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A NEW BOUNDING TECHNIQUE
IN BRANCH-AND-BOUND ALGORITHMS
FOR MIXED INTEGER PROGRAMMING

TRAN VU THIEU AND TRAN XUAN SINH

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. A branch-and-bound algorithm using a new bounding tech-
nique is presented for solving the mixed integer problem. The technique
involves considering a piecewise linear and concave function of a parame-

ter λ ∈ IR1 whose maximum gives the largest lower bound. A parametric
method is developed for finding the maximum of a such function.

1. Introduction

We consider the mixed integer programming problem, i.e. the problem
of finding

(P ) f∗ = min{f(x, y) = cT x + dT y : x ∈ D, y ∈ E, (x, y) ∈ S,

x has all integer components},

where c, d are given vectors in IRp, IRq respectively, x is a p-vector of integer
restricted variables, y is a q-vector of continuous variables; D is a given
polytope in IRp, while E, S are given polyhedral convex sets in IRq, IRn

respectively (n = p+ q). Denote by G the feasible region of (P ). Without
loss of generality we may assume that G is nonempty.

An important special case of (P ) frequently encountered in practice is
when D = {u ≤ x ≤ v} with u, v ∈ IRp, E = IRq

+ and S = {(x, y) ∈ IRn :
Ax + By ≤ b} with A,B, b being matrices of appropriate size.

Problem (P ) has many applications in practice and has been studied
in the literature for many years ago. The earliest methods for its solution
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were proposed by Gomory [3], Land and Doig [6], and Benders [1]. Subse-
quently, a number of other algorithms for solving the problem have been
developed (for a review of them see e.g. [4]). Among them the algorithms
based on the branch-and-bound technique seem to be more effective for
the problem. We refer to [5] for a complete treatment of the branch-and-
bound algorithms. Recently, Tien and Muu [8] proposed an algorithm of
this kind for solving (P ). However, its efficiency considerably depends
upon the concrete rules for computing a lower bound for the objective
value over a given set.

Exploiting the special structure of the problem, in the sequel we shall
give an improved technique for computing a lower bound for the objective
value of subproblems to be solved in the course of solving the problem
by a branch-and-bound algorithm. The technique involves introducing a
parameter λ ∈ IR1 into the objective of the subproblems and we receive
a piecewise linear, concave function of λ each value of which is a lower
bound and whose maximum gives the largest lower bound. Some special
values of such a function were chosen as a lower bound in [6] (λ = 1) and
[8] (λ = 0). The breakpoints of this function can be found by parametric
simplex method. However, as shown later, to compute the largest lower
bound it is not necessary to generate all breakpoints in advance. Using
parametric simplex method, it suffices to generate these breakpoints one
by one, as needed in the course of computation.

After Introduction, we shall describe in Section 2 a new bounding tech-
nique. Then a parametric method for computing the largest lower bound
will be developed in Section 3. Finally, a branch-and-bound algorithm
using the new bounding technique will be presented in Section 4, along
with some remarks for improving the algorithm.

2. A new bounding technique

Let H ⊂ IRp be a rectangle such that D ⊂ H. Given any rectangle
M ⊂ H, let us consider the following problem, denoted by P (M) :

min{cT x + dT y : x ∈ D ∩M, y ∈ E, (x, y) ∈ S,

x has all integer components}.

Let G(M) denote the feasible region and f(M) denote the optimal function
value of P (M). Furthermore, for any fixed λ ∈ IR1 consider a relaxation
problem obtained from P (M) by introducing auxiliary variables t ∈ IRp
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as follows:

min{λcT t + (1− λ)cT x + dT y : x ∈ M, t ∈ D ∩M,y ∈ E, (t, y) ∈ S,

x has all integer components}.

This problem is denoted by Q(λ,M) and its optimal function value by
µ(λ, M). As usual, for the convention we take µ(λ,M) = +∞ if the feasible
set of Q(λ,M) is empty.

