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CONVEX ANALYSIS APPROACH
TO D. C. PROGRAMMING:

THEORY, ALGORITHMS AND APPLICATIONS

PHAM DINH TAO AND LE THI HOAI AN

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. This paper is devoted to a thorough study on convex analysis
approach to d.c. (difference of convex functions) programming and gives
the State of the Art. Main results about d.c. duality, local and global opti-
malities in d.c. programming are presented. These materials constitute the
basis of the DCA (d.c. algorithms). Its convergence properties have been
tackled in detail, especially in d.c. polyhedral programming where it has
finite convergence. Exact penalty, Lagrangian duality without gap, and
regularization techniques have beeen studied to find appropriate d.c. de-
compositions and to improve consequently the DCA. Finally we present
the application of the DCA to solving a lot of important real-life d.c. pro-
grams.

1. Introduction

In recent years there has been a very active research in the following
classes of nonconvex and nondifferentiable optimization problems

(1) sup{f(x) : x ∈ C}, : where f and C are convex,

(2) inf{g(x)− h(x) : x ∈ IRn}, : where g, h are convex,

(3) inf{g(x) − h(x) : x ∈ C, f1(x) − f2(x) ≤ 0}, : where g, h, f1, f2

and C are convex.
The main incentive comes from linear algebra, numerical analysis and

operations research. Problem (1) is a special case of Problem (2) with g =
χC , the indicator function of C and h = f , while the latter (resp. Problem
(3)) can be equivalently transformed into the form of (1) (resp. (2)) by
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introducing an additional scalar variable (resp. via exact penalty relative
to the d.c. constraint f1(x) − f2(x) ≤ 0, see [6], [7]). Though the com-
plexity increases from (1) to (3), the solution of one of them implies the
solution of the two others. Problem (2) is called a d.c. program whose
particular structure has been permitting a good deal of development both
in qualitative and quantitative studies (see, e.g., [1]-[8], [41], [44], [70]-[85],
[104], [105], [111]-[113]).

There are two different but complementary approaches, we can even
say two schools, in d.c. programming.

(i) Combinatorial approach to global continuous optimization: it is older
and inspired by tools and methods developed in the combinatorial opti-
mization. Nevertheless, new concepts and new methods have been in-
troduced as one works in a continuous approach (see [44] and references
therein). People recognizes that it was Hoang Tuy who has incidentally
put forward by his pioneering paper in 1964 ([110]) the new global opti-
mization concerning convex maximization over a polyhedral convex set.
During the last decade tremendous progress has been made especially in
the computational aspect. One can now globally solve larger d.c. pro-
grams, especially large-scale low rank nonconvex problems ([47]). How-
ever, most robust and efficient global algorithms for solving d.c. programs
actually do not meet the expected desire: solving real life d.c. programs
in their true dimension.

(ii) Convex analysis approach to nonconvex programming: this ap-
proach has been less worked out than the preceding one. The explanation
can be found in the fact: there is a mine of real world d.c. programs to be
solved in the combinatorial optimization. In fact, most real life problems
are of nonconvex nature. This approach seemed to take rise in the works
of the first author on the computation of bound-norms of matrices (i.e.,
maximizing a semi-norm on the unit ball of a norm) in 1975 ([70]-[73]).
There the convexity of the two d.c. components g and h of the objective
function has been used to develop appropriate tools. The main idea in
this approach is the use of the d.c. duality, which has been first studied
by Toland in 1979 ([108]) who generalized, in a very elegant and natu-
ral way, the just mentioned works on convex maximization programming.
In contrast with the first approach where many global algorithms have
been studied, there have been a very few algorithms for solving d.c. pro-
grams in the convex analysis approach. Let us name some people who
made contributions to this approach: Pham Dinh Tao, J.F. Toland, J.B.
Hiriart-Urruty, Phan Thien Thach, Le Thi Hoai An. Among them J.F.
Toland and J.B. Hiriart-Urruty are interested in the theoretical framework
only. Here we are interested in local and global optimalities, relationships
between local and global solutions to primal and dual d.c. programs and
solution algorithms. D.c. algorithms (DCA) based on the duality and
local optimality conditions in d.c. optimization has been introduced by
Pham Dinh Tao in [76]. Important developments and improvements for
DCA from both theoretical and numerical aspects have been completed
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after the works by the authors of this paper [1], [2], [6], [78]-[83] appeared.
These algorithms allow to handle certain classes of large-scale d.c. pro-
grams ([1]-[6], [79], [83], [84]). Due to their local character they cannot
guarantee the globality of computed solutions for general d.c. programs.
In general, DCA converge to a local solution, however we observed from
our numerous experiments that DCA converge quite often to a global one
([1]-[6], [79], [83], [84]).

The d.c. objective function (of a d.c. program) has infinitely many d.c.
decompositions which may have an important influence on the qualities
(robustness, stability, rate of convergence and globability of sought solu-
tions) of DCA. So, it is of particular interest to obtain various equivalent
d.c. forms for the primal and dual problems. The Lagrangian duality
without gap, exact penalty in d.c. optimization ([1], [7], [78], [82]) and
regularization techniques partly answer this concern. In application, reg-
ularization techniques using the kernel λ

2 ‖ · ‖2 and inf-convolution may
provide interesting d.c. decompositions of objective functions for DCA
([1], [80], [81]). Furthermore, it is worth noting that by using conjointly
suitable d.c. decompositions of convex functions and proximal regulariza-
tion techniques ([1], [80], [81]) we can obtain the proximal point algo-
rithm ([58], [94]) and the Goldstein-Levitin-Polyak subgradient projection
method ([89]) as particular cases of DCA. It would be interesting to find
conditions on the choice of the d.c. decomposition and the initial point
to ensure the convergence of DCA to a global solution. Polyhedral d.c.
optimization occurs when either g or h is polyhedral convex. This class of
polyhedral d.c. programs, which plays a key role in nonconvex optimiza-
tion, possesses worthy properties from both theoretical and computational
viewpoints, as necessary and sufficient local optimality conditions, and fi-
nite convergence for DCA... In practice, DCA have been successfully
applied to many large-scale d.c. optimization problems and proved to be
more robust and efficient than related standard methods ([1]-[6], [79], [83],
[84]).

The paper is organized as follows. In the next section we study the d.c.
optimization framework: duality, local and global optimality. The key
point which makes a unified and deep d.c. optimization theory possible
relies on the particular structure of the objective function to be minimized
on IRn:

f(x) = g(x)− h(x)

with g and h being convex on IRn. One works then actually with the
powerful convex analysis tools applied to the d.c. components g and h
of the d.c. function f . The d.c. duality associates a primal d.c. program
with a dual d.c. one (with the help of the functional conjugate notion)
and states relationships between them. More precisely, the d.c. duality is
built on the fundamental feature of proper lower semi-continuous convex
functions: such functions θ(x) are the supremum w.r.t. y ∈ IRn of the
affine functions

〈x, y〉 − θ∗(y).
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Thanks to a symmetry in the d.c. duality (the bidual d.c. program is
exactly the primal one) and the d.c. duality transportation of global mini-
mizers, solving a d.c. program implies solving the dual one and vice-versa.
Furthermore, it may be very useful when one is easier to solve than the
other. The equality of the optimal value in the primal and dual d.c. pro-
grams can be easily translated (with the help of ε-subdifferentials of the
d.c. components) in global optimality conditions. These conditions mark
the passage from convex optimization to nonconvex optimization, and have
been early stated by J.B. Hiriart-Urruty [37] in a more complicated way.
They are nice but impractical to use for devising solutions methods to d.c.
programs. Local d.c. optimality conditions constitute the basis of DCA.
In general, it is not easy to state them as in the global d.c. optimality and
at the moment there have been found very few properties which are useful
in practice.

We shall present therefore in Section 2 the most significative results;
most of them are new. In particular, we give there the new elegant pro-
perty (ii) of Theorem 2 concerning sufficient local d.c. optimality condi-
tions and their consequences, e.g., the d.c. duality transportation of local
minimizers. The latter is very helpful to establish relationships between
local minimizers of primal and dual d.c. programs. All these results are
indispensable to understanding DCA for locally solving primal and dual
d.c. programs. The description of DCA and its convergence are presented
in Section 3. Section 4 is devoted to polyhedral d.c. programs. Regu-
larization techniques in d.c. programming are studied in Section 5 which
emphasizes the role of the proximal regularization in d.c. programming.
Some discussions about functions being more convex or less convex and
their role in d.c. programming are given in Section 6. Except for the
case h = λ

2 ‖ · ‖2 ∈ Γo(X), one does not know if g∗ is less convex than
h∗ whenever g is more convex than h. A response (positive or negative)
to this question or/and, more thoroughtly, a characterization of functions
g, h ∈ Γo(X) satisfying such a property are particularly important for
d.c. programming. They enable us to formulate “false” d.c. programs (i.e.,
convex programs in reality) whose dual d.c. programs are truly nonconvex.
It is surprising enough that the above question remains completely open.
We present in Section 7 the relation between DCA and the proximal point
algorithm (PPA) (resp. the Goldstein-Levitin-Polyak gradient projection
algorithm) in convex programming. Section 8 is related to exact penalty,
Lagrangian duality without gap and dimensional reduction in d.c. pro-
gramming. Last but not least, Section 9 is devoted to the applications
of DCA to solving a lot of important real-life d.c. programs, for each of
them an appropriate d.c. decomposition and the corresponding DCA are
presented. Numerical experiments proved that the DCA applied to these
problems converges to a local solution which is quite often a global one.
They showed at the same time the robustness and the efficiency of the
DCA with respect to related standard methods.

(i) The trust region subproblem ([79], [83]).
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The DCA for the trust region subproblem is quite different from related
standard algorithms ([19], [63], [77], [91], [96], [100]). It indifferently treats
both the normal and hard cases and requires matrix-vectors products only.
A very simple numerical procedure has been introduced in [83] to find a
new point with smaller value of the quadratic objective function in case of
non globality. According to Theorem 4 of [83], the DCA with at most 2m+
2 restartings (m being the number of distinct negative eigenvalue of the
matrix being considered) converges to a global solution of the trust region
subproblem. In practice the DCA rarely has recourse to the restarting
procedure. From the computational viewpoint, a lot of our numerical
experiments proved the robustness and efficiency of the DCA with respect
to other known algorithms, especially in the large-scale setting ([83]).

(ii) The multidimensional scaling problem (MDS) ([84]).
Recently MDS earned particular attention of researchers by its role

in semidefinite programming ([61]), the molecule problem ([34]), the pro-
tein structure determination problem ([116], [117]) and the protein folding
problem ([30]).

As in the trust region subproblem, the Lagrangian duality relative to
MDS has zero gap. That leads to quite appropriate d.c. decompositions
and simple DCA (requiring matrix-vector products only). In particular,
the reference de Leeuw algorithm has been pointed out as DCA corre-
sponding to some d.c. decomposition.

Except for the case where the dissimilarity matrix represents really
the Euclidean distances between n objects (for which the optimal value
is zero), the graph of the dual objective function ([84]) can be used to
checking the globality of solutions computed by DCA. It is worth noting
that MDS can be formulated as a parametrized trust region subproblem
and a parametrized DCA applied to this problem is exactly a form of the
DCA applied directly to MDS.

(iii) Linearly constrained indefinite quadratic programs ([2]).
Linearly constrained indefinite quadratic problems play an important

role in global optimization. We study d.c. theory and its local approach to
such problems. The DCA efficiently produces local optima and sometimes
produces global optima. We also propose a decomposition branch-and-
bound method for globally solving these problems.

(iv) A branch-and-bound method via DCA and ellipsoidal technique
for box constrained quadratic programs ([3]).

We propose a new branch-and-bound algorithm using a rectangular
partition and ellipsoidal technique for minimizing a nonconvex quadratic
function with box constraints. The bounding procedures are investigated
by the DCA. This is based upon the fact that the application of the DCA
to the problems of minimizing a quadratic form over an ellipsoid and/or
over a box is efficient. Some details of the computational aspect of the
algorithm are reported.
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(v) The DCA with an escaping procedure for globally solving nonconvex
quadratic programs ([4]).

(vi) D.c. approach for linearly constrained quadratic zero-one program-
ming problems ([5]).

(vii) Optimization over the efficient set problem ([6]).

We use the DCA for (locally) maximizing a concave, a convex or a
quadratic function f over the efficient set of a multiple objective convex
program. We also propose a decomposition method for globally solving
this problem with f concave. Numerical experiences are discussed.

(viii) Linear and nonlinear complementarity problems.

Difference of subdifferentials (of convex functions) complementarity
problem ([85]).

2. Duality and optimality for d.c. program

Let the space X = IRn be equipped with the canonical inner product
〈·, ·〉. Thus, the dual space Y of X can be identified with X itself. Denote
by Γo(X) the set of all proper lower semi-continuous convex functions on
X. The conjugate function g∗ of g ∈ Γo(X) is a function belonging to
Γo(Y ) and defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ X}.

The Euclidean norm of X is denoted by ‖x‖ = 〈x, x〉1/2. For a convex
set C in X the indicator function of C is denoted by χC(x) which is equal
to 0 if x ∈ C and +∞ otherwise. We shall use the following usual notations
of [93]

dom g = {x ∈ X : g(x) < +∞}.

For ε > 0 and xo ∈ dom g, the symbol ∂εg(xo) denotes ε-subdifferential
of g at xo, i.e.,

∂εg(xo) = {y ∈ Y : g(x) ≥ g(xo) + 〈x− xo, y〉 − ε ∀x ∈ X},

while ∂g(xo) stands for the usual (or exact) subdifferential of g at xo. Also,
dom ∂g = {x ∈ X : ∂g(x) 6= ∅} and range ∂g = ∪{∂g(x) : x ∈ dom ∂g}.
We adopt in the sequel the convention +∞−(+∞) = +∞. A d.c. program
is that of the form

(P) α = inf{f(x) := g(x)− h(x) : x ∈ X},

where g and h belong to Γo(X).



D. C. PROGRAMMING 295

Such a function f is called d.c. function on X and g, h are called its d.c.
components. If g and h are in addition finite on all of X then one says
that f = g−h is finite d.c. function on X. The set of d.c. functions (resp.
finite d.c. functions) on X is denoted by DC(X) (resp. DCf (X)).
Using the definition of conjugate functions, we have

α = inf{g(x)− h(x) : x ∈ X}
= inf{g(x)− sup{〈x, y〉 − h∗(y) : y ∈ Y } : x ∈ X}
= inf{β(y) : y ∈ Y }

with
(Py) β(y) = inf{g(x)− (〈x, y〉 − h∗(y)) : x ∈ X}.

It is clear that β(y) = h∗(y)−g∗(y) if y ∈ dom h∗, +∞ otherwise. Finally,
we state the dual problem

α = inf{h∗(y)− g∗(y) : y ∈ domh∗},

that is written, according to the above convention, as

(D) α = inf{h∗(y)− g∗(y) : y ∈ Y }.

We observe the perfect symmetry between primal and dual programs
(P) and (D): the dual program to (D) is exactly (P).

Note that the finiteness of α merely implies that

(1) dom g ⊂ dom h and dom h∗ ⊂ dom g∗.

Such inclusions will be assumed throughout the paper.
This d.c. duality was first studied by J.F. Toland ([108]) in a more

general framework. It can be considered as a logical generalization of
our earlier works concerning convex maximization (see [71] and references
therein).

It is worth noting the richness of the sets DC(X) and DCf (X) ([1], [36],
[44], [80]):

(i) DCf (X) is a subspace containing the class of lower-C2 functions
(f is said to be lower-C2 if f is locally a supremum of a family of C2

functions). In particular, DC(X) contains the space C1,1(X) of functions
whose gradient is locally Lipschitzian on X.

(ii) Under some caution we can say that DC(X) is the subspace gener-
ated by the convex cone Γo(X) : DC(X) = Γo(X)−Γo(X). This relation
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marks the passage from convex optimization to nonconvex optimization
and also indicates that DC(X) constitutes a minimal realistic extension of
Γo(X).

