt

for t sufficiently small.

Proof. We use induction on k. The case k = 0 is trivial. Assume that
Lemma 3.2 holds for k. For simplicity we set

(1) ϕ = f1 . . . fn+1.

Then we have

h(ϕ, t) =
n+1∑

i=1

h(fi, t).

The induction hypothesis gives

(M ◦ f)(k) =
Qk.M ◦ f

ϕk
.

Then we have
(M ◦ f)(k+1)

M ◦ f
=

Qk+1

ϕk+1
,

where

Qk+1 = ϕ.Q′k + ϕ.Qk.
(M ◦ f)′

M ◦ f
− kQk.ϕ′.

Note that the function
(M ◦ f)′

(M ◦ f)
has only simple poles at the zeros of

f1, . . . , fn+1. Therefore, the function ϕ.
(M ◦ f)′

(M ◦ f)
is holomorphic. Hence,

Qk+1 is a holomorphic function.
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On the other hand, by Lemmas 2.3 and 2.4,

h(Qk+1, t) ≥min
{
h(ϕ, t) + h(Q′

k, t),

h(ϕ, t) + h(Qk, t) + h((M ◦ f)′, t)− h(M ◦ f, t),

v(k) + h(Qk, t) + h(ϕ′, t)
}
.

Then by Lemma 2.2 we obtain

h(Qk+1, t) ≥min
{
h(ϕ, t) + h(Qk, t)− t, h(ϕ, t) + h(Qk, t)− t,

v(k) + h(Qk, t) + h(ϕ, t)− t
}

(2)

= h(ϕ, t) + h(Qk, t)− t.

The conclusion for k + 1 follows from (1), (2) and the induction hy-
pothesis for k.

Notice that the representation in Lemma 3.2 does not depend on the
degree d. This fact is important for applications.

Lemma 3.3. Let X be a perturbation of the Fermat hypersurface of degree
d in Pn(Cp) and let f be a holomorphic curve in X. Assume that

d ≥ (n + 1)(s− 1)(s− 2)
2

.

If {Mj ◦f, j = 1, . . . , s−1} are linearly independent, then f is a constant
map.

Proof. For simplicity we set

gj(z) = cjMj ◦ f(z)/csMs ◦ f, j = 1, . . . , s− 1.

Then the meromorphic functions {g1, . . . , gs−1} satisfy the following rela-
tion:

g1 + · · ·+ gs−1 ≡ −1.

We are going to show that {g1, . . . , gs−1} are linearly dependent. For this
purpose we apply the Wronskian techniques of Nevanlinna, Bloch, Cartan
[C],(see also [L], Ch. VII).

Define the following logarithmic Wronskian:
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Ls(g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

g′1
g1

g′2
g2

. . .
g′s−1

gs−1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

g
(s−2)
1

g1

g
(s−2)
2

g2
. . .

g
(s−2)
s−1

gs−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and the logarithmic Wronskians Li = Li(g1, . . . , gs−1) by

L1(g) = L1(g1, . . . , gs−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

0
g′2
g2

. . .
g′s−1

gs−1

. . . . . . . . . . . . . . . . . . . . . .

0
g
(s−2)
2

g2
. . .

g
(s−2)
s−1

gs−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and similarly for all i = 2, . . . , s− 1, where the column {1, 0, . . . , 0} is the
i-th column.

If {g1, . . . , gs−1} are linearly independent, then the projective maps

(M1 ◦ f, . . . ,Ms ◦ f) and L = (L1, L2, . . . , Ls)

are equal (see [L]).
Now we can apply Lemma 3.2 to the determinants. Typically, the first

term in the expansion of L1(g) can be written in the form

Q1 . . . Qs−2

ϕ . . . ϕs−2
=

R

ϕ(s−1)(s−2)/2
.

The denominator ϕ(s−1)(s−2)/2 is a common denominator of all the
terms in all the expansions of all the determinants Li(g). Hence, we have
an equality of projective maps:

(M1 ◦ f, . . . , Ms ◦ f) = (L1 . . . , Ls) = (R1, . . . , Rs),
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where, by Lemma 3.2, the Rj are holomorphic functions and satisfy the
following condition (for t sufficiently small).

h(Rj , t) =
s−2∑

k=1

h(Qk, t)

≥ (h(ϕ, t)− t)
s−2∑

k=1

k

=
(s− 1)(s− 2)

2
h(ϕ, t)− (s− 1)(s− 2)

2
t

≥ (n + 1)(s− 1)(s− 2)
2

h(f, t)− (s− 1)(s− 2)
2

t.