Since the fact that (x, y) is feasible for P (M) implies that (x, t = x, y)
is also feasible for Q(λ,M) with the same objective function value, we
have µ(λ,M) ≤ f(M) for all λ ∈ IR1. By setting

µ(M) = max
λ∈IR1

µ(λ, M),

we have µ(M) ≤ f(M), i.e. we can choose µ(M) as a lower bound for
f(M). Thus, if D ⊂ ⋃

k∈I

Mk, where I contains a finite number of sub-

scripts, then min
k∈I

µ(Mk) is a lower bound for the optimal function value

f∗ of the original problem (P ), i.e.

min
k∈I

µ(Mk) ≤ f∗.

Remark 1. Problem P (M) can also be relaxed as follows:

min{cT x + dT y : x ∈ M, t ∈ D ∩M,y ∈ E, (t, y) ∈ S,

cT t = cT x, x has all integer components}.

By the theory of Lagrangian duality, this problem is equivalent to

min{cT x + dT y + λ(cT t−cT x) : x ∈ M, t ∈ D ∩M,y ∈ E, (t, y) ∈ S,

λ ∈ IR1, x has all integer components},

which is the same as Q(λ,M).

It is easily seen that Problem Q(λ,M) can be divided into two sub-
problems Q1(λ, M):

µ1(λ,M) = min{λcT t + dT y : t ∈ D ∩M, y ∈ E, (t, y) ∈ S},

and Q2(λ,M):

µ2(λ,M) = min{(1− λ)cT x : x ∈ M and x has all integer components}.
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In addition, we get

(1) µ(λ,M) = µ1(λ,M) + µ2(λ, M).

Since M is a rectangle and D, E, S are polyhedra, Q1(λ,M) is a
parametric linear program with the parameter λ in the objective function.
So it can relatively easily be solved by the parametric objective simplex
method (see e.g. [2]). By the theory of the parametric linear programming
the optimal value µ1(λ, M) is a piecewise linear and concave function on
λ and there exists a finite number of breakpoints

−∞ < λ−s1 < λ−s1+1 < · · · < λ−1 < λ1 < · · · < λs2−1 < λs2 < +∞
in such a way that µ1(λ,M) is linear for all λ ∈ [λk−1, λk],−s1 < k ≤ s2,
or λ ≤ λ−s1 or λ ≥ λs2 . (Here we number the breakpoints in order
that breakpoints greater than 1 have positive subscripts and breakpoints
smaller than 1 have negative subscripts).

Furthermore, for any given λ Q2(λ,M) is a problem of minimizing
a linear function over a rectangle, so its optimal solution can easily be
found in an explicit form. To do this let us denote I+ = {i : ci ≥ 0}
and I− = {i : ci < 0}. Let M = [u, v] with u, v ∈ IRp, u ≤ v. For the
purpose of the present paper we may assume that u and v have all integer
components. Define

d1 =
∑

i∈I+

ciui +
∑

i∈I−
civi and

d2 =
∑

i∈I+

civi +
∑

i∈I−
ciui.

Evidently d1 ≤ d2. Denote by w1 the vector having components ui

(i ∈ I+) and vi (i ∈ I−), and by w2 the vector with components vi

(i ∈ I+) and ui (i ∈ I−). We have the following property.

Lemma 1. Under the indicated notation:

a) w1 is an optimal solution of Q2(λ, M) for all λ ≤ 1.

b) w2 is an optimal solution of Q2(λ, M) for all λ ≥ 1.

c) µ2(λ,M), the optimal function value of Q2(λ,M), is a piecewise
linear and concave function with unique breakpoint λ0 = 1, and
has the form

(2) µ2(λ, M) =
{

(1− λ)d1 if λ ≤ 1,

(1− λ)d2 if λ ≥ 1.



A NEW BOUNDING TECHNIQUE 361

The proof is immediate from the fact that M is a rectangle and d1 ≤ d2.