(iii) DCf (X) is closed under all the operations usually considered in
optimization. In particular, a linear combination of fi ∈ DC(X) belongs
to DCf (X), a finite supremum of d.c. functions is d.c..

Let us give below some useful formulations relative to these results. If
fi ∈ DC(X), fi = gi − hi for i = 1, . . . ,m, then

min
i

fi =
m∑

i=1

gi −max
i

[
hi +

m∑

j=1,j 6=i

gj

]
.

If f = g − h, then

f+ = max(g, h)− h, f− = max(g, h)− g, |f | = 2 max(g, h)− (g + h).

Proposition 1 ([36], [80]). Every nonnegative d.c. function f = g − h
(g, h ∈ Γo(X)) admits a nonnegative d.c. decomposition, i.e., f = g1−h1

with g1, h1 being in Γo(X) and nonnegative.

Proof. The functions g1 and h1 are defined in [36] by

g1 = g − (〈b, ·〉 − h∗(b)), h1 = h− (〈b, ·〉 − h∗(b))

with b ∈ dom h∗.
The following nonnegative decomposition of f , with λ being a positive

number given in [80], is intimately related to the proximal regularization
technique (Section 5)

g1 = g +
λ

2
‖ · ‖2 + (h +

λ

2
‖ · ‖2)∗(0),

h1 = h +
λ

2
‖ · ‖2 + (h +

λ

2
‖ · ‖2)∗(0).

Remark that Proposition 1 remains true in DC(X).

More generally, every f ∈ DC(X) admits (by using f+ and f−) a
nonnegative d.c. decomposition. It follows that if f1, f2 ∈ DC(X), then
by taking their nonnegative d.c. decomposition fi = gi − hi, i = 1, 2, the
product f1 · f2 is a d.c. function ([36])

f1.f2 =
1
2

[
(g1 + g2)

2 + (h1 + h2)
2
]
− 1

2

[
(g1 + h1)

2 + (g2 + h2)
2
]
.
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These result have been extended to d.c. functions [80] as follows: Let
fi ∈ DC(X), fi = gi − hi be such that

dom gi = C ⊂ domhi for i = 1, . . . , m

then the effective domain of f = min fi is C and f = g−h with g =
n∑

i=1

gi

and h = max
i

(hi +
n∑

j=1,j 6=i

gj).

If f = g−h with dom g = dom h = C, then • C is the effective domain
of the next d.c. functions

f+ = max(g, h)− h, f− = max(g, h)− g,

|f | = 2 max(g, h)− (g + h).

• f admits a nonnegative d.c. decomposition f = g1−h1 with dom g1 =
domh1 = C.

If fi = gi − hi with dom gi = dom hi = C for i = 1, 2, then

◦ they admit a nonnegative d.c. decomposition fi = gi − hi with
dom gi = dom hi = C for i = 1, 2;
◦ the product f1 · f2 is a d.c. function

f1 · f2 =
1
2

[
(g1 + g2)

2 + (h1 + h2)2
]
− 1

2

[
(g1 + h1)2 + (g2 + h2)2

]

with dom f1 · f2 = C.
A point x∗ is said to be a local minimizer of g − h if g(x∗) − h(x∗) is

finite (i.e., x∗ ∈ dom g ∩ domh) and there exists a neighbourhood U of x∗
such that

(2) g(x∗)− h(x∗) ≤ g(x)− h(x), ∀x ∈ U.

Under the convention +∞− (+∞) = +∞, the property (2) is equivalent
to g(x∗)− h(x∗) ≤ g(x)− h(x), ∀x ∈ U ∩ dom g.

x∗ is said to be a critical point of g − h if ∂g(x∗) ∩ ∂h(x∗) 6= ∅.
intS denotes the interior of the set S in X. Moreover, if S is convex,

then riS stands for the relative interior of S.
A convex function f on X is said to be essentially differentiable if it

satisfies the following three conditions ([93]) :

(i) C = int (dom f) 6= ∅,
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(ii) f is differentiable on C,

(iii) lim
k→∞

‖∇f(xk)‖ = +∞ for every sequence {xk} which converges to

a point at the boundary of C.
Let ρ ≥ 0 and C be a convex subset of X. One says that a function

θ : C −→ IR ∪ {+∞} is ρ-convex if

θ[λx + (1− λ)x′] ≤ λθ(x) + (1− λ)θ(x′)− λ(1− λ)
2

ρ‖x− x′‖2,

∀λ ∈]0, 1[, ∀x, x′ ∈ C.

It amounts to say that θ − (ρ/2)‖ · ‖2 is convex on C. The modulus of
strong convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X, is given
by:

(3) ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}.

One say that θ is strongly convex on C if ρ(θ, C) > 0.

For f ∈ Γo(X) and λ > 0 the Moreau-Yosida regularization of f with
parameter λ, denoted by fλ, is the inf-convolution of f and 1

2λ‖ · ‖2. The
function fλ is continuously differentiable, underapproximates f without
changing the set of minimizers and (fλ)µ = fλ+µ. More precisely, ∇fλ =
1
λ [I− (I +λ∂f)−1] is Lipschitzian with ratio 1

λ . The operator (I +λ∂f)−1

is called the proximal mapping associated to λf ([94]).

Let P and D denote the solution sets of problems (P) and (D), respec-
tively, and let

P` = {x∗ ∈ X : ∂h(x∗) ⊂ ∂g(x∗)},
D` = {y∗ ∈ Y : ∂g∗(y∗) ⊂ ∂h∗(y∗)}.

We present below some fundamental results of d.c. optimization which
constitute the basis of DCA presented in Subsection 3.3.

2.1 Duality and global optimality for d.c. optimization

Theorem 1. Let P and D be the solution sets of problems (P) and
(D), respectively. Then

(i) x ∈ P if and only if ∂εh(x) ⊂ ∂εg(x) ∀ε > 0.

(ii) Dually, y ∈ D if and only if ∂εg
∗(y) ⊂ ∂εh

∗(y) ∀ε > 0.

(iii) ∪{∂h(x) : x ∈ P} ⊂ D ⊂ domh∗.



D. C. PROGRAMMING 299

The first inclusion becomes equality if g∗ is subdifferentiable in D (in
particular if D ⊂ ri (dom g∗) or if g∗ is subdifferentiable in domh∗).

In this case D ⊂ (dom ∂g∗ ∩ dom ∂h∗).

(iv) ∪{∂g∗(y) : y ∈ D} ⊂ P ⊂ dom g.

The first inclusion becomes equality if h is subdifferentiable in P (in
particular if P ⊂ ri (dom h) or if h is subdifferentiable in dom g). In this
case P ⊂ (dom ∂g ∩ dom ∂h).

The relationship between primal and dual solutions: ∪{∂h(x) : x ∈
P} ⊂ D and ∪{∂g∗(y) : y ∈ D} ⊂ P is due to J.F. Toland ([108])

in the general context of duality principle dealing with linear vector
spaces in separating duality. A direct proof of the results (except for
Properties (i) and (ii)) of Theorem 1, based on the theory of subdifferential
for convex functions is given in [1], [76], [80]. The properties (i) and
(ii) have been first established by J.B. Hiriart-Urruty ([37]). His proof
(based on his earlier work concerning the behaviour of the ε-directional
derivative of a convex function as a function of the parameters ε) is rather
complicated. The following proof of these properties is very simple and
well suited to our d.c. duality framework ([1], [76], [80]). In fact, they are
nothing but a geometrical translation of the equality of the optimal value
in the primal and dual d.c. programs (P) and (D).
Indeed, in virtue of the d.c. duality, x∗ ∈ P if and only if x∗ ∈ dom g and

(4) g(x∗)− h(x∗) ≤ h∗(y)− g∗(y), ∀y ∈ domh∗,

i.e.,

(5) g(x∗) + g∗(y) ≤ h(x∗) + h∗(y), ∀y ∈ domh∗.

On the other hand, for x∗ ∈ dom h, the property ∂εh(x∗) ⊂ ∂εg(x∗) ∀ε > 0
is, by definition, equivalent to

(6) ∀ε > 0, 〈x∗, y〉+ ε ≥ h(x∗) + h∗(y) ⇒ 〈x∗, y〉+ ε ≥ g(x∗) + g∗(y).

It is easy to see the equivalence between (5) and (6), and property (i) thus
is proved.

The global optimality condition in (i) is difficult to use for deriving
solution methods to problem (P). The algorithms DCA which will be
described in Subsection 3.1. are based on local optimality conditions.
The relations (ii) and (iv) indicate that solving the primal d.c. program
(P) implies solving the dual d.c. program (D) and vice-versa. It may be
useful if one of them is easier to solve than the other.
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2.2. Duality and local optimality conditions for d.c. optimization

Theorem 2. (i) If x∗ is a local minimizer of g − h, then x∗ ∈ P`.

(ii) Let x∗ be a critical point of g− h and y∗ ∈ ∂g(x∗)∩ ∂h(x∗). Let U
be a neighbourhood of x∗ such that U ∩ dom g ⊂ dom ∂h.

If for any x ∈ U ∩ dom g there is y ∈ ∂h(x) such that h∗(y)− g∗(y) ≥
h∗(y∗)− g∗(y∗), then x∗ is a local minimizer of g − h. More precisely,

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U ∩ dom g.

Property (i) is well known ([1], [37], [76], [108]). To facilitate the reading
we give below a short proof for it.

Property (ii) is new, it establishes an interesting sufficient condition

(dealing with the d.c. duality) for the local d.c. optimality.

Proof. (i) If x∗ is a local minimizer of g − h, then there exists a neigh-
bourhood of x∗ such that

g(x)− g(x∗) ≥ h(x)− h(x∗), ∀x ∈ U ∩ dom g.

Hence, for y∗ ∈ ∂h(x∗) we have g(x)−g(x∗) ≥ 〈x−x∗, y∗〉, ∀x ∈ U∩dom g.
The convexity of g then implies that y∗ ∈ ∂g(x∗).

(ii) The condition y∗ ∈ ∂g(x∗) ∩ ∂h(x∗) implies g(x∗) + g∗(y∗) =
〈x∗, y∗〉 = h(x∗) + h∗(y∗). Hence,

(7) g(x∗)− h(x∗) = h∗(y∗)− g∗(y∗).

For any x ∈ U ∩ dom g, by assumption, there is y ∈ ∂h(x) such that

(8) h∗(y)− g∗(y) ≥ h∗(y∗)− g∗(y∗).

On the other hand, we have h(x) + h∗(y) = 〈x, y〉 ≤ g(x) + g∗(y). Hence,

(9) g(x)− h(x) ≥ h∗(y)− g∗(y).

Combining (7), (8), (9), we get g(x) − h(x) ≥ g(x∗) − h(x∗), ∀x ∈ U ∩
dom g.

Corollary 1 (sufficient local optimality). Let x∗ be a point that admits
a neighbourhood U such that ∂h(x)∩∂g(x∗) 6= ∅, ∀x ∈ U∩dom g. Then x∗
is a local minimizer of g−h. More precisely, g(x)−h(x) ≥ g(x∗)−h(x∗),
∀x ∈ U ∩ dom g.
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Proof. Let x ∈ U ∩ dom g and let y ∈ ∂h(x) ∩ ∂g(x∗). Since y ∈
∂h(x) we have h(x) + h∗(y) = 〈x, y〉 ≤ g(x) + g∗(y). So g(x) − h(x) ≥
h∗(y)−g∗(y). Similarly, y ∈ ∂g(x∗) implies that g(x∗)+g∗(y) = 〈x∗, y〉 ≤
h(x∗) + h∗(y). Then, h∗(y)− g∗(y) ≥ g(x∗)− h(x∗).

If y∗ ∈ ∂h(x∗)∩∂g(x∗), then g(x∗)+g∗(y∗) = 〈x∗, y∗〉 = h(x∗)+h∗(y∗).

Hence, g(x∗) − h(x∗) = h∗(y∗) − g∗(y∗). The assumptions of (ii) in
Theorem 2 are fulfilled. Thus, the proof is complete.

A function θ ∈ Γo(X) is said to be polyhedral convex if ([93])

θ(x) = max{〈ai, x〉 − αi : i = 1, . . . , m}+ χC(x) ∀x ∈ X,

where C is a nonempty polyhedral convex set in X.
Polyhedral d.c. optimization occurs when either g or h is polyhedral

convex. This class of d.c. optimization problems, which is frequently en-
countered in practice, enjoys interesting properties (from both theoretical
and practical viewpoints) concerning local optimality and the convergence
of DCA, and has been extensively developed in [1], [81].

Corollary 1 can be used to prove the following well known result due to
C. Michelot (in the case where g, h belonging to Γo(X) are finite on the
whole X and generalized by us ([1], [81]) to the case of arbitrary g and h
belonging to Γo(X)): the converse of property (i) of Theorem 2 in case h
is polyhedral convex.

Corollary 2 (sufficient strict local optimality). If x∗ ∈ int(dom h) verifies
∂h(x∗) ⊂ int(∂g(x∗)), then x∗ is a strict local minimizer of g − h.

Proof. From the upper semicontinuity of the operator ∂h at x∗ ∈ int(domh)
([93]) it follows that for any open set O containing ∂h(x∗) there is a neigh-
bourhood U of x∗ such that ∂h(x) ⊂ O, ∀x ∈ U . Hence, by letting
O = int(∂g(x∗)) and taking Corollary 1 into account, we have x∗ is a
local minimizer of g − h. But x∗ is actually a strict local minimizer of
g − h. Indeed, since ∂h(x) is compact for x ∈ V = U ∩ int(domh), we
have ∀x ∈ V ∃ε(x) > 0 such that ∂h(x) + ε(x)B ⊂ O (B being the closed
unit ball of the Euclidean norm).

Now let x ∈ V \{x∗} and y ∈ ∂h(x). Then

g(x)− g(x∗) ≥ 〈x− x∗, y +
ε(x)

‖x− x∗‖ (x− x∗)〉
= ε(x)‖x− x∗‖+ 〈x− x∗, y〉
≥ ε(x)‖x− x∗‖+ h(x)− h(x∗).

The proof is complete.
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It may happen that the dual d.c. program (D) is easier to locally solve
than the primal d.c. program (P). So it is useful to state results relative
to the d.c. duality transportation of local minimizers. Paradoxically, such
a result is more complicated than the d.c. duality transportation of global
minimizers in Theorem 1.

Corollary 3 (d.c. duality transportation of a local minimizer). Let x∗ ∈
dom ∂h be a local minimizer of g − h and let y∗ ∈ ∂h(x∗) (i.e., ∂h(x∗)
is nonempty and x∗ admits a neighbourhood U such that g(x) − h(x) ≥
g(x∗)− h(x∗), ∀x ∈ U ∩ dom g). If

(10) y∗ ∈ int(dom g∗) and ∂g∗(y∗) ⊂ U

((10) holds if g∗ is differentiable at y∗), then y∗ is a local minimizer of
h∗ − g∗.

Proof. According to (i) of Theorem 2 we have y∗ ∈ ∂h(x∗) ⊂ ∂g(x∗).
So, x∗ ∈ ∂g∗(y∗) ∩ ∂h∗(y∗). Under the assumption (10) and the upper
semicontinuity of ∂g∗, y∗ admits a neighbourhood V ⊂ int(dom g∗) such
that ([93]) ∂g∗(V ) ⊂ U . More precisely, ∂g∗(V ) ⊂ (U ∩ dom g), since
we have ([93]) range ∂g∗ = dom ∂g and dom ∂g ⊂ dom g. Using the dual
property (in the d.c. duality) in (ii) of Theorem 2, we deduce that y∗ is a
local minimizer of h∗ − g∗.

If g∗ is differentiable at y∗, then x∗ = ∂g∗(y∗) and we have (10) ([93]).

By the symmetry of the d.c. duality, Corollary 3 has its corresponding
dual part.

Remark 1. This result improves an earlier result of J.F. Toland ([108])
where he assumed that g∗ is differentiable on the whole dual space Y . In
[1], [81] we have proved that this result remains true if g∗ is only essentially
differentiable.