Since M1 ◦ f, . . . ,Ms ◦ f have no common zeros, by Lemma 2.6 we have

min
1≤j≤s

h(Mj ◦ f, t) ≥ min
j

h(Rj , t) + 0(1)

≥ (n + 1)(s− 1)(s− 2)
2

h(f, t)− (s− 1)(s− 2)
2

t + 0(1).

Because X is a perturbation of the Fermat hypersurface of degree d we
get

(3) min
1≤j≤n+1

h(Mj ◦ f.t) = d min
1≤j≤n+1

h(fj , t) = dh(f, t).

For other monomials we have

h(Mj ◦ f, t) =
n+1∑

k=1

αjkh(fk, t) ≥ dh(f, t).

Thus we obtain

(4) dh(f, t) ≥ (n + 1)(s− 1)(s− 2)
2

h(f, t)− (s− 1)(s− 2)
2

t + 0(1).

When d = (n + 1)(s− 1)(s− 2)/2 we have a contradiction as t → −∞,

and when d >
(n + 1)(s− 1)(s− 2)

2
the inequality (4) gives us

h(f, t) ≥ −Nt + 0(1),

where N is a strictly positive number. So by Lemma 2.4, f is a constant
map. Lemma 3.3 is proved.
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Proof of Theorem 3.1. It suffices to notice that by Lemma 3.3 the
image of f is contained in the proper algebraic subset of X defined by the
equation

a1z
d
1 + a2z

d
2 + · · ·+ an+1z

d
n+1 + an+1Mn+2 + · · ·+ as−1Ms−1 = 0,

where not all aj are zeros.

Remark 3.4. There is no similar result in the complex case.

4. Hyperbolic surfaces in P3(Cp)

In this section we apply Theorem 3.1 to give explicit examples of p-adic
surfaces in P3(Cp) as well as examples of curves in P2(Cp) with hyperbolic
complements, and of hyperbolic surfaces with hyperbolic complements.

Without loss of generality we may assume that in the defining equation
of X, the first coefficients ci = 1, i = 1, . . . , n + 1.

Theorem 4.1. Let X be a surface in P3(Cp) defined by the equation

(5) X : zd
1 + zd

2 + zd
3 + zd

4 + czα1
1 zα2

2 zα3
3 zα4

4 = 0,

where c 6= 0,
4∑

i=1

αi = d, and if there is an exponent αi = 0, the others

must be 6= 1. Then X is hyperbolic if d ≥ 24.

Proof. First of all let us recall a result from [HM] (Theorem 4.3).

Lemma 4.2. Let X be the Fermat hypersurface of degree d in Pn(Cp),
and let f = (f1, . . . , fn+1) be a holomorphic curve in X. Assume that any
fj 6≡ 0. If d ≥ n2 − 1, then either f is a constant curve, or there is a
decomposition of the set of indices {1, . . . , n+1} = ∪Iξ such that every Iξ

contains at least two elements, and if i, j ∈ Iξ, fi is equal to fj multiple a
constant (if n = 2 there exists only one class).

Now let X be a hypersurface satisfying the hypothesis of Theorem
4.1, and let f = (f1, f2, f3, f4) : Cp −→ X be a holomorphic curve in
X. Suppose that for some i, fi ≡ 0, for example, f4 ≡ 0. If α4 = 0,
the map (f1, f2, f3) from Cp into P2(Cp) has the image contained in a
projective curve of positive genus . By Berkovich’s theorem (see [Be], also
[Ch]) (f1, f2, f3) is a constant map. From it and (5) it follows that f is a
constant map.

