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A RELAXATION ALGORITHM FOR SOLVING
MIXED INTEGER PROGRAMMING PROBLEMS

NGUYEN VU TIEN AND LE DUNG MUU

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. We propose an algorithm for solving mixed integer linear
programming problem , which is a combination of branch-and-bound and
decomposition procedure. For branching and bounding we divide a rectan-
gular domain into smaller and smaller subrectangles, and to each generated
subrectangle R we associate a lower bound for the objective function with
respect to y ∈ R by using a suitable relaxation involving the continuous
linear constraint but not the integer ones. This relaxation thus allows us
to decompose the problem into subprograms each of them consists of a
linear program and one-dimensional integer linear problems.

1. Introduction

Consider the following mixed integer linear programming problem, de-
noted by (P):

(P) min{f(x, y) := cT x + dT y : x ∈ X, y ∈ Y, (x, y) ∈ S, y integer},

where X and S are polyhedral convex sets in Rn and Rn × Rm given by
a system of linear inequalities and/or equalities; Y is a rectangle in Rm.
By F we shall denote the feasible region of (P).

Mixed integer linear programming of the form (P) is an important
topics of mathematical programming, since it has many applications in
different fields. It is recognized that Problem (P) is difficult to solve. The
existing methods are efficient only with a moderate size of the integer
variables. Some efforts have been made to develop solution-methods for
Problem (P). The first decomposition method for solving (P) is due to
Bender [1]. Another important approach to Problem (P) is by branch-
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and-bound method combined with other techniques such as cutting plane
and decomposition. Commonly used technique for obtaining lower bound
in these methods is relaxation by linear programming (see e.g. [1], [2], [5],
[6]). Recently methods using “strong” valid inequalities and reformulation
have been intensively study to solve specific models of mixed integer linear
programming problems of the form (P) (see [6] and references therein).

The purpose of this paper is to propose an algorithm for the solution
of Problem (P), which is a combination of branch-and-bound method and
decomposition procedure. Similar schemes have been described in our
earlier papers [3], [4] for solving an indefinite quadratic function and a
convex-concave function over a convex set. Branching is performed by
dividing the rectangular domain Y into smaller and smaller subrectangles,
and to each generated subrectangle R we associate a real number which
serves as a lower bound for the objective function with respect to y ∈ R by
using a suitable relaxation involving the constraint (x, y) ∈ S but not the
integer constraints. This relaxation allows us to decompose Problem (P)
into subprograms consisting of a linear program in the space Rn × Rm

together with the problem of minimizing the linear function dT y over the
integer points of a rectangular domain of Rm. The latter can in turn be
converted into m one-dimensional linear integer problems, and therefore it
can be solved very easily. The method can be extended to the case when
X, Y, S are convex compact sets, and

f(x, y) := h(x) +
∑

gj(yj),

where h is a convex continuous function on X and each gj is a function of
one variable with g :=

∑
gj continuous on Y .

2. Description of the algorithm

For each subrectangle R we denote by P (R) the problem

(P (R)) min{cT x + dT y : x ∈ X, y ∈ R, (x, y) ∈ S, y integer},

and by B(R) the relaxed problem

(B(R)) min{cT x + dT y : x ∈ X, y ∈ R, u ∈ R, (x, u) ∈ S, y integer}.

By f(R) and b(R) we denote the optimal values of P (R) and B(R),
respectively. We agree that an optimal value equals +∞ if no feasible point
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exists. It is clear that the feasible region of P (R) is contained in that of
B(R). Hence b(R) ≤ f(R), and therefore if Y =

⋃
j

Rj , then min
j

b(Rj) is a

lower bound for the optimal value f∗ of Problem (P), i.e., min
j

b(Rj) ≤ f∗.

Note that Problem B(R) can be solved by solving separately the stan-
dard linear program

(B1(R)) min{cT x : x ∈ X, u ∈ R, (x, u) ∈ S},

and the linear integer problem

(B2(R)) min{dT y : y ∈ R, y integer},

so that b(R) := b1(R) + b2(R), where bi(R) denotes the optimal value of
Bi(R), i = 1, 2. It is easy to see that if R := {y ∈ Rm : βj ≤ yj ≤
Bj , j = 1, . . . ,m}, then solving Problem B2(R) amounts to solving one-
dimensional integer problems of the form

min{djyj : βj ≤ yj ≤ Bj , yj integer}, (j = 1, . . . , m).