3. Parametric method for computing µ(M)

The above results show that µ(λ,M) = µ1(λ,M) + µ2(λ,M) is also
a piecewise linear and concave function. The number of breakpoints of
µ(λ, M) exceeds that of µ1(λ,M) at most one (it is the case where λk 6= 1
for all k = −s1, . . . , s2).

However, to compute µ(M) = max
λ∈IR1

µ(λ,M) it is not necessary to

generate all the breakpoints of µ(λ,M) in advance. The following lemma
shows that it suffices to generate these breakpoints one by one as needed
in the course of computation.

Lemma 2. Assume that h(λ) is a piecewise linear and concave function
of a single variable λ ∈ IR1. Let λ1, λ2 and λ3 be successive breakpoints
of h, i.e. h(λ) is linear for all λ ∈ [λk−1, λk], k = 2, 3. Denote hi =
h(λi), i = 1, 2, 3, h∗ = max

λ∈IR1
h(λ). Then, there are only three possibilities:

a) if h2 ≥ max(h1, h3) then h∗ = h2 and arg max
λ∈IR1

h(λ) = λ2.

b) If h1 < h2 < h3 then h∗ ≥ h3 and arg max
λ∈IR1

h(λ) ≥ λ3.

c) If h1 > h2 > h3 then h∗ ≥ h1 and arg max
λ∈IR1

h(λ) ≤ λ1.

The proof of the Lemma 2 follows immediately from the concavity and
the piecewise linearity of h.

By virtue of Lemma 1 and Lemma 2 we can now describe the algorithm
for computing µ(M).

Algorithm 1 (for computing the lower bound µ(M) for f(M)).

Start. 1. Set λ0 = 1, solve the linear program Q1(λ0,M) :

a) If µ1(λ0,M) = +∞, i.e. the feasible set of Q1(λ,M) is empty, then
stop: µ(M) = +∞.

b) Otherwise, let (t0, y0) be an optimal solution of Q1(λ0,M). Set
h0 = µ1(λ0,M) and go to step 2.

2. Starting with λ0 = 1, (t0, y0) and using parametric simplex method
for solving Q1(λ,M) find two near breakpoints λ−1 and λ1 such that
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λ−1 < λ0 = 1 < λ1 (possibly λ1 = +∞ and/or λ−1 = −∞) and

µ1(λ,M) =
{

γ + δλ for λ−1 ≤ λ ≤ λ0,

α + βλ for λ0 ≤ λ ≤ λ1.

(α = γ and β = δ if λ0 = 1 is not a breakpoint of µ1(λ,M)).

From (1) and (2) we have

µ(λ, M) =
{

γ + δλ + (1− λ)d1 = γ + d1 + (δ − d1)λ for λ−1 ≤ λ ≤ λ0,

α + βλ + (1− λ)d2 = α + d2 + (β − d2)λ for λ0 ≤ λ ≤ λ1.

We distinguish four cases:

a) If β ≤ d2 and δ ≥ d1 then stop: µ(M) = h0 and (x0, t0, y0) is an
optimal solution of Q(λ0,M) with x0 = w1 or w2, as defined in Lemma 1.

b) If β > d2 and λ1 = +∞ or if δ < d1 and λ−1 = −∞ then stop:
µ(M) = +∞.

c) If β > d2 and λ1 < +∞ then set µ = α + d2 + (β − d2)λ1, k =
1, (t1, y1) = (t0, y0) and go to Right step.

d) If δ < d1 and λ−1 > −∞ then set µ = γ + d1 + (δ − d1)λ−1, k =
−1, (t−1, y−1) = (t0, y0) and go to Left step.

(µ denotes the best value so far obtained for µ(M)).

Right. Starting with λ = λk ≥ 1, (tk, yk) and using parametric
simplex method for solving Q1(λ,M) find the nearest right breakpoint
λk+1 > λk (maybe λk+1 = +∞). At the same time we get (tk+1, yk+1)
which is an optimal solution of Q1(λ,M) for all λ ∈ [λk, λk+1]. From (1)
and (2) we have

µ(λ,M) = αk + βkλ + (1− λ)d2 = αk + d2 + (βk − d2)λ, λk ≤ λ ≤ λk+1.

