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REDUCTION OF MONOTONE LINEAR
COMPLEMENTARITY PROBLEMS OVER CONES

TO LINEAR PROGRAMS OVER CONES

M. KOJIMA, M. SHIDA AND S. SHINDOH

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. This short note presents a constructive way of reducing
monotone LCPs (linear complementarity problems) over cones to LPs (li-
near programs) over cones. In particular, the monotone semidefinite lin-
ear complementarity problem (SDLCP) in symmetric matrices, which was
recently proposed by Kojima, Shindoh and Hara, is reducible to an SDP
(semidefinite program). This gives a negative answer to their question
whether the monotone SDLCP in symmetric matrices is an essential gen-
eralization of the SDP.

1. Introduction

Let Rm denote the m-dimensional Euclidean space. We use the nota-

tion xxx · yyy for the inner product of xxx, yyy ∈ Rm, i.e., xxx · yyy =
m∑

j=1

xjyj .

There have been proposed and studied various kinds of extensions and
generalizations of the standard form LCP (linear complementarity prob-
lem) (see, e.g., Cottle-Pang-Stone [3]): Given an m×m matrix MMM and a
qqq ∈ Rm,

(1) find (xxx,yyy) ∈ R2m; yyy = MMM xxx + qqq, xxx ≥ 000, yyy ≥ 000 and xxx · yyy = 0.

Among others, we are concerned with an LCP over cones or a GLCP
(generalized linear complementarity problem): Given an affine subspace F
of R2m and a closed convex cone K ⊂ Rm,

(2) find (xxx,yyy) ∈ R2m; (xxx,yyy) ∈ F, xxx ∈ K, yyy ∈ K∗ and xxx · yyy = 0,
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where K∗ denotes the dual cone of K, i.e.,

K∗ = {yyy ∈ Rm : xxx · yyy ≥ 0 for every xxx ∈ K}.

There are numerous literatures ([3-8, 12, 14, 16], etc.) on LCPs over cones
and related problems. The standard form LCP (1) is a special case of the
LCP (2) over cones where we take

F = {(xxx,yyy) ∈ R2m : yyy = MMM xxx + qqq},
K = Rm

+ (i.e., the nonnegative orthant of Rm).

We call (xxx,yyy) ∈ F ∩ (K ×K∗) a feasible solution of the LCP (2), and
(xxx,yyy) ∈ F ∩ int(K × K∗) an interior feasible solution of the LCP (2).
Here int C denotes the interior of a set C in the Euclidean space. We say
that an affine subspace F of R2m is monotone if

(3) (xxx− xxx′) · (yyy − yyy′) ≥ 0 for every (xxx,yyy), (xxx′, yyy′) ∈ F,

and that the LCP (2) over cones is monotone if the affine subspace F
associated with the problem is monotone.

The monotone LCP (2) over cones is known as a unified mathematical
model for various problems including LPs (linear programs), convex QPs
(quadratic programs) and SDPs (semidefinite programs). In particular,
the monotone LCP (2) over cones may be regarded as a direct exten-
sion of the primal-dual pair of linear programs using a conic formulation
(Nesterov-Nemirovskii [13]):

P : minimize ccc · xxx subject to xxx ∈ L + ddd, xxx ∈ K,
(4)

D : minimize ddd · yyy subject to yyy ∈ L⊥ + ccc, yyy ∈ K∗.

{

Here ccc and ddd are given constant vectors in Rm, L a given linear subspace
of Rm, and L⊥ ⊂ Rm the orthogonal complement of L in Rm. Let

(5) F = (L + ddd)× (L⊥ + ccc).

Then the m dimensional affine subspace F enjoys the self-orthogonality,
i.e.,

(xxx′ − xxx) · (yyy′ − yyy) = 0 for every (xxx′, yyy′), (xxx,yyy) ∈ F,

which is a special case of the monotonicity (3). By the construction, we
obviously see that xxx is a feasible solution of the primal problem P and yyy
is
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a feasible solution of the dual problem D if and only if the pair (xxx,yyy) is a
feasible solution of the monotone LCP (2) with F of the form (5). Assume
that

(6) ∃(xxx,yyy); xxx ∈ (L + ddd) ∩ (int K) and yyy ∈ (L⊥ + ccc) ∩ (intK∗),

or equivalently that the monotone LCP (2) has an interior feasible solution
(xxx,yyy). Then xxx is a minimum solution of the primal problem P and yyy is a
minimum solution of the dual problem D if and only if the pair (xxx,yyy) is a
solution of the LCP (2). See Chapter 4 of [13] for more details.