We are now in a position to describe the algorithm.

Algorithm.

Step 0.

Set R0 = Y and solve Problem B1(R0) and B2(R0).

a) If b(R0) = ∞, then f∗ = ∞; stop: Problem (P ) has no feasible point.

b) If b(R0) < ∞, then take a solution (x0, u0) of the linear problem
B1(R0) and a solution y0 of the problem B2(R0).

Let

F0 := {(x0, v) : v ∈ {u0, y0}, (x0, v) ∈ F},
f0 := min{cT x0 + dT v : (x0, v) ∈ F0}

and, if F0 6= ∅, let (x0, v0) ∈ F0 such that f0 = f(x0, v0).

Set
(s0, v0) = (x0, v0), ∆0 = {R0}, k = 0.
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Step 1.

a) If fk ≤ b(Rk), then terminate; fk is the optimal value and (sk, vk)
(if any) is an optimal solution of Problem (P ). (If no (sk, vk) exists, then
f∗ = ∞, i.e., (P ) has no feasible point.)

b) If fk > b(Rk), then bisect Rk into the two rectangles R−k and R+
k as

follows:

Let jk ∈ {1. . . . , m} such that

|(uk − yk)jk
| = max

j
|(uk − yk)j |,

and set

R−k := {y ∈ Rk, yjk
≤ rk},

R+
k := {y ∈ Rk, yjk

≥ rk},

where rk :=
1
2
(uk + yk)jk

.

Solve B(R−k ) and B(R+
k ). For each R ∈ {R−k , R+

k } denote by (xR, uR)
and yR the obtained solutions (if any) of B1(R) and B2(R) respectively.

Let

Fk+1 := {(xR, v) ∈ F : v ∈ {uR, yR}, R ∈ {R−k , R+
k }},

fk+1 := min{fk,min{f(x, v) : (x, v) ∈ Fk+1}},

and, if fk+1 < ∞, let (sk+1, vk+1) ∈ F such that fk+1 = f(sk+1, vk+1).

Let

∆
′
k := (∆k \ {Rk}) ∪ {R−k , R+

k },
∆k+1 := {R ∈ ∆

′
k : b(R) ≤ fk+1}.

Set Rk+1 ∈ ∆k+1 such that b(Rk+1) = min{b(R) : R ∈ ∆k+1}.
Increase k by 1 and go to Step 1.

Remarks.

1. The main operations in the just described algorithm are the solu-
tions of Problem B1(R) and B2(R). Problem B1(R) is a standard linear
program. Problem B2(R) can be solved by solving m one-dimensional
linear integer problems.
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2. The lower bound computed via Problems B1(R) and B2(R) generally
is not inferior to that obtained by usual the linear programming relaxation.
To see this let us consider the following simple example:

min{−x + 100y : 1.5 ≤ x ≤ 100, 1.5 ≤ y ≤ 100, x + y ≤ 100, y integer}.

Let R = [ 1.5, 100 ] then

b1(R) = min{−x : 1.5 ≤ x, u ≤ 100, x + u ≤ 100} = −98.5,

b2(R) = min{100y : 1.5 ≤ y ≤ 100, y integer} = 200.

Thus b(R) = b1(R)+b2(R) = 101.5, while the lower bound by usual linear
programming relaxation is

min{−x + 100y : 1.5 ≤ x ≤ 100, 1.5 ≤ y ≤ 100, x + y ≤ 100}
= −98.5 + 150 = 51.5.

3. Convergence

In the sequel, for simplicity of notation, we shall write xk, uk, yk, bk

for xRk , uRk , yRk , b(Rk) respectively. From the definitions of P (R) and
B(R), it follows that the optimal value b(R) of B(R) cannot exceed the
optimal value f(R) of P (R). Hence, for every k,

f∗ ≥ bk := min{b(R); R ∈ ∆k}.

This and fk ≥ f∗ ensure that when the stopping criterion is satisfied for
some k, i.e. fk ≤ bk, then fk is the optimal value of Problem (P). So if
fk = ∞ we deduce that (P ) has no feasible point. Otherwise, the point
(sk, vk) is an optimal solution of (P). If the algorithm is infinite, it will
converge in the following sense:

Theorem. The sequences {(xk, uk)} and {(xk, yk)} have a common limit
point which solves Problem (P). Furthermore bk ↗ f∗.

