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SOLUTION OF GENERAL
LINEAR COMPLEMENTARITY PROBLEMS VIA

NONDIFFERENTIABLE CONCAVE MINIMIZATION∗

O. L. MANGASARIAN

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. Finite termination, at point satisfying the minimum princi-
ple necessary optimality condition, is established for a stepless (no line
search) successive linearization algorithm (SLA) for minimizing a nondif-
ferentiable concave function on a polyhedral set. The SLA is then applied
to the general linear complementarity problem (LCP), formulated as min-
imizing a piecewise-linear concave error function on the usual polyhedral
feasible region defining the LCP. When the feasible region is nonempty,
the concave error function always has a global minimum at a vertex, and
the minimum is zero if and only if the LCP is solvable. The SLA termi-
nates at a solution or stationary point of the problem in a finite number
of steps. A special case of the proposed algorithm [8] solved without fai-
lure 80 consecutive cases of the LCP formulation of the knapsack feasibilty
problem, ranging in size between 10 and 3000.

1. Introduction

We consider the classical linear complementarity problem (LCP) [4, 12,
5]

(1) 0 ≤ x ⊥ Mx + q ≥ 0,

where ⊥ denotes orthogonality, and no assumptions are made on the n×n
real matrix M or the n× 1 real vector q defining the problem. This NP-
complete problem [3], which may not have a solution, is easily shown to
be equivalent to the following minimization of a piecewise-linear concave
function on the polyhedral set defining the LCP [7, Lemma 1]

(2) 0 = min
x
{e′(x− (x−Mx− q)+)

∣∣ Mx + q ≥ 0, x ≥ 0},
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where e is a column vector of ones and z+ denotes the component-wise
maximum of zi and 0 for a vector z. This problem in turn can be rewritten
as:

(3) 0 = min
x
{e′ minimum{x,Mx + q}∣∣ Mx + q ≥ 0, x ≥ 0}.

We note immediately that the piecewise-linear concave objective function
of either (2) or (3) is in fact a natural residual for the general LCP and
constitutes a local error bound for any LCP, and a global error bound for
an LCP with positive definite M , or more generally for M ∈ R0 [15, 6,
13, 10]. (The class R0 is the class of matrices M for which 0 is the unique
solution to the homogeneous LCP: Mx ≥ 0, x ≥ 0, x′Mx = 0.) It seems
natural, then, to base an algorithm on attempting to drive this residual
to zero, and this is what we plan to do in this paper.

We briefly outline now the contents. In Section 2 we state and establish
finite termination of a stepless successive linearization algorithm (SLA)
for finding a point satisfying the minimum principle necessary optimality
condition for the problem of minimizing a concave function on a polyhedral
set. In Section 3 we apply the algorithm to the general LCP via the
formulation (3) and indicate its computational effectiveness by citing a
specific instance [8] of successfully solving the knapsack feasibility problem
as an LCP. Section 3 concludes the paper.

A word about our notation and background material. The feasible
region of the LCP (1) is the set {x|Mx + q ≥ 0, x ≥ 0}. The scalar
product of two vectors x and y in the n-dimensional real space will be
denoted by x′y in conformity with MATLAB [11] notation. For a linear
program min

x∈X
c′x with a vertex solution, the notation

arg vertex min
x∈X

c′x,

will denote the set of vertex solutions of the linear program. For x ∈ Rn,
the norm ‖x‖ will denote the 2-norm: (x′x)

1
2 , while ‖x‖1 will denote the

1-norm:
n∑

i=1

|xi|. The notation min {x, y} applied to vectors x and y in Rn

will denote a vector with components that are minima of corresponding
components of x and y. For x ∈ Rn, (x+)i = max {0, xi}, i = 1, . . . , n.
For an m × n matrix A, Ai will denote the ith row of A. The identity
matrix in a real space of arbitrary dimension will be denoted by I, while a
column vector of ones of arbitrary dimension will be denoted by e. For a
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concave function f : Rn → R the supergradient ∂f(x) of f at x is a vector
in Rn satisfying

(4) f(y)− f(x) ≤ ∂f(x)(y − x)

for any y ∈ Rn. The set D(f(x)) of supergradients of f at the point x is
nonempty, convex, compact and reduces to the ordinary gradient ∇f(x),
when f is differentiable at x [14, 16].

2. The concave minimization algorithm

We consider in this section the following problem:

(5) min
x∈X

f(x),

where f : Rn → R is a concave function on Rn and X is a polyhedral set in
Rn that does not contain lines going to infinity in both directions. For such
a problem, if f is bounded below on X, problem (5) has a vertex solution
[16, Corollary 32.3.4]. We now state and establish finite termination of
stepless successive linearization algorithm, which is an extension of an
algorithm of [9] to nondifferentiable concave functions that is also very
effective for the solution of machine learning problems [1, 2].

Algorithm 1 (Successive Linearization Algorithm (SLA)). Start
with a random x0 ∈ Rn. Having xi determine xi+1 as follows:

(6) xi+1 ∈ arg vertex min
x∈X

∂f(xi)(x− xi)

Stop if xi ∈ X and ∂f(xi)(xi+1 − xi) = 0.

We will show that this algorithm terminates after a finite number of
steps at a point satisfying a minimum principle necessary optimality con-
dition. But first we will show that every local solution of a concave mini-
mization problem satisfies such a minimum principle.