3. D.c. algorithm (DCA) for general d.c. programs

3.1. Description of DCA for general d.c. programs

For each fixed x∗ ∈ X we consider the problem

(S(x∗)) inf{h∗(y)− g∗(y) : y ∈ ∂h(x∗)},

which is equivalent to the convex maximization one

inf{〈x∗, y〉 − g∗(y) : y ∈ ∂h(x∗)}.
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Similarly, for each fixed y∗ ∈ Y , for duality, we define the problem

(T (y∗)) inf{g(x)− h(x) : x ∈ ∂g∗(y∗)}.
This problem is equivalent to

inf{〈x, y∗〉 − h(x) : x ∈ ∂g∗(y∗)}.
Let S(x∗), T (y∗) denote the solution sets of Problems (S(x∗)) and (T (y∗)),
respectively.

The complete form of DCA is based upon duality of d.c. optimization
defined by (P) and (D). It allows approximating a point (x∗, y∗) ∈ P`×D`.
From a point xo ∈ dom g given in advance, the algorithm consists of
constructing two sequences {xk} and {yk} defined by

(11) yk ∈ S(xk); xk+1 ∈ T (yk).

The complete DCA can be viewed as a sort of decomposition approach
of the primal and dual problems (P), (D). From a practical point of view,
although the problems (S(xk)) and (T (xk)) are simpler than (P), (D)
(we work in ∂h(xk) and ∂g∗(yk) with convex maximization problems),
they remain nonconvex programs and thus are still of a difficult task (see
Subsection 3.3). In practice the following simplified form of DCA is used:

• Simplified form of DCA:

The idea of the simplified DCA is to construct two sequences {xk} and
{yk} (candidates to primal and dual solutions) which are easy to calculate
and satisfy the following conditions:

(i) The sequences (g − h)(xk) and (h∗ − g∗)(yk) are decreasing.

(ii) Every limit point x∗ (resp. y∗) of the sequence {xk} (resp. {yk})
is a critical point of g − h (resp. h∗ − g∗).

These conditions suggest constructing two sequences {xk} and {yk},
starting from a given point xo ∈ dom g by setting

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk).

Interpretation of the simplified DCA:
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At each iteration k we do the following:

xk ∈ ∂g∗(yk−1) → yk ∈ ∂h(xk)

= argmin{h∗(y)− [g∗(yk−1) + 〈xk, y − yk−1〉] : y ∈ Y }, (Dk)

yk ∈ ∂h(xk) → xk+1 ∈ ∂g∗(yk)

= argmin{g(x)− [h(xk) + 〈x− xk, yk〉] : x ∈ X}. (Pk)

Problem (Pk) is a convex program obtained from (P) by replacing h with
its affine minorization defined by yk ∈ ∂h(xk). Similarly, the convex
problem (Dk) is obtained from (D) by using the affine minorization of
g∗ defined by xk ∈ ∂g∗(yk−1). Here we can see the complete symmetry
between problems (Pk) and (Dk), and between the sequences {xk} and
{yk} relative to the duality of d.c. optimization. The two forms of DCA
are identical if g∗ and h are essentially differentiable.

• Well definiteness of DCA:

DCA is well defined if one can construct two sequences {xk} and {yk}
as above from an arbitrary initial point xo ∈ dom g. We have xk+1 ∈
∂g∗(yk) and yk ∈ ∂h(xk), ∀k ≥ 0. So {xk} ⊂ range ∂g∗ = dom ∂g and
{yk} ⊂ range ∂h = dom ∂h∗. Then it is clear that

Lemma 1. Sequences {xk}, {yk} in DCA are well defined if and only if

dom ∂g ⊂ dom ∂h and dom ∂h∗ ⊂ dom ∂g∗.

Since for ϕ ∈ Γo(X) we have ri(dom ϕ) ⊂ dom ∂ϕ ⊂ domϕ ([93])
(ri (dom ϕ) stands for the relative interior of domϕ) we can say, under
the essential assumption (1), that DCA is in general well defined.

Remark 2. A d.c. function f has infinitely many d.c. decompositions. For
example if f = g−h, then f = (g+θ)−(h+θ) for every θ ∈ Γo(X) finite on
the whole X. It is clear that the primal d.c. programs (P) corresponding to
the two d.c. decompositions of the objective function f are identical. But
their dual programs are quite different and so is DCA relative to these d.c.
decompositions. In other words, there are as many DCA as there are d.c.
decompositions of the objective function f . It is so useful to find a suitable
d.c. decomposition of f since it may have an important influence on the
efficiency of DCA for its solution. This question is intimately related to
the regularization techniques in d.c. programming ([1], [76], [80]).
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3.2. Convergence of DCA for general d.c. programs

Let ρi and ρ∗i , (i = 1, 2) be real nonnegative numbers such that 0 ≤
ρi < ρ(fi) (resp. 0 ≤ ρ∗i < ρ(f∗i )) where ρi = 0 (resp. ρ∗i = 0) if ρ(fi) = 0
(resp. ρ(f∗i ) = 0) and ρi (resp. ρ∗i ) may take the value ρ(fi) (resp. ρ(f∗i ))
if it is attained. We next set f1 = g and f2 = h. Also let dxk := xk+1−xk

and dyk := yk+1 − yk.

The basic convergence theorem of DCA for general d.c. programming
will be stated below.

Theorem 3. Suppose that the sequences {xk} and {yk} are defined by
the simplified DCA. Then we have

(i) (g − h)(xk+1) ≤ (h∗ − g∗)(yk)−max
{ρ2

2
‖dxk‖2, ρ∗2

2
‖dyk‖2

}

≤ (g − h)(xk)−max
{ρ1 + ρ2

2
‖dxk‖2, ρ∗1

2
‖dyk−1‖2

+
ρ2

2
‖dxk‖2, ρ∗1

2
‖dyk−1‖2 +

ρ∗2
2
‖dyk‖2

}
.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if xk ∈
∂g∗(yk), yk ∈ ∂h(xk+1) and (ρ1 + ρ2)dxk = ρ∗1dyk−1 = ρ∗2dyk = 0. In this
case

• (g − h)(xk+1) = (h∗ − g∗)(yk) and xk, xk+1 are the critical points of
g−h satisfying yk ∈ (∂g(xk)∩∂h(xk)) and yk ∈ (∂g(xk+1)∩∂h(xk+1)),

• yk is a critical point of h∗ − g∗ satisfying [xk, xk+1] ⊂ ((∂g∗(yk) ∩
∂h∗(yk)),

• xk+1 = xk if ρ(g) + ρ(h) > 0, yk = yk−1 if ρ(g∗) > 0 and yk = yk+1 if
ρ(h∗) > 0.

(ii) Similarly, for the dual problem we have

(h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)−max
{ρ1

2
‖dxk+1‖2, ρ∗1

2
‖dyk‖2

}

≤ (h∗ − g∗)(yk)−max
{ρ1

2
‖dxk+1‖2 +

ρ2

2
‖dxk‖2,

ρ∗1
2
‖dyk‖2 +

ρ2

2
‖dxk‖2, ρ∗1 + ρ∗2

2
‖dyk‖2

}
.

The equality (h∗−g∗)(yk+1) = (h∗−g∗)(yk) holds if and only if xk+1 ∈
∂g∗(yk+1), yk ∈ ∂h(xk+1) and (ρ∗1 + ρ∗2)dyk = ρ2dxk = ρ1dxk+1 = 0. In
this case



306 PHAM DINH TAO AND LE THI HOAI AN

• (h∗ − g∗)(yk+1) = (g − h)(xk+1) and yk, yk+1 are the critical points of
h∗− g∗ satisfying xk+1 ∈ (∂g∗(yk)∩∂h∗(yk)) and xk+1 ∈ (∂g∗(yk+1)∩
∂h∗(yk+1)),

• xk+1 is a critical point of g − h satisfying [yk, yk+1] ⊂ ((∂g(xk+1) ∩
∂h(xk+1)),

• yk+1 = yk if ρ(g∗)+ρ(h∗) > 0, xk+1 = xk if ρ(h) > 0 and xk+1 = xk+2

if ρ(g) > 0.

(iii) If α is finite then the decreasing sequences {(g−h)(xk)} and {(h∗−
g∗)(yk)} converge to the same limit β ≥ α, i.e., lim

k→+∞
(g − h)(xk) =

lim
k→+∞

(h∗ − g∗)(yk) = β. If ρ(g) + ρ(h) > 0 (resp. ρ(g∗) + ρ(h∗) > 0),

then lim
k→+∞

{xk+1 − xk} = 0 (resp. lim
k→+∞

{yk+1 − yk} = 0).

Moreover, lim
k→+∞

{g(xk) + g∗(yk) − 〈xk, yk〉} = 0 = lim
k→+∞

{h(xk+1) +

h∗(yk)− 〈xk+1, yk〉}.
(iv) If α is finite and the sequences {xk} and {yk} are bounded, then

for every limit x∗ of {xk} (resp. y∗ of {yk}) there exists a cluster point
y∗ of {yk} (resp. x∗ of {xk}) such that

• (x∗, y∗) ∈ [∂g∗(y∗) ∩ ∂h∗(y∗)] × [∂g(x∗) ∩ ∂h(x∗)] and (g − h)(x∗) =
(h∗ − g∗)(y∗) = β,

• lim
k→+∞

{g(xk) + g∗(yk)} = lim
k→+∞

〈xk, yk〉.

Proof. First, we need the following results

Proposition 2. Suppose that the sequences {xk} and {yk} are generated
by the simplified DCA. Then we have

(i) (g−h)(xk+1) ≤ (h∗−g∗)(yk)−ρ2
2 ‖dxk‖2 ≤ (g−h)(xk)−ρ1+ρ2

2 ‖dxk‖2.
The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if

xk ∈ ∂g∗(yk), yk ∈ ∂h(xk+1) and (ρ1 + ρ2)‖dxk‖ = 0.

(ii) Similarly, by duality, we have

(h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)− ρ∗1
2
‖dyk‖2

≤ (h∗ − g∗)(yk)− ρ∗1 + ρ∗2
2

‖dyk‖2.
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The equality (h∗ − g∗)(yk+1) = (h∗ − g∗)(yk) holds if and only if

xk+1 ∈ ∂g∗(yk+1), yk ∈ ∂h(xk+1) and (ρ∗1 + ρ∗2)‖dyk‖ = 0.

Proof of Proposition 2. (i) The inclusion yk ∈ ∂h(xk) follows that

h(xk+1) ≥ h(xk) + 〈xk+1 − xk, yk〉+
ρ2

2
‖dxk‖2. Hence,

(12) (g − h)(xk+1) ≤ g(xk+1)− 〈xk+1 − xk, yk〉 − h(xk)− ρ2

2
‖dxk‖2.

Likewise, xk+1 ∈ ∂g∗(yk) implies

g(xk) ≥ g(xk+1) + 〈xk − xk+1, yk〉+
ρ1

2
‖dxk‖2.

So,

(13) g(xk+1)− 〈xk+1 − xk, yk〉 − h(xk) ≤ (g − h)(xk)− ρ1

2
‖dxk‖2.

On the other hand,

xk+1 ∈ ∂g∗(yk) ⇔ 〈xk+1, yk〉 = g(xk+1) + g∗(yk),(14)

yk ∈ ∂h(xk) ⇔ 〈xk, yk〉 = h(xk) + h∗(yk).(15)

Thus,

(16) g(xk+1)− 〈xk+1 − xk, yk〉 − h(xk) = h∗(yk)− g∗(yk).

Finally, combining (12), (13) and (16), we get
(17)

(g−h)(xk+1) ≤ (h∗− g∗)(yk)− ρ2

2
‖dxk‖2 ≤ (g−h)(xk)− ρ1 + ρ2

2
‖dxk‖2.

If ρ1 +ρ2 > 0, the last statement of (i) is an immediate consequence of the
equality dxk = 0 and the construction of the sequences {xk} and {yk}.

It is clear that there exist ρ1 and ρ2 such that ρ1 +ρ2 > 0 if and only if
ρ(h) + ρ(g) > 0. In the case ρ(h) = ρ(g) = 0, (15) implies the equivalence
between (g − h)(xk+1) = (g − h)(xk) and the combination (18) and (19):

(g − h)(xk+1) = (h∗ − g∗)(yk),(18)

(h∗ − g∗)(yk) = (g − h)(xk).(19)
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We then deduce from (14) and (18) that h(xk+1) + h∗(yk) = 〈xk+1, yk〉,
i.e., yk ∈ ∂h(xk+1).

Similarly, (15) and (19) give g(xk) + g∗(yk) = 〈xk, yk〉, i.e., xk ∈
∂g∗(yk).

Property (ii) is analogously proved.

The following result is an important consequence of Proposition 2

Corollary 4.

(i) (g − h)(xk+1) ≤ (h∗ − g∗)(yk)− ρ2

2
‖dxk‖2

≤ (g − h)(xk)−
[ρ∗1

2
‖dyk−1‖2 +

ρ2

2
‖dxk‖2

]
.

(ii) (g − h)(xk+1) ≤ (h∗ − g∗)(yk)− ρ∗2
2
‖dyk‖2

≤ (g − h)(xk)−
[ρ∗1

2
‖dyk−1‖2 +

ρ∗2
2
‖dyk‖2

]
.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if

xk ∈ ∂g∗(yk), yk ∈ ∂h(xk+1) and (ρ1 + ρ2)dxk = ρ∗1dyk−1 = ρ∗2dyk = 0.

Similarly, by duality, we have

iii) (h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)
ρ∗1
2
‖dyk‖2

≤ (h∗ − g∗)(yk)−
[ρ∗1

2
‖dyk‖2 +

ρ2

2
‖dxk‖2

]
.

(iv) (h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)− ρ1

2
‖dxk+1‖2

≤ (h∗ − g∗)(yk)−
[ρ1

2
‖dxk+1‖2 +

ρ2

2
‖dxk‖2

]
.

The equality (h∗ − g∗)(yk+1) = (h∗ − g∗)(yk) holds if and only if

xk+1 ∈ ∂g∗(yk+1), yk ∈ ∂h(xk+1) and

(ρ∗1 + ρ∗2)dyk = ρ2dxk = ρ1dxk+1 = 0.

Proof. The inequalities in (i) and (ii) are easily deduced from Properties
(i) and (ii) of Proposition 2. The inequalities in (iii) and (iv) can be shown
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by the same arguments as in the proof of Proposition 2.

We are now in a position to demonstrate Theorem 3.

Proof of Theorem 3. Properties (i) and (ii) are proved analogously, there-
fore we give here the proof for (i) only.

The first inequality of (i) is an immediate consequence of (i) and (ii) of
Corollary 4.

• If ρ2‖dxk‖2 ≤ ρ∗2‖dyk‖2, then (ii) of Corollary 4 follows that

(h∗ − g∗)(yk)−max
{ρ2

2
‖dxk‖2, ρ∗2

2
‖dyk‖2

}
= (h∗ − g∗)(yk)− ρ∗2

2
‖dyk‖2

≤ (g − h)(xk)−
{ρ∗1

2
‖dyk−1‖2 +

ρ∗2
2
‖dyk‖2

}
.

Parallelly, Property (i) of Corollary 4 implies

(h∗ − g∗)(yk)− ρ∗2
2
‖dyk‖2 ≤ (h∗ − g∗)(yk)− ρ2

2
‖dxk‖2

≤ (g − h)(xk)−
[ρ∗1

2
‖dyk−1‖2 +

ρ2

2
‖dxk‖2

]
.

On the other hand, by (i) of Proposition 2

(h∗ − g∗)(yk)− ρ∗2
2
‖dyk‖2 ≤ (h∗ − g∗)(yk)− ρ2

2
‖dxk‖2

≤ (g − h)(xk)− ρ1 + ρ2

2
‖dxk‖2.

Combining these inequalities, we get the second inequality of (i).