There exist three cases:

a) If βk ≤ d2 then stop: µ(M) = µ and (w2, tk, yk) is an optimal
solution of Q(λk,M).

b) If βk > d2 and λk+1 = +∞ then stop: µ(M) = +∞.

c) If βk > d2 and λk+1 < +∞ then set µ = αk + d2 + (βk −
d2)λk+1, k + 1 ← k and go to ’Right’ again.

Left. Starting with λ = λk ≤ 1, (tk, yk) and using parametric simplex
method for solving Q1(λ,M) find the nearest left breakpoint λk−1 < λk
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(maybe λk−1 = −∞). At the same time we get (tk−1, yk−1) which is an
optimal solution of Q1(λ,M) for all λ ∈ [λk−1, λk]. From (1) and (2) we
have

µ(λ,M) = αk + βkλ + (1− λ)d1

= αk + d1 + (βk − d1)λ, λk−1 ≤ λ ≤ λk.

There are three cases:

a) If βk ≥ d1 then stop: µ(M) = µ and (w1, tk, yk) is an optimal
solution of Q(λk,M).

b) If βk < d1 and λk−1 = −∞ then stop: µ(M) = +∞.

c) If βk < d1 and λk−1 > −∞ then set µ = αk + d1 + (βk −
d1)λk−1, k − 1 ← k and go to ’Left’ again.

Since once ’Right’ or ’Left’ is applied, a new breakpoint of µ(λ,M) is
obtained and since µ(λ, M) has a finite number of breakpoints, it can eas-
ily be shown that Algorithm 1 terminates after a finite number of ’Right’
or ’Left’ applications, giving the optimal value µ(M) = µ(λk,M) =
max
λ∈IR1

µ(λ,M) and (xk, tk, yk) is an optimal solution of Q(λk,M), where

xk = w1 (if λk ≤ 1) or xk = w2 (if λk ≥ 1), as defined in Lemma 1.

4. A branch-and-bound algorithm for
mixed integer programming

Basing on the above developed bounding technique, we are now in a
position to propose a branch-and-bound algorithm for solving the mixed
integer programming problem (P ).

Algorithm 2 (for solving (P )).

Initial step. First choose an initial rectangle H ⊂ IRp such that the
polytope D is entirely contained in H. Let H = [u0, v0] with u0, v0 ∈
IRp, u0 ≤ v0. Without loss of generality we may assume that u0 and v0

have all integer components. Then, let M0 = H,M0 = {M0},R = {M0}.
For each rectangle M ∈ M0 compute (by the parametric method pre-
sented in the previous section) a lower bound µ(M) for the optimal value
f(M) of problem P (M). Set γ0 = +∞, G0 = ∅ or γ0 = f(x0, y0), G0 =
{(x0, y0) ∈ G} if we already have a feasible solution (x0, y0) for (P ). Set
k = 0.

Step k = 0, 1, 2, . . . . At this step we already have γk (the best value
so far obtained for f∗) and, if γk < +∞, (xk, yk) with γk = f(xk, yk) =
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cT xk + dT yk (the best feasible solution of (P ) so far obtained), Mk (the
collection of rectangles that remain to be examined) and for each rectangle
M ∈Mk a number µ(M) ≤ min{f(x, y) : (x, y) ∈ G(M)} (the estimated
lower bound for f(x, y) over G(M)).

a) Delete all rectangles M ∈ Mk with µ(M) ≥ γk. Let Rk be the
collection of all remaining rectangles.

b) If Rk = ∅, stop: (xk, yk) is an optimal solution of (P ). (If there
is no incumbent, the conclusion is that the problem (P ) has no feasible
solution).