Hence, we can assume that any fi 6≡ 0. From the proof of Theorem 3.1
it follows that {fd

1 , . . . , fd
4 } are linearly dependent. Suppose that

a1f
d
1 + · · ·+ a4f

d
4 ≡ 0,
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where not all ai are zeros. Consider the following possible cases:
i) ai 6= 0, i = 1, . . . , 4. By Lemma 4.2, f is a constant map, or we can

assume that f1 = c1f2, f3 = c2f4. Then we can substitute this relation to
(5) and show that f is a constant map.

ii) Only one coefficient, say, a4 = 0. Then (f1, f2, f3) is a constant map
by Lemma 4.2, so f is.

iii) Two coefficients, say, a1 = a2 = 0. Then we have f3 = c3f4. Sub-
stitute this relation into (5) we obtain

fd
1 + fd

2 + ε1f
d
3 + ε2f

α1
1 fα2

2 fα3+α4
3 ≡ 0,

where ε2 6= 0. If ε1 6= 0, then the image of the map (f1, f2, f3) from
Cp into P2(Cp) is contained in a projective curve of positive genus , and
(f1, f2, f3) is a constant map, so f is (again by Berkovich’s theorem).

Now suppose that ε1 = 0. Then the image of the map (f1, f2, f3) is
contained in the following curve in P2(Cp):

Y : zd
1 + zd

2 + ε2z
α1
1 zα2

2 zα3+α4
3 = 0.

We are going to show that under the hypothesis of Theorem 4.1, the genus
of Y is at least 1, then Theorem 4.1 follows from Berkovich’s theorem.

The genus of Y is equal to the number of integer points in the triangle
with the vertices (d, 0), (0, d) and (α1, α2) (see, for example, [Ho]). It
suffices to consider the case α1 + α2 < d. Then it is easy to see that this
triangle contains at least one integer point, unless the case α1+α2 = d−1.
This case is excluded by the hypothesis of Theorem 4.1. The proof is
completed.

Remark 4.1. In [HM] by using the method of K. Masuda and J. Noguchi
[MN], we give the following examples of hyperbolic hypersurfaces in P3(Cp):

z4d
1 + · · ·+ z4d

4 + t(z1z2z3z4)d = 0, d ≥ 6 (deg X = 4d ≥ 24), t ∈ C∗
p.

Here we have examples with arbitrary degree ≥ 24 (not necessarily divided
by 4). Notice that all known explicit examples of hyperbolic hypersurfaces
in the complex case are of degree d divided by some number > 1 (2 in the
case of Brody-Green’s example, 3 in Nadel’s example, and 3, 4 in Masuda-
Noguchi’s examples). Indeed, in [MN] an algorithm is given to construct
hyperbolic hypersurfaces of arbitrary “large enough” degree d. Here we
obtain hyperbolic hypersurfaces with d ≥ 24.

Remark 4.2. The following example shows that if among the exponents
αi two of them are 0, 1, then X may not be hyperbolic. The surface

X : z25
1 + z25

2 + z25
3 + z25

4 + z1z
24
2 = 0
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contains the holomorphic curve (−1− z25, 1, 1 + z25, z).

Now we use Theorem 3.1 to give explicit examples of curves in P2(Cp)
with hyperbolic complements.

Theorem 4.3. Let X be a curve in P2(Cp) defined by the following
equation:

X : zd
1 + zd

2 + zd
3 + czα1

1 zα2
2 zα3

3 = 0,

where d ≥ 24, d > αi ≥ 0,
∑

αi = d. Then the complement of X is
p-adic hyperbolic in P2(Cp).

Proof. Let f = (f1, f2, f3) : Cp −→ P2 be a holomorphic curve with the
image contained in the complement of X. Then the function

fd
1 + fd

2 + fd
3 + cfα1

1 fα2
2 fα3

3 6= 0

for z ∈ Cp, and is identically equal to a non-zero constant a. Hence, the
image of the following holomorphic curve

(f1, f2, f3, 1) : Cp −→ P3

is contained in the surface Y of P3 defined by the equation

Y : zd
1 + zd

2 + zd
3 − azd

4 + czα1
1 zα2

2 zα3
3 = 0.

By the proof of Theorem 3.1, {fd
1 , fd

2 , fd
3 , 1} are linearly dependent:

c1f
d
1 + c2f

d
2 + c3f

d
3 + c4 ≡ 0,

where not all ci = 0. There are the following cases:
i) ci 6= 0 for all i. By Lemma 4.2 at least one of f1, f2, f3 is constant.