• If ρ∗2‖dyk‖2 ≤ ρ2‖dxk‖2, then by using the same arguments we can
easily show the second inequality of (i). The first property of (iii) is
evident. We will prove the last one. Taking (16) and (i) into account,
we have

lim
k→+∞

(g − h)(xk+1) = lim
k→+∞

{g(xk+1)− 〈xk+1 − xk, yk〉 − h(xk)}

= lim
k→+∞

(g − h)(xk).

The second equality implies lim
k→+∞

{g(xk+1)−〈xk+1−xk, yk〉−g(xk)} =

0, i.e., lim
k→+∞

{g(xk) + g∗(yk)− 〈xk, yk〉} = 0, since xk+1 ∈ ∂g∗(yk).
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Likewise, it results from the first equality that lim
k→+∞

{h(xk+1)− 〈xk+1 −
xk, yk〉 − h(xk)} = 0, i.e., lim

k→+∞
{h(xk+1) + h∗(yk)− 〈xk+1, yk〉} = 0 since

yk ∈ ∂h(yk).

(iv) We assume α is finite and the sequences {xk} and {yk} are boun-
ded. Let x∗ be a limit point of {xk}. For the sake of simplicity we
write lim

k→+∞
xk = x∗. We can suppose (by extracting a subsequence if

necessary) that the sequence {yk} converges to y∗ ∈ ∂h(x∗). Property
(iii) then implies

lim
k→+∞

{g(xk) + g∗(yk)} = lim
k→+∞

〈xk, yk〉 = 〈x∗, y∗〉.

Let θ(x, y) = g(x) + g∗(y) for (x, y) ∈ X × Y . It is clear that θ ∈
Γo(X × Y ). Then the lower semicontinuity of θ implies

θ(x∗, y∗) ≤ lim
k→+∞

inf θ(xk, yk) = lim
k→+∞

θ〈xk, yk〉 = 〈x∗, y∗〉,

i.e., θ(x∗, y∗) = g(x∗) + g∗(y∗) = 〈x∗, y∗〉. In other words, y∗ ∈ ∂g(x∗).
According to Lemma 2 stated below we have

lim
k→+∞

h(xk) = h(x∗) and lim
k→+∞

h∗(yk) = h∗(y∗),

since yk ∈ ∂h(xk), xk → x∗ and yk → y∗.

Hence, in virtue of (iii),

lim
k→+∞

(g − h)(xk) = lim
k→+∞

g(xk)− lim
k→+∞

h(xk)

= lim
k→+∞

g(xk)− h(x∗) = β,

lim
k→+∞

(h∗ − g∗)(yk) = lim
k→+∞

h∗(yk)− lim
k→+∞

g∗(yk)

= h∗(y∗)− lim
k→+∞

g∗(yk) = β.

It then suffices to show that

lim
k→+∞

g(xk) = g(x∗); lim
k→+∞

g∗(yk) = g∗(y∗).
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Since lim
k→+∞

g(xk) and lim
k→+∞

g∗(yk) exist, (iii) implies

g(x∗) + g∗(y∗) = lim
k→+∞

{g(xk) + g∗(yk)} = lim
k→+∞

g(xk) + lim
k→+∞

g∗(yk).

Further, because of the lower semicontinuity of g and g∗,

lim
k→+∞

g(xk) = lim
k→+∞

inf g(xk) ≥ g(x∗),

lim
k→+∞

g∗(yk) = lim
k→+∞

inf g∗(yk) ≥ g∗(y∗).

The former equalities imply that these last inequalities are in fact equali-
ties. The proof of Theorem 3 is complete.

Lemma 2. Let h ∈ Γo(X) and {xk} be a sequence of elements in X such
that

(i) xk → x∗,

(ii) There exists a bounded sequence {yk} with yk ∈ ∂h(xk),

(iii) ∂h(x∗) is nonempty.

Then lim
k→+∞

h(xk) = h(x∗).

Proof. Indeed, let y∗ ∈ ∂h(x∗). Then h(xk) ≥ h(x∗) + 〈xk − x∗, y∗〉, ∀k.
Since yk ∈ ∂h(xk), we have h(x∗) ≥ h(xk) + 〈x∗ − xk, yk〉, ∀k. Hence,
h(xk) ≤ h(x∗) + 〈xk − x∗, yk〉, ∀k. As xk → x∗, we have lim

k→+∞
〈xk −

x∗, y∗〉 = 0. Moreover, lim
k→+∞

〈xk − x∗, yk〉 = 0, since the sequence {yk} is

bounded. Consequently, lim
k→+∞

h(xk) = h(x∗).

Comments on Theorem 3.

(i) Properties (i) and (ii) prove that DCA is a descent method for both
primal and dual programs. DCA provides critical points for (P) and (D)
after finitely many operations if there is no strict decrease of the primal
(or dual) objective function.

(ii) If C and D are convex sets such that {xk} ⊂ C and {yk} ⊂ D,
then Theorem 3 remains valid if we replace ρ(fi) by ρ(fi, C) and ρ(f∗i )
by ρ(f∗i , D) for i = 1, 2. By this way we may improve the results in the
theorem.

(iii) In (ii) of Theorem 3, the convergence of the whole sequence {xk}
(resp. {yk}) can be ensured under the following conditions ([65], [71]):
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• {xk} is bounded;

• The set of limit points of {xk} is finite;

• lim
k→+∞

‖xk+1 − xk‖ = 0.

(iv) In general, the qualities (robustness, stability, rate of convergence
and globality of sought solutions) of DCA, in both complete and simpli-
fied forms, depend upon the d.c. decomposition of the function f . Theo-
rem 3 shows how strong convexity of d.c. components in primal and dual
problems can influence on DCA. To make the d.c. components (of the
primal objective function f = g−h) strongly convex we usually apply the
following process

f = g − h =
(
g +

λ

2
‖ · ‖2

)
−

(
h +

λ

2
‖ · ‖2

)
.

In this case the d.c. components in the dual problem will be continuously
differentiable. Parallelly inf-convolution of g and h with λ

2 ‖ · ‖2 will make
the d.c. components (in dual problem) strongly convex and the d.c. com-
ponents of the primal objective function continuously differentiable. For a
detailed study of regularization techniques in d.c. optimization, see Section
5 and [1], [76], [80].

3.3. How to restart simplified DCA for obtaining x∗ such that
∂h(x∗) ⊂ ∂g(x∗)

As mentioned above, the complete DCA theoretically provides a x∗

such that ∂h(x∗) ⊂ ∂g(x∗). In practice, except for the cases where the
convex maximization problems (S(xk) and (T (yk)) are easy to solve, one
generally uses the simplified DCA. It is worth noting that if the simplified
DCA terminates at some point x∗ for which ∂h(x∗) is not contained in
∂g(x∗), then one can reduce the objective function value by restarting it
from a new initial point xo = x∗ with yo ∈ ∂h(xo) such that yo 6∈ ∂g(xo).
In fact, since

g(x1) + g∗(yo) = 〈x1, yo〉 ≤ h(x1)− h(xo) + 〈xo, yo〉,
and 〈xo, yo〉 < g(xo) + g∗(yo) because yo 6∈ ∂g(xo), we have

g(x1) + g∗(yo) < h(x1)− h(xo) + g(xo) + g∗(yo).

Hence,
g(x1)− h(x1) < g(xo)− h(xo).
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4. Polyhedral d.c. optimization problems and finite

convergence of DCA with fixed choices of subgradients

4.1. Polyhedral d.c. program

We suppose that in Problem (P) either g or h is polyhedral convex.
We may assume that h is a polyhedral convex function given by h(x) =
max{〈ai, x〉 − αi : i = 1, . . . , m} + χC(x), where χC is the indicator
function of a nonempty polyhedral convex set C in X. (If in (P ) g is
polyhedral and h is not so, then we consider the dual problem (D), since
g∗ is polyhedral). Throughout this subsection we assume that the optimal
value α of problem (P) is finite which implies that dom g ⊂ domh = C.
Thus, (P) is equivalent to the problem

(P̃ ) α = inf{g(x)− h̃(x) : x ∈ X},

where h̃(x) = max{〈ai, x〉 − αi : i ∈ I} with I = {1, . . . , m}. By this way
we can avoid +∞−(+∞) in (P). Clearly, α = inf

i∈I
inf

x∈X
{g(x)−(〈ai, x〉−αi)}.

For each i ∈ I, let

(Pi) βi = inf{g(x)− (〈ai, x〉 − αi) : x ∈ X}

whose solution set is ∂g∗(ai).

The dual problem (D̃) of (P̃ ) is:

(D̃) α = inf{h̃∗(y)− g∗(y) : y ∈ co {ai : i ∈ I}},

where α verifies α = inf{h̃∗(y)− g∗(y) : y ∈ {ai : i ∈ I}}.
Also, let J(α) = {i ∈ I : βi = α} and I(x) = {i ∈ I : 〈ai, x〉 − αi =

h̃(x)}. We have the following result ([1], [2], [81]).

Theorem 4. (i) x∗ ∈ P if and only if I(x∗) ⊂ J(α) and x∗ ∈ ∩{∂g∗(ai) :
i ∈ I(x∗)}.

(ii) P = ∪{∂g∗(ai) : i ∈ J(α)}. If {ai : i ∈ I} ⊂ dom ∂g∗, then P 6= ∅.
(iii) h̃(x) = max{〈x, y〉 − h̃∗(y) : y ∈ co{ai : i ∈ I}} = max{〈ai, x〉 −

h̃∗(ai) : i ∈ I}.
(iv) J(α) = {i ∈ I : ai ∈ D̃ and h̃∗(ai) = αi}; D̃ ⊃ {ai : i ∈ J(α)}.
The proof of this theorem is very technical, the interested reader is

therefore referred to [1], [2], [81] for a detailed analysis.



314 PHAM DINH TAO AND LE THI HOAI AN

4.2. Finite convergence of DCA

From 4.1 we see that (globally) solving the polyhedral d.c. optimization
problem (P̃ ) amounts to solving m convex programs (Pi) (i ∈ I). For
generating P one can first determine J(α) and then apply Theorem 4.
In practice this can be effectively done if m is relatively small. In case
when m is large we use the simplified DCA for solving (locally) Problem
(P̃ ). Recall that (Lemma 1) the simplified DCA is well defined if and
only if co {ai : i ∈ I} ⊂ dom ∂g∗. Because of the finiteness of α, dom g ⊂
domh = C and co {ai : i ∈ I} ⊂ dom g∗. The simplified DCA in this case
is described as follows: Let xo be chosen in advance. Set yk ∈ ∂h̃(xk) =
co {ai : i ∈ I(xk)}; xk+1 ∈ ∂g∗(yk) By setting yk = ai, i ∈ I(xk) the
calculation of xk+1 is reduced to solve the convex program

(P̃i) min{g(x)− 〈yk, x〉 : x ∈ X}.

Note that if yk = ai with i ∈ J(α), then, by Theorem 4, xk+1 ∈ P.

Now let H̃ and G∗ be two mappings defined respectively in dom ∂h̃ = X
and in dom ∂g∗ such that H̃(x) ∈ ∂h̃(x), ∀x ∈ X and G∗(y) ∈ ∂g∗(y)
∀y ∈ dom ∂g∗. The simplified DCA with a fixed choice of subgradients is
defined as:

yk = H̃(xk) ; xk+1 = G∗(yk).

It is clear that for a polyhedral d.c. optimization problem range H̃ is finite
if h is polyhedral convex, and range G∗ is finite if g is polyhedral convex.
In each of these cases the sequences {xk} and {yk} are discrete (i.e., they
have only finitely many different elements).

Theorem 5 ([1], [2], [81]). (i) The discrete sequences {(g − h̃)(xk)} and
{(h̃∗ − g∗)(yk)} are decreasing and convergent.

(ii) The discrete sequences {xk} and {yk} have the same property: ei-
ther they are convergent or cyclic with the same period p. In the latter
case the sequences {xk} and {yk} contain exactly p limit points that are all
critical points of g−h. Moreover, if ρ(g)+ρ(g∗) > 0, then these sequences
are convergent.

The proof of this theorem follows immediately from Theorem 3 and the
discrete character of the sequences {xk} and {yk}.
4.3. Natural choice of subgradients in DCA

Let f ∈ Γo(X) and T be a selection of ∂f , i.e., Tx ∈ ∂f(x), ∀x ∈
dom ∂f . T is said to be a natural choice of subgradients of f if the con-
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ditions Tx ∈ ri ∂f(x) and ∂f(x) = ∂f(x′) imply that Tx = Tx′. The
following results are useful to the proof of the finite convergence of DCA
(applied to the polyhedral d.c. optimization) with the fixed choices of
subgradients for h and g∗, and the natural choice for at least one poly-
hedral function among them. The natural choice has been successfully
used in the subgradient-methods for computing bound norms of matrices
([70]-[73]) and the study of the iterative behaviour of cellular automatas
([75]).

Since h̃(x) = max{〈ai, x〉 − αi : i ∈ I}, one can take H̃ by setting
H̃(x) =

∑
i∈I(x) λiai, where λi, i ∈ I(x), satisfy:

(i) λi > 0, ∀i ∈ I(x) and
∑

i∈I(x) λi = 1;

(ii) λi depends only on I(x).

Lemma 3 ([75], [81]). (i) ∂h̃(x) = ∂h̃(x′) ⇔ I(x) = I(x′).

(ii) H̃ is a natural choice of subgradients of h̃ if and only if it is defined
as above.

Consider now DCA with a fixed choice of subgradient applied to the
polyhedral d.c. optimization problem (P̃ ). If H̃ is a natural choice of h̃,
then the following result strengthens that of Theorem 5.

Theorem 6 ([1], [2], [81]). The simplified DCA with a fixed choice of
subgradients is finite.

5. Regularization techniques in d.c. programming

We consider the d.c. problem (P) and its dual problem (D) where α is
finite. In this case, dom g ⊂ domh and dom h∗ ⊂ dom g∗. As mentioned
above, it is important to obtain various equivalent d.c. forms for the primal
and dual problems. The Lagrangian duality in d.c. optimization ([1], [78],
[82]) and regularization techniques partly answer this question.

Regularization techniques in d.c. optimization have been early intro-
duced in [76] and extensively developed in our recent works [1], [80]. Be-
sides three forms of regularization techniques, we present here some results
corresponding to the computation of modulus of strong convexity. These
results are essential to regularization techniques applied to DCA.

First, we introduce some related results of convex analysis:

Let ϕ,ψ ∈ Γo(X), the inf-convolution of ϕ and ψ, denoted by ϕ∇ψ, is
defined by ([51], [93])
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ϕ∇ψ(x) = inf{ϕ(x1) + ψ(x2) : x1 + x2 = x}.
One says that ϕ∇ψ is exact at x = x1 + x2 if ϕ∇ψ(x) = ϕ(x1) + ψ(x2).

Likewise, ϕ∇ψ is said to be exact if it is exact at every x ∈ X. The
following result is useful to regularization techniques ([51], [93]):

Theorem 7. (i) ϕ∇ψ is convex and dom ϕ∇ψ = dom ϕ + dom ψ.

(ii) (ϕ∇ψ)∗ = ϕ∗ + ψ∗.

(iii) If ri (dom ϕ) ∩ ri(dom ψ) 6= ∅, then (ϕ + ψ)∗ = ϕ∗∇ψ∗ and the
inf-convolution ϕ∗∇ψ∗ is exact.

(iv) ∂ϕ(x1) ∩ ∂ψ(x2) ⊂ ∂(ϕ∇ψ)(x1 + x2).

Moreover, if ∂ϕ(x1) ∩ ∂ψ(x2) 6= ∅, then the inf-convolution ϕ∇ψ is
exact at x = x1 + x2. Conversely, if ϕ∇ψ is exact at x = x1 + x2, then
∂(ϕ∇ψ)(x1 + x2) = ∂ϕ(x1) ∩ ∂ψ(x2).

Let ϕ ∈ Γo(X). The function ϕ is said to be strictly convex on a convex
subset C of dom f if

ϕ(λx + (1− λ)x′) < λϕ(x) + (1−λ)ϕ(x′), ∀λ ∈]0, 1[, ∀x, x′ ∈ C, x 6= x′.