Lemma 2 (Minimum Principle Necessary Optimality Condition).
Let x̄ be a local solution of min

x∈Y
f(x), where Y is a convex set in Rn and

f is a concave function on Rn. Then x̄ satisfies the following minimum
principle

(7) ∂f(x̄)(x− x̄) ≥ 0, ∀x ∈ Y.
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Proof. Let x̄ a local solution, that is

f(x̄) ≤ f(y), ∀y ∈ B(x̄) ∩ Y,

where B(x̄) is some ball around x̄. Then for any x ∈ Y not in B(x̄), it
follows that

(1− λ)x̄ + λx ∈ B(x̄), for some λ ∈ (0, 1).

Hence
0 ≤ f((1− λ)x̄ + λx)− f(x̄) ≤ λ∂f(x̄)(x− x̄),

where the the last inequality follows from (4). Noting that λ > 0, we
immediately have the desired minimum principle (7).

We note that the minimum principle is usually given for convex mini-
mization problems [14, Theorem 3, p. 203], [16, Theorem 27.4], and not
for a concave minimization problem like the one under consideration here.
Also, the proofs are completely different for the convex case, with the
above proof being much simpler.

We are ready now to derive our finite termination result for the SLA 1.

Theorem 3 (SLA Finite Termination Theorem). Let f , a concave
function on Rn, be bounded below on X. The SLA generates a finite se-
quence of feasible iterates {x1, x2, . . . , xī} of strictly decreasing objective
function values: f(x1) > f(x2) > . . . > f(xī), such that xī satisfies the
minimum principle necessary optimality condition:

(8) ∂f(xī)(x− xī) ≥ 0, ∀x ∈ X.

Proof. We first show that SLA is well defined. By the concavity of f and
its boundedness from below on X, we have that

−∞ < inf
x∈X

f(x)− f(xi) ≤ f(x)− f(xi) ≤ ∂f(xi)(x− xi), ∀x ∈ X.

It follows for any xi ∈ Rn, even for an infeasible xi such as a possibly
infeasible x0, that ∂f(xi)(x−xi) is bounded below on X. Hence the linear
program (8) is solvable and has a vertex solution xi+1. It follows for
i = 1, 2, . . . , that

∀x ∈ X: ∂f(xi)(x− xi) ≥ min
x∈X

∂f(xi)(x− xi)

= ∂f(xi)(xi+1 − xi)
{

< 0, (a)
= 0. (b)

(9)
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We note immediately that because xi ∈ X for i = 1, 2, . . . , it follows
that ∂f(xi)(xi+1 − xi) ≤ 0. Hence only two cases, (a) or (b), can occur,
as indicated above. When case (a) above occurs, the algorithm does not
stop at iteration i, and we have from the concavity of f and the strict
inequality of case (a) that:

f(xi+1) ≤ f(xi) + ∂f(xi)(xi+1 − xi) < f(xi).

Hence f(xi+1) < f(xi), for i = 1, 2, . . . . When case (b) occurs we then
have that:

(10) ∀x ∈ X: ∂f(xi)(x− xi) ≥ 0,

and the algorithm terminates (provided xi ∈ X, which may not be the case
if xi = x0 6∈ X), and we set ī = i. The point xī thus satisfies the minimum
principle necessary optimality conditions (8) with xī = xi, and xī may
possibly be a global solution. Furthermore, since X has a finite number
of vertices, {f(xi)} is strictly decreasing and f(x) is bounded below on X,
it follows that case (b) and hence (8) must occur after a finite number of
steps.

We now turn to a specific application of the SLA 1 to the LCP.

3. The concaveminimization algorithmapplied to the LCP

We consider now the concave minimization formulation (3) of the LCP
and apply SLA 1 to it. In order to do that we need to compute the
supergradient of the objective function of (3) which is the following:

(∂f(x)) = (∂(e′minimum{x,Mx + q}))

=
n∑

j=1

〈
Ij if xj < Mjx + qj ,
(1− λ)Ij + λMj if xj = Mjx + qj , 0 ≤ λ ≤ 1,
Mj if xj > Mjx + qj .

〉
(11)

We can now apply the SLA 1 to the LCP by using the above supergra-
dient for some fixed or varying λ. We summarize the algorithm and its
finite termination to a stationary point as follows.

Algorithm 4 (SLA for LCP). The SLA 1 applied to the LCP Problem
(3) with

f(x) = e′minimum{x, Mx + q}, X = {x
∣∣Mx + q ≥ 0, x ≥ 0},
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and supergradient defined by (11), terminates in a finite number of steps
at a vertex xī of X satisfying the minimum principle necessary optimality
condition (8).

We note that the bilinear algorithm of [8] for solving the knapsack
feasibility problem as an LCP can be interpreted as a special case of Algo-
rithm 4 with a fixed λ = 0. That bilinear algorithm solved 80 consecutive
instances of the knapsack LCP ranging in size between 10 and 3000 with-
out failure. This is an indication that the proposed Algorithm 4 may be
effective for classes of non-monotone LCPs.

4. Conclusion

We have established finite termination to a stationary point of a general
stepless successive linearization algorithm applied to minimizing a nondif-
ferentiable concave function on a polyhedral set and have applied it to
a piecewise-linear concave formulation of the general LCP. The encoura-
ging computational results of special cases of this algorithm applied to a
knapsack LCP, as well to machine learning problems such as misclassifi-
cation minimization [9], feature selection [1] and clustering [2], lead us to
suggest that the proposed SLA 1 is a potential tool for solving important
classes of difficult problems that are appropriately formulated as concave
minimzation problems on polyhedral sets.
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