The aim of this short note is to present a constructive way of reducing
the monotone LCP (2) over cones to an LP over cones, which is motivated
by a recent paper [11] by Kojima, Shindoh and Hara. They introduced
the monotone semidefinite linear complementarity problem (SDLCP) in
symmetric matrices for a mathematical model on which they established
a theoretical foundation of interior-point methods. We can specialize or
adapt their methods to primal-dual interior-point methods for solving
SDPs (semidefinite programs). See also [9, 10]. In concluding remarks
of their paper [11], Kojima, Shindoh and Hara pointed out that a certain
convex quadratic program in symmetric matrices is reducible not only
to a monotone SDLCP in symmetric matrices, which is a special case of
LCPs over cones, but also to an SDP, which is a special case of LPs over
cones, and raised a question whether the monotone SDLCP in symmetric
matrices is an essential generalization of the SDP.

Section 2 is devoted to the main result, a constructive way of reducing
the monotone LCP (2) over cones to an LP over cones. As a corollary
of the main result, we will see in Section 3 that the monotone SDLCP in
symmetric matrices is reducible to an SDP, which gives a negative answer
to the question above.

2. Main result

It is well-known that the LCP (2) over cones can be reformulated as
the following minimization problem with a bilinear objective function:

(7)
{

minimize xxx · yyy
subject to (xxx,yyy) ∈ F, xxx ∈ K and yyy ∈ K∗.

Between the two problems, we have:

• (xxx,yyy) is a feasible solution of the LCP (2) if and only if it is a feasible
solution of the problem (7),
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• (xxx,yyy) is a solution of the LCP (2) if and only if it is a minimum
solution of the problem (7) with the objective value xxx · yyy = 0.

In the remainder of this section, we assume that F is monotone, and
reduce the problem (7) to an LP (17) over cones; starting from the problem
(7) above, we derive a series of minimization problems (11), (12) and (14),
which lead us to the final goal, the LP (17) over cones.

We begin with a simple special case where the affine subspace F of
R2m associated with the LCP (2) over cones (and also associated with the
problem (7) above) is of the following standard form as in the standard
form LCP (1):

(8) F = {(xxx,yyy) : yyy = MMM xxx + qqq}.
Here MMM denotes an m × m matrix and qqq ∈ Rm. Obviously, dim F =
m. Also it is well-known and easily verified from the monotonicity of
the m dimensional affine subspace F of the standard form (8) that MMM is
positive semidefinite; hence the m×m symmetric matrix QQQ ≡ (MMM+MMMT )/2
is positive semidefinite. Therefore we can rewrite the problem (7) as a
minimization problem with a convex quadratic objective function:

(9)
{

minimize xxxTQQQxxx + qqqTxxx

subject to yyy = MMM xxx + qqq, xxx ∈ K and yyy ∈ K∗.

Remark. It was shown in the papers [1, 5, 15] that any monotone affine
subspace of R2m is at most m dimensional. When the monotone affine
subspace associated with a linear complementarity problem over cones is
m dimensional, the problem is reducible to a monotone LCP with F of the
standard form (8) (see [1, 5, 15]). Hence we can reduce such a problem to
a minimization problem, which is similar to the problem (9) above, with
a convex quadratic objective function.

Now we show how to reduce the problem (7) with a general mono-
tone affine subspace F of R2m to a minimization problem with a convex
quadratic objective function. Let k = dim F . Take an

(aaa

bbb

)
∈ F and a

2m × k matrix
(AAA

BBB

)
whose columns form a basis of the k dimensional

linear subspace {(xxx

yyy

)
−

(aaa

bbb

)
:

(
xxx

yyy

)
∈ F

}

of R2m to represent F such that

(10) F =
{(

AAA

BBB

)
uuu +

(aaa

bbb

)
: uuu ∈ Rk

}
.
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Then we have

xxx · yyy = uuuTQQQuuu + qqqTuuu + r if
(

xxx

yyy

)
=

(
AAA

BBB

)
uuu +

(aaa

bbb

)
,

where QQQ =
1
2
(AAATBBB + BBBTAAA), qqq = AAATbbb + BBBTaaa and r = aaaTbbb. Under the

assumption that F is monotone, the lemma below ensures that the k × k
symmetric matrix QQQ is positive semidefinite.

Lemma 2.1. An affine subspace F of the form (10) is monotone if and
only if AAATBBB is positive semidefinite, i.e., uuuAAATBBB uuu ≥ 0 for every uuu ∈ Rk.

Proof. For every pair of

(
xxx

yyy

)
=

(
AAA

BBB

)
uuu +

(aaa

bbb

)
,

(
xxx′

yyy′

)
=

(
AAA

BBB

)
uuu′ +

(aaa

bbb

)
∈ F,

we see that

(xxx− xxx′) · (yyy − yyy′) = (AAAuuu−AAAuuu′) · (BBB uuu−BBB uuu′)

= (uuu− uuu′)TAAATBBB(uuu− uuu′).

Hence the desired result follows.

Remark. It was shown in the paper [12] that an affine subspace F of R2m

is monotone if and only if the bilinear form xxx · yyy is convex on F . The
lemma above is equivalent to this fact.