Likewise, ϕ is said to be essentially strictly convex if it is strictly convex
on any convex subset of dom ∂ϕ.

Theorem 8 ([93]). Let ϕ ∈ Γo(X). Then the following conditions are
equivalent

(i) ∀x ∈ domϕ, ∂ϕ(x) contains at most one element.

(ii) ϕ is essentially differentiable.

In this case ∂ϕ(x) = {∇ϕ(x)} if x ∈ int(domϕ) and ∂ϕ(x) is empty
otherwise.

(iii) ϕ ∈ Γo(X) is essentially differentiable if and only if ϕ∗ is essen-
tially strictly convex.

(iv) Let ϕ, ψ ∈ Γo(X) be such that ϕ is essentially differentiable and
ri(domϕ∗) ∩ ri(domψ∗) 6= ∅. Then ϕ∇ψ is essentially differentiable.

We present now several types of regularization techniques.

5.1. Regularizing d.c. components of the dual d.c. program

Let θ ∈ Γo(X) such that
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(i) dom θ ⊃ dom g;

(ii) ri(dom θ) ∩ ri(dom g) 6= ∅ and ri(dom θ) ∩ ri(domh) 6= ∅.
Clearly, g + θ and h + θ are also d.c. components of f . The following

problem, by (i), is equivalent to (P ):

(P+) λα = inf{(λg + θ)(x)− (λh + θ)(x) : x ∈ X},

where λ is a positive number. From (ii) the dual of (P+) is formulated by
(Theorem 7)

(D+) λα = inf{(λg + θ)∗(y)− (λh + θ)∗(y) : y ∈ Y }
= inf{(λh)∗∇θ∗(y)− (λg)∗∇θ∗(y) : y ∈ Y },

which is not equivalent to (D). This regularization, with suitable choices
of θ, makes

• d.c. components in (P+) are strongly convex: if θ is strongly convex,
then so are λg + θ and λh + θ, since

ρ(λg + θ) = λρ(g) + ρ(θ); ρ(λh + θ) = λρ(h) + ρ(θ),

• d.c. components in (D+) are continuously differentiable.
Indeed, for example if the sets ri(dom g) ∩ ri(dom θ) and ri(domh) ∩
ri(dom θ) are nonempty and if θ∗ is essentially differentiable, then ac-
cording to Theorem 8, (λg)∗∇θ∗ and (λh)∗∇θ∗ are essentially differen-
tiable. In particular, if θ is finite, strictly convex on the whole X,
and coercive (i.e., lim

‖x‖→+∞
θ(x) = +∞), then (λg)∗∇θ∗ and (λh)∗∇θ∗ are

differentiable on E (i.e., continuously differentiable on X), since the
coerciveness of θ implies that dom θ∗ = Y (the dual space of X) and
its strict convexity implies the essential differentiability of θ∗ in virtue
of Theorem 8.

5.2. Regularizing d.c. components in the primal d.c. program

This regularization is introduced by considering the following d.c. pro-
gram

(P∇) λα = inf{(λg)∇θ(x)− (λh)∇θ(x) : x ∈ X},

where λ is a positive number and θ ∈ Γo(X) for which the following
conditions hold:
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(i) ri(λdom g∗) ∩ ri(dom θ∗) 6= ∅, ri(λdomh∗) ∩ ri(dom θ∗) 6= ∅,
(ii) dom θ∗ ⊃ dom (λh)∗ = λdom h∗.

In virtue of Theorem 7, one has (λg)∗(y) = λg∗(λ−1y). Thus, dom ((λg)∗)
= λ(dom g∗). The condition (i) ensures that both λg∇θ and λh∇θ are in
Γo(X) (Theorem 7). The dual problem of (P+) is then given as

(D∇) λα = inf{(λh∇θ)∗(y)− (λg∇θ)∗(y) : y ∈ Y }
= inf{((λh)∗ + θ∗)(y)− ((λg)∗ + θ∗)(y) : y ∈ Y }

which, by (ii), is equivalent to (D). As before, suitable choices of θ allow
to obtain the continuously differentiable d.c. components in (P∇) and
strongly convex d.c. components in (D∇).

5.3. Double primal-dual regularization of d.c. components

Let λ be a positive number and ϕ, θ ∈ Γo(X) such that

(i) dom g ⊂ domϕ;

(ii) ri(dom ϕ) ∩ ri(dom g) 6= ∅, ri(dom ϕ) ∩ ri(dom h) 6= ∅;
(iii) λdom g∗ + dom ϕ∗ ⊂ dom θ∗.

We consider the primal problem (P+)

(P+) λα = inf{(λg + ϕ)(x)− (λh + ϕ)(x) : x ∈ X},

which is equivalent to (P). We shall regularize (P+) by applying inf-
convolution with θ to d.c. components:

(P+∇) inf{(λg + ϕ)∇θ(x)− (λh + ϕ)∇θ(x) : x ∈ X}.

Under assumptions (ii), the dual problem of (P+∇) takes the form (The-
orem 7):

(D+∇) λα = inf{((λh + ϕ)∗ + θ∗)(y)− ((λg + ϕ)∗ + θ∗)(y) : y ∈ Y }
= inf{((λh)∗∇ϕ∗ + θ∗)(y)− ((λg)∗∇ϕ∗ + θ∗)(y) : y ∈ Y }.

By assumption (iii) this is equivalent to the dual problem (D+) of (P+).
This double regularization, with suitable choices of ϕ and θ, allows to ob-
tain both strongly convex and continuously differentiable d.c. components
in the primal and the dual problems (P+∇) and (D+∇).
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In practice, we usually take θ(x) = µ
2 ‖x‖2, µ > 0 which is both strongly

convex and coercive. Such a regularization is called the proximal regula-
rization.

Finally, the following result ([1], [80]), whose proof is omitted here,
allows to compute the strong convexity modulus of regularized d.c. com-
ponents which intervenes in the convergence theorem for DCA (Theorem
3).

Proposition 3. If ϕ ∈ Γo(X) and λ, µ be positive numbers, then

(i) ρ ((λϕ)∗) = λ−1ρ(ϕ∗),

(ii) ∇ [(λϕ)∗]µ (x) =
(
I + µ−1λ∂ϕ

)−1 (µ−1x), ∀x ∈ X,

(iii) ρ(ϕ)ρ(ϕ∗) ≤ 1,

(iv)
ρ(ϕ)

1 + λρ(ϕ)
≤ ρ (ϕλ) ≤ 1

λ
·

6. Functions which are more convex, less convex

Let f, g ∈ Γo(X). The function f is said to be more convex than g
(or g is said to be less convex than f), and we write f Â g (or g ≺ f) if
f = g+h with h ∈ Γo(X). The binary relation f Â g has been introduced
by Moreau [62]. It is almost a partial ordering on Γo(X) except for the
case that f Â g and g Â f only imply f = g + h with h being affine on X.

Moreau proved the following interesting result

f Â 1
2
‖ · ‖2 ⇔ f∗ ≺ 1

2
‖ · ‖2.

In a work related to Moreau decomposition theorem, Hiriart-Urruty and
Plazanet ([62]) have obtained a characterization of convex functions g, h
such that g + h = 1

2‖ · ‖2 ([35])

g + h =
1
2
‖ · ‖2 ⇔ ∃F ∈ Γo(X) such that

g = F∇
1
2
‖ · ‖2 and h = F ∗∇

1
2
‖ · ‖2.

An explicit formulation is given in [35] with the help of an operation on a
convex function, which bears the name of deconvolution of a function by
another one. Given ϕ and ψ in Γo(X), the deconvolution of ϕ by ψ is the
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function denoted ϕ ψ and defined by

ϕ ψ(x) = sup{ϕ(x + u)− ψ(u) : u ∈ domψ}.

It is worth to note the two main properties ([35])

• ϕ ψ is either in Γo(X) or identically equals +∞.

• (ϕ ψ)∗ = (ϕ∗ − ψ∗)∗∗.

The following result is useful to d.c. programming.

Proposition 4. Let f ∈ Γo(X) and λ be a positive number. Then

(i) f Â λ
2 ‖ · ‖2 if and only if f∗ ≺ 1

2λ‖ · ‖2.
(ii) f ≺ 1

2λ‖ · ‖2 if and only if f = ϕλ with ϕ ∈ Γo(X). More precisely,
ϕ can be taken as ϕ = λ−1[λf 1

2‖ · ‖2].
(iii) f Â λ

2 ‖·‖2 if and only if there is ϕ ∈ Γo(X) such that f∇ϕ = λ
2 ‖·‖2.

In this case we have

ϕ =
[

1
2λ
‖ · ‖2 − f∗

]∗
=

λ

2
‖ · ‖2 f

and

f =
[

1
2λ
‖ · ‖2 − ϕ∗

]∗
=

λ

2
‖ · ‖2 ϕ.

The proof of this proposition is based on the works by Moreau [62] and
by Hiriart-Urruty et al. ([35]). The reader is referred to [35] for a simple
proof.

Let g, h ∈ Γo(X). Consider the corresponding d.c. proram

(P) α = inf{f(x) = g(x)− h(x) : x ∈ X}

and its dual d.c. program

(D) α = inf{h∗(y)− g∗(y) : y ∈ Y }.

Theorem 1 shows that solving one of them implies solving the other. It is
clear that (P) is a convex program if and only if g is more convex than h.
So the following question is of great interest in d.c. programming:

Does the condition g Â h imply h∗ Â g∗?
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In particular, if g = λf + h with f, h ∈ Γo(X) and h being finite on
the whole X (see the relation between DCA and the proximal point al-
gorithm). In case of negation it is desired to find the class of functions g
and h such that the above property holds true (or false). Except for the
case where h = λ

2 ‖ · ‖2 for which a positive answer due to Moreau [62] has
been obtained, the problem is completely open.

Remark that g Â h but not h∗ Â g∗ furnishes an example of (non-
convex) d.c. program that we can globally solve by using d.c. duality
(Theorem1).

7. Relation between DCA and the Goldstein-Levitin-Polyak
gradient projection algorithm in convex programming

7.1. Relation between DCA and the Proximal Point Algorithm

Let f ∈ Γo(X). Consider the following convex program

(20) α = inf{f(x) : x ∈ X}.

The proximal point algorithm applied to (20) is described as:

(21) xk+1 = (I + λk∂f)−1
xk

with xo being an initial vector chosen in advance and λk ≥ c > 0. We
recall the well-known result concerning the convergence of the proximal
point algorithm ([56]-[58], [94])

Proposition 5. If α is finite, then limk→+∞ ‖xk+1 − xk‖ = 0. If ∂f∗(0)
is nonempty, then

• ‖xk+1 − x‖ ≤ ‖xk − x‖, ∀x ∈ ∂f∗(0),

• The sequence {xk} converges to x ∈ ∂f∗(0) and the sequence {f(xk)}
is monotically decreasing to α.

If ∂f∗(0) is empty, then

• lim
k→+∞

‖xk‖ = +∞,

• xk/
k−1∑
i=1

λi converges to −v, where v is the element with minimum norm

of the closed convex set cl(range ∂f) (cl stands for the closure).

Different estimations w.r.t. the convergence of the sequence {f(xk)}
have been pointed out in [32]. The Moreau-Yosida regularization fλ of f
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introduces the regularized convex program

(22) αλ = inf{fλ(x) : x ∈ X}.

It is not too difficult to prove the following classical result ([32], [56]-[58],
[94])

Proposition 6. (i) αλ = α, ∀λ > 0; fλ(x) ≤ f(x), ∀x ∈ X.

Moreover, fλ(x) = f(x) if and only if 0 ∈ ∂f(x).

(ii) (∂fλ)−1(0) = (∂f)−1(0), ∀λ > 0.

The proximal point algorithm applied to (20) can be regarded as follows:

xk+1 = argmin
{

f(x) +
1

2λk
‖x− xk‖2 : x ∈ X

}
.

Since ∇fλ = (1/λ)
[
I − (I + λ∂f)−1

]
(Theorem 7), we have

xk+1 = xk − λk∇fλk
(xk) = (I + λk∂f)−1(xk),

i.e., the passage of xk to xk+1 is exactly performing a step equal to λk in
the gradient method applied to the convex program inf {fλk

(x) : x ∈ X}.
In particular, if λk = c for every k, then the proximal point algorithm
(PPA) is nothing but the gradient method with fixed step c applying to
inf {fc(x) : x ∈ X}.

Let us study now the relation between PPA and DCA. Consider the
problem (20) in the following equivalent d.c. program

(23) λα = inf{g(x)− h(x) : x ∈ X},

where λ > 0, g = λf + h and h ∈ Γo(X) is finite on the whole X. It
is clear that (23) is a “false” d.c. program whose solution can be es-
timated by either a convex optimization algorithm applied to (21) or
DCA applied to (23). The latter actually yields global solutions since
∂h(x) ⊂ ∂g(x) = λ∂f(x) + ∂h(x) implies 0 ∈ λ∂f(x). This implication
can be shown by using the support functions of ∂h(x) and λ∂f(x)+∂h(x)
and the compactness of ∂h(x). It is then important to know whether the
dual d.c. program of (23)

(24) λα = inf{h∗(y)− (λf)∗∇g∗(y) : y ∈ Y }
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is always a convex program for every h ∈ Γo(X) being finite on the whole
X. This question has already been studied in Section 6. According to
Proposition 4, if h = (µ/2)‖ · ‖2, then h∗ − (λf)∗∇h∗ ∈ Γo(X), i.e., (24) is
a convex program.

Let us describe now DCA applied to (23)

xk → yk ∈ ∂h(xk) = µxk; xk+1 ∈ ∂g∗(yk) = ∇[(λf)∗]µ(yk).

So, according to Proposition 3

xk+1 = (I + µ−1λ∂f)−1(µ−1yk) = (I + µ−1λ∂f)−1xk,

which is exactly PPA (with constant parameter λk = µ−1λ) applied to
(20).

7.2. Relation between DCA and the Goldstein-Levitin-Polyak
gradient projection in convex programming

Consider now the constrained convex program

(Q) α = inf{f(x) : x ∈ C}

with f ∈ Γo(X) and C being a nonempty closed convex set in X. Clearly,
for every λ > 0, Problem (Q) is equivalent to the following problem which
for simplicity we also denote by (Q)

(Q) λα = inf{λf(x) : x ∈ C}.

Assume that

• dom f contains two nonempty open convex sets Ω1 and Ω2 such that

C ⊂ Ω1, clΩ1 ⊂ Ω2 ⊂ dom f

(clΩ1 stands for the closure of Ω1).

• λf admits a “false” d.c. decomposition on Ω2:

λf(x) = ϕ(x)− (ϕ− λf)(x), ∀x ∈ Ω2,

where ϕ is finite convex on Ω2 such that ψ = ϕ − λf is convex on Ω2

(see Section 6).
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Consider the usual extensions to the whole X of the two functions ϕ
and ψ:

ϕ̃(x) = ϕ(x) if x ∈ clΩ1, +∞ otherwise,

ψ̃(x) = ψ(x) if x ∈ clΩ1, +∞ otherwise.

Since ϕ and ψ are finite convex and continuous relative to clΩ1, the func-
tions ϕ̃ and ψ̃ belong to Γo(X) according to [93]. Problem (Q) then takes
the standard form of a d.c. program

(25) λα = inf{g(x)− h(x) : x ∈ X}

with g = ϕ̃ + χC ∈ Γo(X) and h = ψ̃ = ϕ̃− λf . Such a problem is called
a false d.c. program. Let x∗ ∈ C be satisfied the necessary condition
for local optimality (Theorem 2) ∂h(x∗) ⊂ ∂g(x∗). That is equivalent to
∂h(x∗) ⊂ ∂h(x∗)+∂(λf)(x∗)+∂χC(x∗), i.e., 0 ∈ ∂f(x∗)+∂χC(x∗), since
∂h(x∗) is nonempty and bounded. Consequently, DCA and algorithms for
convex programming can be used for solving Problem (25). Remark that
ϕ = h + λf and g = h + λf + χC . So, λf and h are less convex than g.
Nevertheless, as indicated in Section 6 it is important to know if g∗ is less
convex than h∗, i.e., if the dual d.c. program of (25) is a convex one.