From this it follows that f is a constant map.
ii) ci = 0 only for one i. Then (f1, f2, f3) is a constant map, again by

Lemma 4.2.
iii) If two ci = 0, then either one of fi is constant, or the ratio of two

functions fi, fj is constant. In both cases, f is a constant map. Theorem
4.3 is proved.

Remark 4.3. We prove that the map (f1, f2, f3, 1) : Cp → Y is a constant
map, although Y may not be hyperbolic.

Now we use the proof of Theorem 4.1 and Theorem 4.3 to give explicit
examples of hyperbolic surfaces in P3(Cp) with hyperbolic complements.
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Theorem 4.4. Let X be a surface in P3(Cp) of degree d ≥ 50 defined by
the following equation

(6) X : zd
1 + · · ·+ zd

4 + czα1
1 zα2

2 zα3
3 zα4

4 = 0,

where c 6= 0, and if there is an exponent αi = 0, the others must be at
least 2. Then X is hyperbolic and the complement of X in P3(Cp) is also
hyperbolic.

Proof. By Theorem 4.1 it remains to prove that the complement of X is
hyperbolic. Let f = (f1, . . . , f4) be a curve with the image contained in
the complement of X. As in the proof of Theorem 4.3 there is a constant
a 6= 0 such that the map (f1, f2, f3, f4, 1) has the image contained in the
hypersurface Y of degree d in P4(Cp) defined by the following equation:

(7) Y : zd
1 + zd

2 + zd
3 + zd

4 + azd
5 + czα1

1 zα2
2 zα3

3 zα4
4 = 0.

From the proof of Theorem 3.1 it follows that when

d ≥ (4 + 1)(6− 1)(6− 2)
2

= 50, {fd
1 , fd

2 , fd
3 , fd

4 , 1} are linearly dependent.
We have

4∑

i=1

εif
d
i + ε5 ≡ 0,

where not all εi = 0.
If ε5 = 0 then we can repeat the proof of Theorem 4.1 for showing

that f is a constant map (notice that the hypothesis of Theorem 4.1 is
fulfilled).

Assume that ε5 6= 0. From Lemma 4.2 it follows that either f is a
constant map, and we are done, or at least one of fi, say, f4 is constant.
Substitute f4 = const into (7), we can see that the image of the map
(f1, f2, f3, 1) is contained in the surface defined by the following equation

Z : zd
1 + zd

2 + zd
3 + a′zd

4 + c′zα1
1 zα2

2 zα3
3 zβ4

4 = 0,

where a′, c′ 6= 0, β4 = d− (α1 + α2 + α3).
Again, by the proof of Theorem 3.1, {fd

1 , fd
2 , fd

3 , 1} are linearly depen-
dent. We have

δ1f
d
1 + δ2f

d
2 + δ3f

d
3 + δ4 ≡ 0,

If δ4 = 0, then f is a constant map by using similar arguments to the
ones in the proof of Theorem 4.1. To show why we need the hypothesis
that if one α1 = 0, the others must be at least two, we consider the case
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δ4 6= 0. By Lemma 3.2, either f is a constant map, or at least one of fi,
say f3 is constant. Substitute f3 = const, f4 = const into the equation
(6) we obtain f1 = εf2 with some constant ε. Finally, since the map
(f1, f2, f3, f4, 1) has the image contained in Y we have

Afd
2 + Bfα1+α2

2 + C ≡ 0,

where A, B,C are constants, and B 6= 0. By the hypothesis of Theorem
4.4, α1 + α2 6= 0, d, and then f2 = const. Theorem 4.4 is proved.

Remark 4.4. Theorems 4.3 and 4.4 give the first examples of hyperbolic
hypersurfaces with hyperbolic complements in the p-adic case. In the com-
plex case, the existence of such hypersurfaces is proved by M. Zaidenberg
[Z2]. A. Nadel [N] gives first examples of such curves in P2, and explicit
examples of such surfaces in P3 are given recently by K. Masuda and J.
Noguchi [MN].

Remark 4.5. The following example shows that when the sum of two
exponents from {αi} is 0 or d, the complement of the surface X may not
be hyperbolic. Consider the surface X defined by the equation:

X : z51
1 + z51

2 + z51
3 + z51

4 + z25
3 z26

4 = 0.

Then X is hyperbolic by Theorem 4.1, but the complement of X in P3(Cp)
contains the following holomorphic curve:

f = (z,−z, 1, 1).
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