Proof. If the algorithm is infinite, there exists a decreasing sequence of
rectangles. For simplicity of notation we also denote this sequence by
{Rk}. Thus Rk+1 ⊂ Rk for all k. Let (x∗, u∗, y∗) be any limit point
of the sequence {(xk, uk, yk)}. By taking subsequences, if necessary, we
may assume that jk = j∗ for some 1 ≤ j∗ ≤ m and that (xk, uk, yk) →
(x∗, u∗, y∗) as k →∞. Furthermore, since the number of integer points of
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Y is finite we may assume that yk = y∗ for every k. Since the set Rk is
bisected into R−k and R+

k , we may assume, again extracting a subsequence
if necessary, that Rk+1 ⊂ R−k for all k or Rk+1 ⊂ R+

k for all k.

If Rk+1 ⊂ R−k then uk+1 and y∗ ∈ R−k . Hence

(1) uk+1
j∗ ≤ (uk + y∗)j∗

2

and

(2) y∗j∗ ≤
(uk + y∗)j∗

2
·

If (uk − y∗)j∗ > 0, then we use (1) to obtain

(3) 0 < uk
j∗ − y∗j∗ = 2

(
uk

j∗ −
(uk

j∗ + y∗j∗)
2

)
≤ 2(uk

j∗ − uk+1
j∗ ) → 0.

If (uk − y∗)j∗ ≤ 0, then we use (2) to obtain

(4) 0 ≤ y∗j∗ − uk
j∗ = 2

(
y∗j∗ −

(uk
j∗ + y∗j∗)

2

)
≤ 2(y∗j∗ − y∗j∗) = 0.

For the case Rk+1 ⊂ R+
k for all k, by the same argument we also obtain

(3) and (4). Thus in the both cases we have |uk
j∗ − y∗j∗ | → 0. Hence

|u∗j∗ − y∗j∗ | = 0. This and the definition of j∗ imply that u∗ = y∗. Noting
that (x∗, u∗) ∈ S ∩ (X × Y ) and y∗ is an integer we see that (x∗, u∗) is
feasible for (P). In view of the definition of bk this implies that

f∗ ≥ bk := cT xk + dT yk → cT x∗ + dT y∗ = cT x∗ + dT u∗ ≥ f∗.

Hence cT x∗ + dT u∗ = f∗, and therefore (x∗, u∗) = (x∗, y∗) solves (P).

Since the sequence {bk} is nondecreasing and, by the first part, it has a
subsequence converging to f∗, it follows that bk ↗ f∗. The theorem thus
is proved.

Remark. At each iteration k the points (xk, uk) and (xk, yk) are candidates
for the solution of Problem (P ). Each point (xk, uk) satisfies the constraint
(x, y) ∈ S, but may satisfy the integer constraints only in the limit. On
the other hand, the point (xk, yk) always satisfies the integer constraints
but may satisfy the constraint (x, y) ∈ S only in the limit.
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4. Finite convergence and extension

By using a suitable integral bisection the above algorithm can be made
finite. In fact, let Rk be the rectangle to be bisected at iteration k, and let
uk, yk be the bisection points obtained through the bounding operation
over Rk. That is.

yk ∈ arg min{dT y : y ∈ Rk, y integer },
(xk, uk) ∈ arg min{cT x : x ∈ X, u ∈ Rk, (x, u) ∈ S}.

Note that uk 6= yk, since otherwise the algorithm would terminate at
iteration k. Then we bisect Rk into two rectangles

(5) R−k := {y ∈ Rk : yjk
≤ [rjk

]},

(6) R+
k := {y ∈ Rk : yjk

≥ [rjk
] + 1},

where rjk
is the jkth coordinate of the vector (uk+yk)/2, and [rjk

] denotes
the largest integer which is not greater than rjk

, and jk, as before, is the
index corresponding to the maximal coordinatate of the vector uk − yk,
i.e.,

|(uk − yk)jk
| = max

j
|(uk − yk)j |.