Let us illustrate all reasonings above by an example. Let C be a
nonempty bounded closed convex set in X and let f ∈ Γo(X) be in C2(Ω)
where Ω is a bounded open convex set containing C. Since C is nonempty
and compact, there is an ε such that

C ⊂ Ω1 = {x ∈ X : d(x, C) < ε} ⊂ clΩ1

= {x ∈ X : d(x, C) ≤ ε} ⊂ Ω2 = Ω.

Thus, the condition (i) is fulfilled. Now let λ > 0 be satisfied the condition
λ supx∈Ω ‖f ′′(x)‖ ≤ 1. Then the condition (ii) is verified with ϕ(x) =
1
2‖x‖2, ∀x ∈ Ω. In this case DCA applied to (25) is given by (xo chosen
in advance)

(26) yk = xk − λ∇f(xk); xk+1 = PC(xk − λ∇f(xk)),

where PC denotes the orthogonal projection mapping. One can recognize
in (26) the Goldstein-Levitin-Polyak projection method ([89]). The follow-
ing result is an immediate consequence of the DCA’s general convergence
theorem (Theorem 3).
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Proposition 7. If λf is differentiable and less convex than 1
2‖ · ‖2 on an

open convex set containing C, then the sequence {xk} generated by (26)
satisfies the following properties

(i) The sequence {f(xk)} is decreasing. If α is finite, then lim
k→+∞

‖xk+1−
xk‖ = 0.

(ii) If α is finite and if the sequence {xk} is bounded, then every limit
point x∗ of {xk} is a solution to (25). In this case f(xk) ↓ f(x∗). If,
in addition, (Q) admits a unique solution, then the whole sequence {xk}
converges to this solution.

Consider now the special case where Ω2 = X. Then 1
2‖ · ‖2 is more

convex than λf (on X), (see Section 6). It amounts to say that f = θλ

with θ ∈ Γo(X) according to Proposition 4. In this case we take Ω1 = Ω2,
so the iteration (26) becomes

(27) xk+1 = PC(I + λ∂θ)−1xk,

since
∇f =

1
λ

[I − (I + λ∂θ)−1].

Proposition 8. Assume that α is finite. If 1
2‖ · ‖2 is more convex than

λf , then the sequence {xk} generated by (27) is bounded if and only if (Q)
admits a solution. In this case the whole sequence {xk} converges to a
solution x∗ to (Q).

Proof. It is clear that the sequence {xk} generated by (27) satisfies (i) of
Proposition 7. Since the solution set of (Q) and the set of fixed points
of the nonexpansive mapping PC(I + λ∂θ)−1 are identical, the proof of
Proposition 8 is straightforward by using the property (ii) of Proposition
7 and the following estimate

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖

for every solution x∗ to (Q).

Remark 3. (i) It is worth noting the equivalence: f ∈ Γo(X) is less convex
than λ

2 ‖·‖2 if and only if f is differentiable and has a Lipschitzian gradient
mapping with the constant 1/λ (see [38], [89]).

(ii) Propositions 7 and 8 suitably complement the convergence result
of the Goldstein-Levitin-Polyak gradient projection algorithm ([89]).
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8. Exact penalty, Lagrangian duality without gap

and dimensional reduction in d.c. programming

8.1. Exact penalty in d.c. programming

Consider the problem

(P3) α = inf{g(x)− h(x) : x ∈ C, f1(x)− f2(x) ≤ 0},

where g, h, f1 and f2 belong to Γo(X) and C is a nonempty closed convex
set in X. It is not a d.c. program but we can use the exact penalty
technique to transform (P3) into a d.c. program. Indeed, since (f1−f2)+ =
max(f1, f2) − f2, the usual exact penalty introduces the following non-
differentiable d.c. program

(P3)t αt = inf{g(x) + t max(f1(x), f2(x))− (h(x) + tf2(x)) : x ∈ C}.

The crucial point is to prove the effective exactness of such a penalty,
i.e., the existence of a positive number t0 such that (P3) and (P3)t are
equivalent for all t ≥ t0.

This technique has been successfully applied to a class of problems of
type (P3) ([6]):

(28) α = inf{f(x) : x ∈ K, g(x) ≤ 0},

where K is a nonempty bounded polyhedral convex set in X and f , g are
finite concave functions on K. Exact penalty involves the problems

(29) α+(t) = inf{f(x) + tg+(x) : x ∈ K}

with g+(x) = max(0, g(x)).

If the vertex set of K, V (K), is contained in {x ∈ K : g(x) ≤ 0}
we set to be 0; otherwise, we always have to ≤ f(xo)−α+(0)

S for every
xo ∈ K, g(xo) ≤ 0, where S = min{g(x) : x ∈ V (K), g(x) > 0}.

Theorem 9. Assume that the feasible set of (28) is nonempty and g is
nonnegative on K. Then for t > to the solution sets of Problems (28) and
(29) are identical.

The class of Problems (28) satisfying the assumption of Theorem 9
contains many important real-life ones ([7]): Convex maximization over
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the Pareto set, bilevel linear programs, linear programs with mixed linear
complementarity constraints, mixed zero-one concave minimization pro-
gramming, etc.

8.2. Lagrangian duality without gap in d.c. programming

Let us present now two important results concerning the Lagrangian
duality without gap in d.c. programming. The first deals with the maxi-
mization of a gauge on the unit ball of another gauge.

Let ψ 6≡ 0 and φ 6≡ 0 be two finite gauges on X such that V = φ−1(0)
is a subspace contained in ψ−1(0). Consider the following problem

(P1
max) Sψφ(I) = sup{ψ(x) : φ(x) ≤ 1},

which is equivalent to −Sψφ(I) = inf{−ψ(x) : φ(x) ≤ 1}.
We consider the Lagrangian duality for this problem in the case where the
feasible domain is written as {x ∈ X : (1/2)φ2(x) ≤ (1/2)}. We can write
(P 1

max) in the form

(Pmax) α = −Sψφ(I) = inf
{
− ψ(x) :

1
2
φ2(x) ≤ 1

2

}
.

We will establish, like in a case of convex optimization, the stability in the
Lagrangian duality, namely, we will prove that there is no gap between
the optimal value of the primal and dual problems. These results allow
us to obtain equivalent d.c. forms of (Pmax) and an explicit form of the
graph of the objective function for the dual problem. They can also be
used for checking the globality of the solution computed by DCA.

Let U(φ) and S(φ) denote the unit ball and its sphere, respectively,
i.e.,

U(φ) = {x ∈ X : φ(x) ≤ 1}; S(φ) = {x ∈ X : φ(x) = 1}.

First, we observe that the solution set of Problem (Pmax), denoted by
Pmax, is contained in S(φ), and the finiteness of Sψφ(I) implies φ−1(0) ⊂
ψ−1(0).

Lemma 4 ([78], [84]). Pmax 6= ∅ and Problem (Pmax) is equivalent to

(PRmax) sup{ψ(x) : x ∈ V ⊥, φ(x) ≤ 1},
with Pmax = V + PRmax, where PRmax is the solution set of (PRmax).
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Proof. Since X = V +V ⊥, for every x ∈ X we have x = u+v, u ∈ V , where
v ∈ V ⊥. Thus, ψ(x) = ψ(u + v) = ψ(v), φ(x) = φ(u + v) = φ(v), which
implies that Pmax is equivalent to (PRmax). Since {x ∈ V ⊥ : φ(x) ≤ 1} is
compact, the solution set of (PRmax) is nonempty. Furthermore, Pmax =
V + PRmax.

The Lagrangian L(x, λ) for (Pmax) is given by

L(x, λ) =
{ −ψ(x) + λ

2 (φ2(x)− 1) if λ ≥ 0,

−∞, otherwise.

Clearly, −ψ(x) + χC(x) = sup{L(x, λ) : λ ≥ 0}. Thus, (Pmax) can be
written as

α = −Sψφ(I) = inf{sup{L(x, λ) : λ ≥ 0} : x ∈ X}.

For λ ≥ 0 we have

(Pλ) γ(λ) = inf
{
− ψ(x) +

λ

2
(φ2(x)− 1) : x ∈ X

}
.

As for (Pmax), solving (Pλ) amounts to solving

(PRλ) γ(λ) = inf
{
− ψ(x) +

λ

2
(φ2(x)− 1) : x ∈ V ⊥

}

knowing that Pλ = V + PRλ.

It is clear that γ is a concave function and (Pλ) is a d.c. optimization
problem.

The dual problem of (Pmax) is

(D) β = sup{γ(λ) : λ ≥ 0} = sup{inf{L(x, λ) : x ∈ X} : λ ≥ 0}.

By the definition of Lagrangian we have

α = inf{sup{L(x, λ) : λ ≥ 0} : x ∈ X}
≥ sup{inf{L(x, λ) : x ∈ X} : λ ≥ 0} = β.(30)

A point (x∗, λ∗) ∈ X × IR is said to be a saddle point of L(x, λ) if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀(x, λ) ∈ X × IR.

Let us state now important results concerning characterization of solutions
of the dual problem and the stability of the Lagrangian duality.
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Theorem 10 ([78]). (i) Pλ 6= ∅ for every λ > 0 and dom γ =]0,+∞[.

(ii) D 6= ∅ and γ(λ) = −λ
2 + K

λ , where K is a negative constant (depen-
dent only on ψ and φ).

(iii) D = {λ∗} = {√−2K}, γ(λ∗) = −λ∗.

(iv) α = β and Pmax = Pλ∗ .

(v) (x∗, λ∗) ∈ Pmax × D if and only if (x∗, λ∗) is a saddle point of
L(x, λ).

(vi) Pmax = { x∗
φ(x∗) : x∗ ∈ P1}.

Consider now Problem (Pλ) with λ = 1.

(P1) γ(1) +
1
2

= inf
{1

2
φ2(x)− ψ(x) : x ∈ X

}
.

The following result allows determining a new d.c. optimization problem
which is equivalent to (Pmax).

Theorem 11 ([78]).

(31) P1 = {ψ(x∗)x∗ : x∗ ∈ Pmax}.
The second result concerns the minimization of a quadratic form on

Euclidean balls (the so-called trust region subproblem) or spheres

α1 = min
{

q(x) =
1
2
xT Ax + bT x : ‖x‖ ≤ r},(32)

α2 = min
{

q(x) =
1
2
xT Ax + bT x : ‖x‖ = r

}
,(33)

where A is an n×n real symmetric matrix, b ∈ IRn, r is a positive number
and ‖ · ‖ denotes the Euclidean norm of IRn.

We present first the results concerning the stability of the Lagrangian
duality for Problem (32). To this end, we rewrite (32) as

α1 = min
{

q(x) :
1
2
‖x‖2 ≤ r2

2

}
.

Theorem 12 ([82]). (i) α1 = β1.

(ii) The dual problem has a unique solution λ∗ and the solution set of
the primal problem (32) is the set

{x∗ ∈ Pλ∗ : ‖x∗‖ ≤ r, λ∗(‖x∗‖ − r) = 0}.
As an immediate consequence we obtain the well-known optimality con-
dition for (32) whose proof is not trivial.
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Corollary 5 ([63], [77], [82]). x∗ is a solution to (32) if and only if there
exists λ∗ ≥ 0 such that

(i) (A + λ∗I) is positive semi-definite,

(ii) (A + λ∗I)x∗ = −b,

(iii) λ∗(‖x∗‖ − r) = 0, ‖x∗‖ ≤ r.

Such a λ∗ is the unique solution to the dual problem.

By the same approach we obtain analogous results for Problem (33). The
sole difference between these problems is that λ∗ is not assigned to be
nonnegative in the latter.

Remark that Problems (32) and (33) are among a few nonconvex op-
timization problems which possess a complete characterization of their
solutions. These problems play an important role in optimization and nu-
merical analysis ([1], [19], [31], [63], [77], [82], [83], [86], [98], [99], [100]).

8.3. Dimensional reduction technique in d.c. programming

Let h ∈ Γo(X) and h0+ be its recession function ([93]). The lineality
space of h is denoted by [93]

L(h) = {u ∈ X : h0+(u) = −h0+(−u)}.

It is a subspace of the direction u in which h is affine:

h(x + λu) = h(x) + λν, ∀x ∈ X, ∀λ ∈ IR,

where h0+(u) = −h0+(−u) = ν. We have dim L(h) + dim h∗ = n. More
precisely, we have the following decomposition ([93])

X = V + V ⊥,

where V is the subspace parallel to the affine hull of dom h∗ (denoted
by aff(dom h∗)), and V ⊥ is exactly L(h). The function h can then be
decomposed as

h(a + b) = h(a) + 〈w, b〉,
where (a, b) ∈ V × V ⊥ and w is an arbitrary element of aff(dom h∗). In
other words, if P is an n×p matrix and Q is an n×q matrix such that the
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columns of P (resp. Q) constitue an orthonormal basis of V (resp. V ⊥),
then we have

x = a + b = Pu + Qv, u ∈ IRp, v ∈ IRq;

h(x) = h(Pu + Qv) = h(Pu) + 〈QT w, v〉.

A d.c. program

(P) α = inf{g(x)− h(x) : x ∈ X}

is said to be weakly nonconvex, if p = dim h∗ is small. In this case we
have

f(x) = g(x)− h(x) = g(Pu + Qv)− h(Pu + Qv)

= g(Pu + Qv)− 〈QT w, v〉 − h(Pu).

The nonconvex part of f(Pu + Qv) appears only in h(Pu) which simply
involves p dimensions. The dimensional reduction technique can improve
DCA’s qualities. It also permits global algorithms to treat large scale
weakly nonconvex d.c. programs.

9. Applications

We present in this section the d.c. approach to some important non-
convex problems that DCA have been successfully applied to.

9.1. DCA for globally solving the trust region subproblem (TRSP)

Recall that TRSP is the problem of the form (32)

α1 = min
{

q(x) =
1
2
xT Ax + bT x : ‖x‖ ≤ r

}
.

J. M. Martinez ([60]) has investigated the nature of local-nonglobal solu-
tions of TRSP and shown the following property: TRSP has at most one
local nonglobal solution. Moreover, being inspired by G.E. Forsythe &
G.H. Golub’s work ([28]), S. Lucidi et al. ([55]) have stated a very nice
result: in TRSP the objective function can admit at most 2m+2 different
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values at Kuhn-Tucker points, where m is the number of distinct negative
eigenvalues of A.

Clearly, this problem is a d.c. program with different d.c. decomposi-
tions. Let us point out some examples, which are of particular interest.

(i) f(x) = g(x)− h(x) with

g(x) =
1
2
〈A1x, x〉+ 〈b, x〉+ χC(x),

and
h(x) =

1
2
〈A2x, x〉.

The matrices A1 and A2 are symmetric positive semidefinite related to
the spectral decomposition of A: A = A1 −A2 with

A1 =
∑

i∈K

λiuiu
T
i , A2 = −

∑

i∈L

λiuiu
T
i .

Here λ1 ≤ . . . ≤ λn are the eigenvalues of A and {u1, . . . , un} is an
orthonormal basis of IRn constituted by corresponding eigenvectors of A,
K := {i : λi ≥ 0}, L := {i : λi < 0}, C := {x ∈ IRn : ‖x‖ ≤ r}.

(ii) f(x) = g(x)− h(x) with

g(x) =
1
2
〈(A + ρI)x, x〉+ 〈b, x〉+ χC(x),

and
h(x) =

1
2
ρ‖x‖2.

The positive number ρ is chosen such that the matrix A + ρI is positive
semidefinite, i.e., ρ ≥ −λ1.

(iii) f(x) = g(x)− h(x) with

g(x) =
ρ

2
‖x‖2 + 〈b, x〉+ χC(x),

and
h(x) =

1
2
〈(ρI −A)x, x〉.