In the opposite case choose a rectangle Mk ∈ Rk such that

µ(Mk) = min{µ(M) : M ∈ Rk}

(Mk with the smallest lower bound µ(Mk) among M in Rk).

c) Subdivide Mk by the longest edge into two subrectangles as follows.

Let Mk = [uk, vk] with uk, vk ∈ IRp, uk ≤ vk and uk
j , vk

j are integer for
all j = 1, 2, . . . , p. Select jk ∈ {1, 2, . . . , p} such that

(3) `k = vk
jk
− uk

jk
= max

1≤j≤p
(vk

j − uk
j ).

Let δk = uk
jk

+ [`k/2] ([x] denotes the integer part of x) and define

M−
k = {x ∈ Mk : xjk

≤ δk},(4)

M+
k = {x ∈ Mk : xjk

≥ δk + 1}.(5)

d) Compute µ(M−
k ) and µ(M+

k ) (by the parametric method presented
in Section 3). For each M ∈ {M−

k ,M+
k } let us denote (tM , yM ) the

solution (if there exists) of Q1(λ,M).

e) Set

Gk+1 = {(tM , yM ) : tM has all integer components, M ∈ {M−
k ,M+

k }},
γk+1 = min(γk, min{f(x, y) : (x, y) ∈ Gk+1}),

and if γk+1 < +∞ let (xk+1, yk+1) belong to G in such a way that γk+1 =
f(xk+1, yk+1).

f) Set Mk+1 = (Rk −Mk)
⋃ {M−

k , M+
k } and go to step k + 1.

The finiteness of Algorithm 2 follows immediately from the fact that
the rectangle H ⊃ D has a finite number of integer points.
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Remark 2. In the course of computing µ(M) by Algorithm 1 we can stop
when we get µ ≥ γk. (Recall that µ is the best value so far obtained
for µ(M) = max

λ∈IR1
µ(λ, M) and γk is an upper bound so far obtained

for f∗). Furthermore, as indicated in Section 2, µ(λ,M) ≤ f(M) for
all λ ∈ IR1. So in order to reduce computation efforts we can stop com-
puting µ(M) by Algorithm 1 when we have gotten λk with µ(λk,M) ≥
max (µ(0,M), µ(1,M)). For so doing, it suffices to stop at Right step k
with λk ≥ 1 or at Left step k with λk ≤ 0. If, for example, at Start step
the situation c) occurs then we can take µ(λ1,M) as a lower bound for
f(M). In this situation we guarantee µ(λ1,M) ≥ µ(λ,M) for all λ ≤ λ1.

Remark 3. To subdivide Mk chosen at step k-b) we can apply the adaptive
subdivision presented in [7]. Namely, instead of selecting the index jk, the
longest edge of Mk, by (3), we choose the longest edge of M̂k ⊂ Mk, where
M̂k is a smallest ’integer’ rectangle which contains xk and tk. (Recall that
the triplet (xk, tk, yk) is found by Algorithm 1 when computing µ(M)). M̂k

is constructed as follows. M̂k = [xk, t̂k] with

t̂kj =





tkj if tkj is integer,

[tkj ] if tkj is not integer and tkj < xk
j ,

[tkj ] + 1 if tkj is not integer and tkj > xk
j .

The index jk ∈ {1, 2, . . . , p} is now selected by

(3’) |xk
jk
− t̂kjk

| = max
1≤j≤p

|xk
j − t̂kj |.

Let δk = [(xk
jk

+ t̂kjk
)/2] and define M−

k ,M+
k by (4), (5) respectively.

Remark 4. In the course of computing µ(M) by Algorithm 1, we always
have (tk, yk) as a feasible solution for Q1(λ,M). If tk has all integer com-
ponents, i.e. (tk, yk) is also feasible for P (M) then we can use cT tk +dT yk

to improve γk, the best value so far obtained for f∗ :

γk ←− min {γk, cT tk + dT yk}

and stop computing µ(M) when µ ≥ γk (µ is the best value so far obtained
for µ(M)).
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