It is easy to verify that with this integer bisection, every integral vec-
tor of Y is fathomed through the bounding operation. Furthermore by
a similar argument to the proof of convergence, one can show that the
algorithm with the integer bisection (5), (6) must terminate after finitely
many iterations yielding an optimal solution.

The above algorithm can be extended to the following nonlinear mixed
integer problem:

min
{

h(x) +
m∑

j=1

gj(yj) : x ∈ X, y ∈ Y, (x, y) ∈ S, y integer
}

,

where X, Y are compact convex sets of Rn, Rm respectively, S is a closed
convex set of Rn×Rm, h is a continuous convex function on X, and each

gj is a function of one variable, and g :=
m∑

j=1

gj is continuous on Y .

In this case we initialize the algorithm from a rectangle R0 containing
the convex compact set Y . Subsequently, for each subrectangle

R := {y ∈ Rm : βj ≤ yj ≤ Bj , j = 1, . . . , m} ⊆ R0,
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the relaxed problem B(R) reads

min{h(x)+
∑

gj(yj) : x ∈ X, y ∈ R, u ∈ R∩Y, (x, u) ∈ S, yj integer ∀j},

and therefore Problem B1(R) becomes the convex program

min{h(x) : x ∈ X, u ∈ R ∩ Y, (x, u) ∈ S},

while B2(R) can be converted into m one-dimensional integer programs

min{gj(yj) : βj ≤ yj ≤ Bj , yj integer}, (j = 1, . . . , m).

5. Illustrative example and
preliminary computational results

We illustrate the steps of the proposed algorithm on the following sim-
ple example

min f(x, y) := 2x1 − x2 − y1 + 2y2,

subject to

x ∈ X := {x = (x1, x2) : x1 + x2 ≤ 4, x1, x2 ≥ 0},

y ∈ Y := {y = (y1, y2) : 0 ≤ y1 ≤ 8 , 0 ≤ y2 ≤ 6},
(x, y) ∈ S := {(x1, x2, y1, y2) : x1 − 2x2 + 2y1 − y2 ≤ 6}.

We will use the integer bisection defined by (5) and (6).

At Step 0 we take R0 = Y = {y = (y1, y2) : 0 ≤ y1 ≤ 8, 0 ≤ y2 ≤ 6}.
To compute lower bounds we solve the linear program

min{2x1 − x2 : x ∈ X,u ∈ R0, (x, u) ∈ S},

obtaining an optimal solution (x, u) = (0, 4, 0, 0), which is also a feasible
point, and the optimal value b1(R0) = −4. Then we solve the linear
integer program

min{−y1 + 2y2 : y = (y1, y2) ∈ R0, y integer},

obtaining an optimal solution (y1, y2) = (8, 0) and the optimal solution
b2(R0) := −8. Thus the lower bound for R0 is β(R0) = −12. The best
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known feasible point at this step is (x0, u0) = (0, 4, 0, 0). Thus the best
known upper is f(x0, u0) = −4.

In Step 1 of iteration k = 0 the rectangle R0 is divided into two sets

R−0 = {y = (y1, y2) : 0 ≤ y1 ≤ 4, 0 ≤ y2 ≤ 6},

R+
0 = {y = (y1, y2) : 4 ≤ y1 ≤ 8, 0 ≤ y2 ≤ 6}.

To obtain a lower bound for R−0 , as in Step 0, we solve the problems

min{2x1 − x2 : x ∈ X, u ∈ R−0 , (x, u) ∈ S},

min{−y1 + 2y2 : y = (y1, y2) ∈ R−0 , y integer}.
For the former program we obtain an optimal solution (x, u) = (0, 4, 0, 0)
with optimal value is b1(R−0 ) = −4. For the latter, an optimal solution
and value are y = (4, 0) and b2(R−0 ) = −4. Thus a lower bound for R−0 is
β(R−0 ) = −8. A new feasible point is (x, y) = (0, 4, 4, 0) with f(x, y) = −8.
Thus the current best upper bound is -8. Hence R−0 is eliminated from
further consideration.

Likewise, to obtain a lower bound for R+
0 we solve the programs

min{2x1 − x2 : x ∈ X, u ∈ R+
0 , (x, u) ∈ S},

min{−y1 + 2y2 : y = (y1, y2) ∈ R+
0 , y integer}.