The positive number ρ, in this case, should render the matrix ρI − A

positive semidefinite, i.e., ρ ≥ λn.
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We can describe without any difficulty the corresponding DCA. How-
ever, for these decompositions, we see that DCA is explicit in the case (iii)
only:

yk = (ρI −A)xk → xk+1 = PC(xk − 1
ρ
(Axk + b)).

Here PC is the orthogonal projection mapping on C.

From the computational viewpoint, a lot of our numerical experiments
proved the robustness and the efficiency of DCA with respect to the other
well known algorithms, especially in the large scale trust-region subprob-
lems ([83], [96], [99]).

9.2. DCA for solving the Multidimensional scaling problem
(MDS)

The Multidimensional Scaling Problem (MDS) has a fundamental role
in statistics by various applications in different fields such as social sciences
([13]), biochemistry ([21], [22]), psychology ([52]), mathematical psychol-
ogy ([11], [97]), etc. The mathematical formulation of this important
problem, due to Kruskal ([50]), is as follows:

Let φ be a norm on IRp and d be its corresponding metric. For an n×p

matrix X we define

dij(X ) = d(X T
i ,X T

j ) = φ(X T
i −X T

j ),

where Xi is the ith row of X .

Let two matrices ∆ = (δij) and W = (wij) of order n be given such
that

δij = δji ≥ 0 , wij = wji ≥ 0 , ∀i 6= j; δii = wii = 0 ∀i, j = 1, . . . , n.

The normal case corresponds to wij = 1, ∀i 6= j. We shall refer to ∆
as the dissimilarity matrix and W as the weight matrix. A metric MDS
problem consists of finding in IRp n objects X̃1, . . . , X̃n, representing an
n× p matrix X̃ , such that the differences | d(Xi,Xj)− δij | for every i and
j are smallest.

Let Mn,p(IR) denote the space of all real matrices of order n× p. The
mathematical form of metric MDS problem then can be written as

(MDS) σ∗ = min



σ(X ) =

1
2

∑

i<j

wijθ(δij − dij(X )) : X ∈Mn,p(IR)



 ,
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where θ(t) = |t| (resp. t2) for t ∈ IR.

Other mathematical models have been discussed in [50], [102]. The
classical metric MDS problem corresponds to θ(t) = t2 ([50]). The func-
tion σ is called the loss function. So, this problem is also sometimes
referred to as the distance geometry problem. Semidefinite programming
problems have been formulated by multidimensional and clustering tech-
niques in [61]. Recently similar models have been used for the molecule
problem [34], the protein structure determination problem ([116], [117])
and the protein folding problem ([30]). Some gradient-type methods were
developed by J.B. Kruskal [48], [49], L. Gutman [33], J.C. Lingoes, E.E.
Roskam [53] for solving this problem. These gradient-type methods fail
to use if the loss function σ is nondifferentiable ([24], [25]).

In 1977 J. de Leeuw [24] proved that the classical metric MDS problem
is equivalent to the convex maximization problem given as

(Smax) max
{

ρ(X )
η(X )

: η(X ) 6= 0
}
⇔ max {ρ(X ) : η(X ) ≤ 1} ,

where

η(X ) =


∑

i<j

wijd
2
ij(X )




1/2

and ρ(X ) =
∑

i<j

wijδijdij(X )

are two seminorms in Mn,p(IR). So, the classical MDS problem is reduced
to the problem of maximization of the semi-norm ρ on the unit ball defined
by the seminorm η. For solving the metric Euclidean MDS with θ(t) = t2

de Leeuw proposed an algorithm [24] (see also [25]), called the majoriza-
tion method, similar to Guttman’s C-matrix method whose convergence
result has been stated by following the same scheme of the subgradient
method (for maximizing a semi-norm on the unit ball of another semi-
norm) which has been studied extensively in the general framework of
convex analysis by Pham Dinh Tao ([70]-[74]). De Leeuw merely used
the subgradient method ([70]-[74]) for solving the classical metric MDS
problem with noneuclidean norm φ ([24]). In the Euclidean case de Leeuw
observed judiciously that his elegant adapted algorithm is unlike the sub-
gradient method since lim

k→+∞
‖X k+1 − X k‖ is not necessarily zero in the

former. In fact, such a property can be obtained by applying regular-
ization techniques to subgradient methods (see Section 5). De Leeuw’s
algorithm has been so successful that it has become a reference method
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to the classical metric Euclidean MDS problem (θ(t) = t2). Remark that
de Leeuw’s approach fails to use in the case where θ(t) = |t|.

(MDS) with θ(t) = t2 in fact is a d.c. optimization problem of the form

(34) (S1) min
{

1
2
η2(X )− ρ(X ) : X ∈Mn,p(IR)

}
,

since

σ(X ) =
1
2

∑

i<j

wijd
2
ij(X ) +

∑

i<j

wijδ
2
ij −

∑

i<j

wijδijdij(X )

=
1
2
η2(X )− ρ(X ) +

∑

i<j

wijδ
2
ij .

It has been proved in [84] that the seminorms η and ρ can be expressed as

η(X ) =
1
2
〈TX ,X〉, ρ(X ) =

1
2
〈B(X )X ,X〉,

where the matrices T = (tij) and B(X ) = (bij(X )) are defined by

tij =




−wij if i 6= j,
n∑

j=1

wij if i = j.
bij =




−wijδijsij(X ) if i 6= j,

−
n∑

j=1,j 6=i

bij if i = j.

sij(X ) =
{

1/(‖X T
i −X T

j ‖) ifXi 6= Xj ,

0 otherwise.

The stability of the Lagrangian duality for Problem (Smax) (Subsection
8.2) permits finding various d.c. decompositions for this problem, in par-
ticular, the equivalence of (Smax) and (S1). Moreover, the expression of
the dual objective function can be used to check the globality of solutions
computed by DCA.

Solving Metric MDS Problem by DCA:

Let A denote the set of matrices in Mn,p(IR) whose rows are identical,
i.e.,

A := {X ∈ Mn,p(IR) : X1 = · · · = Xn}.
It is a subspace of Mn,p(IR). Its orthogonal subspace is A⊥ = {Y ∈
Mn,p(IR) :

n∑
i=1

Yi = 0}.
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We can assume, without loss of generality, the irreducibility of the
weight matrix W , otherwise the MDS problem can be decomposed into
a number of smaller problems. We will give below the description DCA
applied to (S1) and (Smax) for solving the metric MDS problem with θ(t) =
t2 and the Euclidean norm φ. Problems (S1) and (Smax) then take the
form (P1) and (Pmax), where the semi-norms ρ and η replace the gauges
ψ and φ, respectively (Subsection 8.2)

From the stability results obtained in the last section (Theorem 11)
solving Problem (P1) amounts to solving (Pmax)
(35)
(Pmax) max{ρ(X ) : η(X ) ≤ 1} ⇔ min{χC(X )− ρ(X ) : X ∈Mn,p(IR)},

where C = {X ∈ Mn,p(IR) : (1/2)η2(X ) ≤ 1/2}. The last is a d.c.
program.

Now we describe DCA (with and without regularization) for solving
Problems (P1) and (Pmax). First, observe that for both (P1) and (Pmax)
we can restrict ourselves within to A⊥, where each of these problems has
always a solution ([1], [84]).

The DCA applied to (P1) and (Pmax) is reduced to calculating sub-
differentials of the functions ρ, ((1/2)η2)∗, χ∗C , [(λ/2)η2 + (µ/2)‖.‖2]∗ and
[λχC + (µ/2)‖.‖2]∗.

We have first calculated these subdifferentials for the general case and
then particularized the results in the normal case (wij = 1, ∀i 6= j) ([1],
[84]).

Let ε > 0, λ > 0, µ > 0 and X o ∈ A⊥ be given.

Let k = 0, 1, . . . until ‖X k+1 −X k‖ ≤ ε.

DCAP1: Take X k+1 = B(Xk)Xk

n

RDCAP1: Take X k+1 = (λB(Xk)+µI)Xk

µ+λn

DCAPmax: Take X k+1 = B(Xk)Xk

η(B(Xk)Xk)

RDCAPmax: Take X k+1 =





(λB(Xk)+µI)Xk

µ , if η((λB(X k)

+µI)X k) ≤ µ,

(λB(Xk)+µI)Xk

η((λB(Xk)+µI)Xk)
, otherwise.

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣
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Recall that η(Y) =
√

n‖Y‖ in DCAPmax and RDCAPmax.

The original d.c. decomposition for the objective function of (P1) in
(34) seems to be better than the corresponding one relative to (Pmax) in
(35). As direct consequences of the above description of DCA, we have:

(i) Without computing the denominator in each step, DCAP1 (resp.
RDCAP1) is less expensive than DCAPmax (resp. RDCAPmax), and the
difference of the cost is proportional to the dimension n× p of (MDS).

(ii) On the practical point of view, the first two algorithms are obivously
more stable than the last ones, especially in large-scale MDS problems.

These observations have been justified by many numerical simulations.
Let us point out now the fact that de Leeuw’s algorithm for solving the
metric Euclidean MDS problem (in the case where the weight matrix is
supposed to be irreducible) is a special case of DCA applied to the d.c.
program (P1). Indeed DCAP1 is given by (for a given X o ∈ A⊥)

X k+1 = T+B(X k)X k ∈ A⊥,

where the computation of X = T+Y with Y ∈ A⊥ amounts solving the
nonsingular linear system (T + (1/n)eeT )X = Y ([1], [84]) We rediscover
thus de Leeuw’s algorithm [24], [25].

Normal metric Euclidean MDS as parametrized trust region subproblems
and its solution by the parametrized DCA

The particular structure of the seminorms η and ρ have enabled us to
formulate the normal metric Euclidean MDS problem (P1) as parametrized
trust region subproblems and to devise the parametrized DCA for solving
(P1). This approach is promising because the DCA is robust and efficient
for globally solving the trust region subproblem ([83]).

It is worth noting that if the rugularization parameter is fixed, then
the corresponding parametrized DCA is reduced to RDCAPmax.

9.3. DCA for solving a class of linearly constrained indefinite
quadratic problems

We consider the indefinite quadratic problem over a bounded poly-
hedral convex set which plays an important role in global optimization:

(IQP1) min
{1

2
〈Hx, x〉+ 〈l, x〉 : x ∈ K}.

Here H is a symmetric indefinite q × q-matrix, l ∈ IRq, K is a nonempty
bounded polyhedral set defined as K = {x ∈ IRq : Ax ≤ a, x ≥ 0} with
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A being an m× q-matrix, a ∈ IRm. When

H =
(

C̃ 0
0 D

)

and the polytope is defined as

Ω = {(x, y) ∈ IRn×IRs : Ãx+By ≤ a, A1x ≤ a1, A2y ≤ a2, x ≥ 0, y ≥ 0}

we have the problem

(IQP2) min
{

F (x, y) =
1
2
〈C̃x, x〉+〈c, x〉+1

2
〈Dy, y〉+〈d, y〉 : (x, y) ∈ Ω

}
.

Here, C̃ is a symmetric positive semi-definite n × n-matrix, D is a sym-
metric negative semi-definite s × s-matrix, c ∈ IRn, d ∈ IRs, and Ã is an
m× n-matrix, B is an m× s-matrix, A1 is an r× n-matrix, A2 is a p× s-
matrix, a ∈ IRm, a1 ∈ IRr, a2 ∈ IRp. So the objective function of (IQP2)
is decomposed in a sum of a convex part and a concave part. A special
case of (IQP2) is the problem where D is diagonal (i.e., the concave part
is separable):

(IQP3) min
{

f(x, y) =
1
2
〈C̃x, x〉+ 〈c, x〉+

s∑

i=1

[diyi − 1
2
λiy

2
i ] : (x, y) ∈ Ω

}

with λi > 0.

Problem (IQP1) is in fact a problem of the form (IQP3). Likewise, Problem
(IQP2) can be equivalently transformed into a problem of the form (IQP3)
where the concave variable is separable.

When C̃ ≡ 0 in (IQP3) and the polytope is defined as

Ω̄ = {(x, y) ∈ IRn × IRs : Ax + By ≤ a, x ≥ 0, y ≥ 0},

we have the linearly constrained concave quadratic problem which have
been considered by several authors (see e.g. Rosen and Pardalos [92],
Kalantari and Rosen [45], Pardalos et al. [66], Phillips and Rosen [88],
etc.). In this case the global minimum point is always attained at least
at a vertex of the convex polytope Ω̄. This property is no longer true
when C̃ 6≡ 0. Hence, Problem (IQP3) with C̃ 6≡ 0 is likely even more
difficult to be numerically solved than concave programs. Recently, a
decomposition branch-and-bound method for dealing with (IQP3) in the
case where C̃ 6≡ 0 was proposed in Phong-An-Tao [103]. This method
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based on normal rectangular subdivisions which exploit the separability
of the concave part in the objective function. In general, the existing
algorithms are efficient if the number of the concave variables is small.

Clearly, Problem (IQP2) can be considered as minimization of a d.c.
function over a polytope for which some method developed in global ap-
proaches (see e.g., Horst et al. [41], Tuy [112]) can be applied. For solving
(IQP2) in the case where the number of variables is large, we should avoid
the inherent difficulties of this global optimization problem by using local
approaches. We proposed a “good” d.c. decomposition for which nume-
rical experience indicates that the DCA is efficient for solving (IQP2).
In contrast to global algorithms whose complexity increases exponentially
with the dimension of the concave variable, DCA has the same behaviour
with respect to both dimensions of convex variables and concave variables.
Consequently, they solve these problems when the number of concave vari-
ables is large. For solving (IQP1) we presented some d.c. decompositions
and their corresponding DCA which seem to be efficient. We proposed also
a decomposition branch-and-bound method for globally solving (IQP1)
and (IQP2). These methods are just a modification of the one in Phong-
An-Tao [103] for the general case. We used these algorithms for checking
the globality of the solution computed by DCA when s ≤ 30. Computa-
tional experiments proved that

• The global algorithms only run until s = 30. The DCA is much faster
than the global algorithm (until 30 times).

• In most problems the DCA gave global solutions.

• The DCA terminated very rapidly; the average number of iterations
is 15.

9.4. A branch-and-bound method via D.C. Optimization Algo-
rithms and Ellipsoidal technique for Nonconvex Quadratic Prob-
lems

For simplicity we present only the algorithm for solving box constrained
nonconvex quadratic problems [3] (see [8]) for the general nonconvex qua-
dratic program):

(QB) min
{

f(x) :=
1
2
〈x,Ax〉+ 〈b, x〉 :

−∞ < li ≤ xi ≤ ui < +∞, i = 1, . . . , n
}

,
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with A being an n× n symmetric matrix, b, x ∈ IRn.

A special case of (QB) is the unconstrained quadratic zero-one problem
which has many important applications, particularly in combinatorial op-
timization, looks as follows

(36) min
{

f(x) :=
1
2
〈x,Ax〉+ 〈b, x〉 : x ∈ {0, 1}n

}
.

Indeed, writing (36) in the form

(37) min
{

1
2
〈x, Ax〉+ 〈b, x〉+

t

2
(〈e, x〉 − 〈x, x〉) : x ∈ {0, 1}n

}
,

we have

(38) (37) ⇔ min
{

1
2
〈x, (A− tI)x〉+ 〈b +

t

2
e, x〉 : x ∈ [0, 1]n

}
,

where e is the vector of ones and t is a real scalar such that A − tI is
negative semidefinite.

Several algorithms have been proposed for globally solving these prob-
lems (see e.g. [10], [42], [43], [67], [68], [90]). The procedures often used
in the existing methods are to relax the constraints and perturb the ob-
jective function. The branching is usually based upon rectangular and/or
simplicial partitions.

Ellipsoidal techniques have been used to state estimations for optimal
values in nonconvex quadratic programming ([114], [115]). In [114] an
approximation algorithm was proposed for finding an ε-approximate solu-
tion. It was shown that such an approximation can be found in polynomial
time for fixed ε and t, where t denotes the number of negative eigenvalues
of the quadratic term.