For the former program an optimal solution and the optimal value are
(x, u) = (0, 4, 7, 0) and b1(R+

0 ) = −4. For the latter we have y = (8, 0) and
b2(R+

0 ) = −8. The lower bound for this rectangle is then β(R+
0 ) = −12.

New feasible point and upper bound are (x, u) = (0, 4, 7, 0) and -11.

In Step 1 of iteration k = 1 we have ∆1 = {R+
0 }, f1 = −11, β1 = −12

and the current best feasible point is (x1, v1) = (0, 4, 7, 0). Thus R1 = R+
0

is divided into two rectangles

R−1 = {y = (y1, y2) : 4 ≤ y1 ≤ 7, 0 ≤ y2 ≤ 6},

R+
0 = {y = (y1, y2) : 8 ≤ y1 ≤ 8, 0 ≤ y2 ≤ 6}.

A lower bound for R−1 is β(R−1 ) = b1(R−1 ) + b2(R−1 ) = −4− 7 = −11 with
(x, u) = (0, 4, 7, 0), y = (7, 0). This rectangle is eliminated.

A lower bound for R+
1 is β(R+

1 ) = b1(R+
1 ) + b2(R+

1 ) = −4 − 8 = −12
with (x, u) = (8, 4, 8, 2), y = (8, 0). No new feasible point is found, the
upper bound thus is unchanged.
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In Step 1 of iteration k = 2 we have ∆2 = {R+
1 }, f2 = −11, β2 = −12

and the current best feasible point is (x2, v2) = (0, 4, 7, 0). Set R2 = R+
1

and divide it into

R−2 = {y = (y1, y2) : 8 ≤ y1 ≤ 8, 0 ≤ y2 ≤ 1},

R+
2 = {y = (y1, y2) : 8 ≤ y1 ≤ 8, 1 ≤ y2 ≤ 6}.

A lower bound for R−2 is β(R−2 ) = b1(R−2 ) + b2(R−2 ) = 1− 8 = −7 with
(x, u) = (0, 4, 7.5, 1), y = (8, 0).

A lower bound for R+
2 is β(R+

2 ) = b1(R+
2 ) + b2(R+

2 ) = −4 − 6 = −10
with (x, u) = (0, 4, 8, 2), y = (8, 1).

Since β(R−2 ) = −7 > f2 = −11 and β(R+
2 ) = −10 > f2 = −11,

both these sets are deleted. The procedure terminates yielding an optimal
solution (x∗, y∗) = (x2, v2) = (0, 4, 4, 7) with the optimal value f(x∗, y∗) =
−11.

To obtain a preliminary evaluation of the performance of the proposed
algorithm, the algorithm was coded in PASCAL7 and run on a MATH 486
personal computer. The computed code used the ordinary simplex method
for solving the linear programs called for by the algorithm. The compu-
tational results on fourteen randomly generated problems are reported in
Table 1. In this table we use the following notations:

• n, p : numbers of continuous and integer variables respectively,

• m: number of constraints defined the polytope X (without x ≥ 0),

• ite: number of iterations,

• s: number of the rectangles stored in the memory,

• time: CPU time (in second).

The results show that the algorithm could be used for solving Problem
(P) with a number of integer variables up to p = 6 on a personal computer
486. The number of continuous variables x may be much larger. It appears
that the running time is much more sensitive to the growth of the number
of integer variables y than to the growth of the number of constraints or
continuous variables x. The required memory however increases slowly
as the program runs, since a large percentage of generated rectangles is
eliminated from further consideration. We report here only computational
results with the integer bisection, because in almost test problems this
subdivision performs better than the bisection via the midpoint rk =
(yk + yk)jk.
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Table 1. The computational results with the integer bisection

Prob. m n p ite s time (second)

1 5 7 3 64 11 8.03
2 5 15 3 142 99 19.91
3 5 20 3 331 61 22
4 10 20 3 124 93 21.01
5 10 30 3 132 112 61.2
6 10 50 3 241 62 58.92
7 8 10 4 54 13 11.43
8 10 10 4 108 64 66.15
9 10 20 4 944 205 188

10 5 10 5 959 219 221
11 6 20 5 1009 129 340.6
12 10 10 5 718 247 571.0
13 5 15 6 659 119 228
14 7 20 6 709 208 441.3
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