We have proposed a combined branch-and-bound algorithm and DCA
for solving (QB). The aim of DCA is here twofold. The first use deals
with the lower bound computation scheme. We apply DCA to solve the
problem (QE) which is obtained from (QB) by replacing the rectangle
constraint with an ellipsoid containing the selected rectangle. Our main
motivation for the use of this technique is that DCA is very efficient for
globally minimizing a quadratic form over an euclidean ball ([1], [83]). The
second use concerns the upper bound computation process. For finding
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a good quality of feasible solutions we apply DCA to solving (QB) from
good starting points which are obtained during computing lower bounds.

The global algorithm we are going to describe starts with an ellipsoid
E0 containing the feasible region K0 of (QB). If a minimizer of f over
E0 is feasible then we stop the process. Otherwise, we divide K0 into
two rectangles (rectangular bisection) and construct two ellipsoids such
that each of them contains one of the just divided rectangles. To improve
the lower bound we compute minimums of f on each newly generated
ellipsoid. The procedure is then repeated by replacing K0 by a rectan-
gle corresponding to the smallest lower bound and E0 with an ellipsoid
containing this rectangle. As this procedure repeats infinitely many times
two infinite nested sequences of rectangles and ellipsoids are generated and
shrink to a singleton. The convergence of the algorithm thus is ensured.

For computing lower bounds, we are concerned with the construction
of a sequence of ellipsoids Ek such that:

(i) Ek contains the current rectangle Kk,

(ii) the volume vol(Ek) decreases to zero as k → +∞,

(iii) the lower bounds (supplied by the solution of (QE) defined below)
are sufficiently tight.

The lower bound of f in our algorithm is improved by the solution of
the problem

(QE) min
{

1
2
〈x,Ax〉+ 〈b, x〉 : x ∈ X

}
.

Again by the transformation L one has x ∈ X if and only if y = Lx ∈ S,
so the last problem is equivalent to the trust region subproblem

(39) min
{

1
2
〈y, D−1AD−1y〉+ 〈D−1q −D−1AD−1c, y〉 : ‖y‖2 ≤ n

}
.

Clearly, D−1AD−1 is an n × n symmetric matrix. The DCA is used for
globally solving (39).

The main contribution of our method is to give a good combination
between the local and global approaches: first, we have provided a simple
and efficient algorithm using the information of the bounding procedure for
finding good local minima of box constrained quadratic problem; secondly,
we have used the elippsoidal technique for bounding based on an efficient
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algorithm (DCA) for the ball constrained quadratic problem. We have
studied also the new branching procedure in rectangular partition in order
to well adapt to the new ellipsoidal bounding technique.

Preliminary experiments showed the efficiency as well as the limit of
our algorithm. The advantages are that either an ε-optimal solution or a
good feasible point is obtained rapidly by the DCA and thereby a consid-
erable number of generated ellipsoids are deleted from further considera-
tion. Therefore, in general the algorithm is efficient for a proper choice
of tolerance ε (nevertheless this choice does not present always exactly
the quality of the solution obtained, see, e.g., Table 6 in [3]). Moreover,
it is very efficient for some classes of problems: it could treat until the
dimension 1000 (Tables 1, 2, 3 in [3]). Again, the DCA for subproblems
in bounding procedures are explicit and not expensive. The limit is that,
as often happened in a branch-and-bound algorithm, the lower bound is
improved slowly. That is why we introduced the second process of lower
bounding in such a case. In the study of the performance of our algorithm,
an open question is that which ellipsoid can be chosen to warrant the best
initial lower bound? Meanwhile our ellipsoid technique seems to be quite
suitable.

9.5. DCA for globally solving nonconvex quadratic programming

We consider the general nonconvex quadratic programming

(QP) inf
{

f(x) =
1
2
〈Ax, x〉+ 〈b, x〉 : Bx ≤ c

}
,

with A being an n × n symmetric matrix, B being an m × n matrix and
b ∈ IRn, c ∈ IRm.

As in the TRSP, Kuhn-Tucker points of nonconvex quadratic program
(QP) enjoy the following nice property due to Bomze & Danninger ([15]):
the objective function f can be assume at most 2m + 1 different values at
Kuhn-Tuker points of (QP).

We associate with the DCA (for solving nonconvex quadratic programs)
an escaping procedure based on the trust region method ([63], [64], [77],
[98]) for globally solving (QP). This is proceeded as follows:

Let x∗ be a Kuhn-Tucker point computed by the DCA and let ε be a
positive number. Consider the linear quadratic equations

(40)
{

f(x) = f(x∗)− ε,

Bx + v2 = c,
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where v = (v1, . . . , vm) ∈ IRm and v2 denotes the vector v = (v2
1 , . . . , v2

m).

If the Kuhn-Tucker point x∗ is not a global solution to (QP), then
for ε sufficiently small there exists a solution (x̄, v̄) to (40) which can be
computed by the trut region methods with the starting point (x∗, v∗),
where v∗2 = c − Bx∗. In this case we must restart DCA with the new
initial point x̄.

Finally, the DCA (with at most 2m+1 restarting procedures) converges
to a global solution of (QP).

9.6. D.c. approach for linearly constrained quadratic zero-one
programming problems

We are interested in solving the well-known linearly constrained qua-
dratic zero-one programming

(01QP) α = min
{

f(x) :=
1
2
xT Cx + cT x : Ax ≤ b, x ∈ {0, 1}n

}
,

where C is an (n × n) symmetric matrix, c, x ∈ IRn, A is an (m × n)
matrix and b ∈ IRm.

This problem, which is a key one in combinatorial optimization, is NP-
hard and has been extensively investigated by several authors. A special
case of this is linear zero-one programming which has many important ap-
plications in economics, planning and various kinds of engineering design.
We propose a new algorithm in a continuous approach for the following
equivalent concave minimization problem

(CCQP) α = min
{

1
2
xT (C − λI)x + (c +

λ

2
e)T x : Ax ≤ b, x ∈ [0, 1]n

}
,

where e is the vector of ones and λ ≥ λo > 0 (see Section 8.1 and [7]).

Clearly, (CCQP) is a d.c. program to which some global methods can
be applied (see e.g. [41], [112]), when the dimension is small. For large
scale setting it would be interesting to use the DCA for solving (CCQP).

In order to guarantee that solutions computed by the DCA are global
we introduce a branch-and-bound scheme. With this purpose, first we
transform (CCQP) into the d.c. program with the separable concave part

(DCQP) α = min{g(x)− h(x) : x ∈ K}.



344 PHAM DINH TAO AND LE THI HOAI AN

Here K = {x ∈ IRn : Ax ≤ b, 0 ≤ xi ≤ 1, i = 1, . . . , n},

(41) g(x) :=
1
2
xT (C + (ρ− λ)I)x + (c +

λ

2
e)T x; h(x) :=

1
2
ρ

n∑

i=1

x2
i ,

and ρ is a positive number such that the matrix (ρ − λ)I + C is semi
positive definite. The branch-and-bound algorithm is in fact considered
for the problem (DCQP). It aims to find a good starting point for the
DCA and, naturally, to prove the globality of the solutions obtained by
the DCA. This combination of two approaches improves the qualities of the
DCA and accelerates the convergence of the branch-and-bound algorithm.

We note that the equivalence between (01QP) and (CCQP) is not un-
usual. Neverthelesse the existing algorithms for solving the last problem
are not often applied in the solution of the former. The reason is that, in
practice a branch-and-bound scheme (in a continuous approach) is often
used for finding an ε-solution of the problem being considered, since it is
very difficult to obtain an exact solution. Unfortunetly, such an ε-solution
of (CCQP) may be not integer. However, the DCA applied to (CCQP)
with t sufficiently large provides a point in {0, 1}n. This advantage of
the DCA makes our method efficient in finding an integer ε-solution of
(DCQP) in large scale setting.

Preliminary computational experiences [5] showed that the DCA is very
efficient: it provides either an optimal solution or a good approximation
to it within some first iterations. As for the branch-and-bound algorithm,
it works very well in linear zero-one programming. In case of quadratic
programming, when n > 40, to ensure the globality the algorithm needed
much more iterations. Another procedure for improving lower bounds in
this case is currently under the research.

9.7. DCA for optimizing over the efficient set

Let C be a p×n real matrix, and K be a nonempty compact convex set
of IRn. Let f be a real valued function on IRn. An optimization problem
over the efficient set is that of the form

(42) max{f(x) : x ∈ KE}.
Here KE denotes the Pareto set of the following multiple objective pro-
gramming problem:

(MP) max{Cx : x ∈ K}.
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We recall that a point x0 is said to be an efficient point of Problem (MP)
when x0 ∈ K, and whenever Cx ≥ Cx0 for some x ∈ K, then Cx = Cx0.

Following [12] for each x we define p(x) as

(Lx) p(x) := max{eT C(y − x) : Cy ≥ Cx, y ∈ K},
where e is the row vector in IRp whose all entries are 1. It is clear that
the effective domain of −p is the projection on IRn of {(x, y) ∈ IRn ×
K : Cx − Cy ≤ 0} which contains K. This function has the following
properties:

Lemma 5 ([6], [7]). (i) p is nonnegative on K, and x ∈ KE if and only
if p(x) = 0, x ∈ K.

(ii) p is upper semicontinuous concave function on the whole space.

(iii) If, in addition, K is polyhedral convex, then p is polyhedral concave
on K.

In virtue of Lemma 5, Problem (P) can be written as

(P’) max{f(x) : p(x) ≤ 0, x ∈ K}.
Since p(x) ≥ 0 for every x ∈ K, and p(x) = 0, x ∈ K if and only if
x ∈ KE , this function is an exact penalty function (with respect to K).
Thus, the corresponding penalized problem is

(43) min{tp(x)− f(x) : x ∈ K}.
According to Theorem 9, if f is convex, then there is a nonnegative number
to such that (42) and (43) are equivalent for t > to.

Remark that (43) is a polyhedral d.c. program if f is concave. More-
over, if f is linear and the vertex set of K, V (K), is not contained in
KE , then for t > (U0 − f(x0))/M0, with U0 := max{f(x) : x ∈ K} and
M0 := min{p(x) : x ∈ V (K), p(x) > 0} > 0, the sequence {xk} generated
by DCA are in KE provided the starting point x0 is efficient.

Numerous computational experiments proved that ([6])

1. For DCA:

• DCA terminates very rapidly; average number of iterations is 3.

• DCA works with problems where the number of the criteria may be
large. The running times are relatively insensitive to the increase of the
number of the criteria.
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• The optimal value computed by DCA depends on the initial point. In
general the optimal value is close to the global optimal value if the initial
point x0 is chosen as

x0 = γx̄ + (1− γ)xmax, 0.5 < γ < 1,

where
x̄ = argmax{λ̄Cx : x ∈ K}, with λ̄ ∈ V (S0),

xmax = argmax{f(x) : x ∈ K}.
Although this initial point in general is not efficient, the computed solu-
tions always are efficient.

• The algorithms are unstable if the penalty parameter is large.

2. For global algorithms (a combination of DCA and a based branch-
and-bound global algorithm)

• The algorithm is efficient only if the number of the criteria is small,
since the running time is very sensitive to the increase of the number of
the criteria.

• In general, after a reasonable number of iterations a global solution
is reached. To detect its globality, however, we need much more itera-
tions. The reason is that the upper bounds are not sufficiently sharp, and
sometimes they are improved very slowly.

9.8. Linear and nonlinear complementarity problems. Difference
of subdifferentials complementarity problem

Consider the problem of the form

(NLC)
{

Find (x, y) ∈ IRn × F (x) such that
y ≥ 0 and 〈x, y〉 = 0,

where F is an operator defined on IRn.

If F (x) = (f1(x), . . . , fn(x))T is a d.c. vector-function (i.e., its compo-
nents fi are d.c.), then it is well-known that ([44]) (NLC) is equivalent to
the following nonconvex program type (3) (Introduction)

0 = inf

{
n∑

i=1

min (xi, fi(x)) : x ≥ 0, fi(x) ≥ 0, i = 1, . . . , n

}
.
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The linear complementarity problem (LCP) corresponds to the case
where F is affine, (F (x) = Ax + b) ([20]). (LCP) is equivalent to the
following d.c. programs which are, nonconvex quadratic programs except
(47) with p 6= 1 and (48):

(44) α = inf
{

1
2
〈x,Ax〉+ 〈b, x〉 : x ≥ 0

}
,

with A being symmetric,

(45) 0 = inf
{

1
2
〈x, (A + AT )x〉+ 〈b, x〉 : x ≥ 0, Ax + b ≥ 0

}
,

(46) 0 = inf
{‖y − (Ax + b)‖2 + xT y : x ≥ 0, y ≥ 0

}
,

(47) 0 = inf

{
n∑

i=1

min(xi, Aix + bi) : x ≥ 0

}
,

where ρ > 1 and p > 1,

(48) 0 = inf
{ n∑

i=1

min(xi, Aix + bi) : x ≥ 0
}

.

The relations between solutions to these problems are straightforward.

(i) If A is symmetric then x̄ is a solution to (LCP) if and only if x̄ is a
Kuhn-Tucker point of (44).

(ii) x̄ is a solution to (LCP) if and only if the optimal value of (45)
(resp. (48)) is zero and x̄ is a solution to (45) (resp. (48)).

(iii) x is a solution to (LCP) if and only if the optimal value of (46)
(resp. (47)) is zero and (x, y = Ax + b) is a solution to (46) (resp. (47)).

It is worth noting that (48) is polyhedral d.c. program (polyhedral
concave minimization over a polyhedral convex set).

Recently A. Friedlander et al. [29] have studied the solution of the
horizontal linear complementarity problem:

Given two n× n matrices Q, R and b ∈ IRn, find x, y ∈ IRn such that

(49) Qx + Ry = b, xT y = 0, x, y ≥ 0



348 PHAM DINH TAO AND LE THI HOAI AN

by using box constrained minimization algorithms applied to the following
equivalent problem

(50) 0 = inf
{

ρ‖Qx + Ry − b‖2 +
(
xT y

)p : x ≥ 0, y ≥ 0
}

,

with arbitrary constants ρ > 1 and p > 1. It is clear that (LCP) (resp.
(50)) is a particular case of (49) (resp. (50)). Observe that when p = 2 we
obtain easily an interesting d.c. decomposition of the objective function.

Problem (49) is said to be monotone if Qu + Rv = 0 implies uT v ≥ 0.
That is equivalent, in case Q (resp. R) is nonsingular, to Q−1R (resp.
R−1Q) negative semidefinite. Likewise (LCP) is monotone if and only if
A is positive semidefinite.

A. Fridlander et al. [29] have stated interesting conditions under which
Kuhn-Tucker necessary optimality conditions for (50) are also sufficient.
In particular if (50) is monotone, then there is identity between Kuhn-
Tucker points and solutions to (50).

In our new non-standard approaches ([85]) we used the DCA for sol-
ving these d.c. programs. Furthermore we have studied the difference of
subdifferentials (of convex functions) complementarity problem

F (x) = ∂g(x)− ∂h(x)

with g and h belonging to Γo(IRn). This problem is equivalent (under
technical hypothesis) to

(51) 0 ∈ ∂
(
g + χIRn

+

)
(x)− ∂h(x).

It has been proved (Section 3) that the DCA converges to a solution of
(51).

Conclusion

We have completed a thorough study on the convex analysis approach
to d.c. programming. The DCA, despite its local character, seemed to
be robust and efficient with respect to the other related algorithms and
led quite often to global solutions. Escaping procedures have also been
introduced in nonconvex quadratic programs and the trust region sub-
problem. For these problems the DCA (with a finite number of restarting
procedures) converges to a global solution.
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Our further developments will be consecrated to globalizing the DCA
by either studying new escaping procedures or combining the DCA with
global algorithms in a deeper way. To our knowledge, these approaches
are not much studied in the literature. We are convinced that they will
constitute new trends in nonconvex programming.
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