In view of the discussions above and Lemma 2.1, we can rewrite the
problem (7) as a minimization problem with a convex quadratic objective
function:

(11)





minimize uuuTQQQuuu + qqqTuuu + r,

subject to xxx = AAAuuu + aaa, yyy = BBB uuu + bbb,

xxx ∈ K and yyy ∈ K∗.

If we take AAA = III, aaa = 000, BBB = MMM , bbb = qqq and r = 0 in (11), we have
the minimization problem (9). Therefore we will restrict ourselves to the
minimization problem (11).
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In Chapter 4 of their book [13], Nesterov and Nemirovskii showed that
a convex program is reducible to an LP over cones. Since (11) is a convex
program, we could apply their method to reduction of the problem (11) to
an LP over cones. Although their method is quite general, it is not fit for
reduction of a monotone SDLCP in symmetric matrices to an SDP which
we discuss in the next section. So we employ another way of reducing the
problem (11) to an LP over cones.

We further rewrite the problem (11) as

(12)





minimize α + qqqTuuu + r,

subject to uuuTQQQuuu ≤ α,

xxx = AAAuuu + aaa, yyy = BBB uuu + bbb,

xxx ∈ K and yyy ∈ K∗.

This problem is not an LP over cones yet because it involves the quadratic
inequality constraint uuuTQQQuuu ≤ α. We will utilize a popular technique
(based on Schur complements) in the field of linear matrix inequalities (see,
e.g., [2]) to replace the constraint by “a semidefinite inequality constraint”
(13).

In our succeeding discussions, the symbol S(n) stands for the set of n×n
real symmetric matrices, and the symbol S+(n) for the set of n × n real
symmetric positive semidefinite matrices. We regard S(n) as an n(n+1)/2
dimensional real vector space with the usual addition XXX+YYY of two matrices
XXX, YYY ∈ C(n), the scalar multiple αXXX of XXX ∈ S(n) by α ∈ R and the inner
product XXX • YYY = Tr XXXTYYY (i.e., the trace of the product of XXXTYYY ).

Since QQQ is a k × k symmetric positive semidefinite matrix, it can be
factorized as QQQ = LLLTLLL for some k× k matrix LLL (e.g., apply the Cholesky
factorization to QQQ). Then (uuu, α) satisfies the inequality constraint uuuTQQQuuu ≤
α if and only if

(13) ZZZ =
(

III LLLuuu
uuuTLLLT α

)
∈ S+(k + 1),

where III denotes the k × k identity matrix. Hence we obtain the problem

(14)





minimize α + qqqTuuu + r,

subject to ZZZ =
(

III LLLuuu

uuuTLLLT α

)
∈ S+(k + 1),

xxx = AAAuuu + aaa, yyy = BBB uuu + bbb,

xxx ∈ K and yyy ∈ K∗,
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which is equivalent to the minimization problem (12).

The problem (14) is an LP over cones. To see this more concretely, we
need to identify the space S(n) of n×n real symmetric matrices with the
n(n+1)/2 dimensional Euclidean space Rn(n+1)/2 through an isomorphism
between these two spaces (a one-to-one linear mapping from one space onto
the other). Here we employ an isomorphism σσσ(·; n) : S(n) → Rn(n+1)/2 of
the following form:

σσσ(ZZZ; n) = ( z11,
√

2z12,
√

2z13, . . . ,
√

2z1(n−1),
√

2z1n,

z22,
√

2z23, . . . ,
√

2z2(n−1),
√

2z2n,
. . . , . . . , . . . ,

z(n−1)(n−1),
√

2z(n−1)n,
znn )

(15) for every ZZZ =




z11 z12 . . . z1n

z21 z22 . . . z2n
...

...
. . .

...
zn1 zn2 . . . znn


 ∈ S(n).

Note that this isomorphism σσσ(·; n) : S(n) → Rn(n+1)/2 preserves values of
the inner products in both spaces;

(16) XXX • YYY = σσσ(XXX; n) · σσσ(YYY ;n) for every XXX, YYY ∈ S(n).

(This property of the isomorphism σσσ(·;n) is not relevant here but is used
in the next section). Now define

ggg(uuu, α) = σσσ

((
III LLLuuu

uuuTLLLT α

)
; k + 1

)
for every (uuu, α) ∈ Rk+1,

T+(k + 1) = σσσ (S+(k + 1); k + 1) ,

` = (k + 1)(k + 2)/2.

Then ggg is an affine mapping from Rk+1 into R`, so that we can find an
`× (k + 1) matrix HHH and an hhh ∈ R` satisfying

ggg(uuu, α) = HHH
(uuu

α

)
+ hhh for every (uuu, α) ∈ Rk+1.

We also see that T+(k+1) forms a closed convex cone in R`. Consequently
we obtain an LP over cones

(17)





minimize α + qqqTuuu + r,

subject to zzz = HHH
(

uuu
α

)
+ hhh ∈ T+(k + 1),

xxx = AAAuuu + aaa, yyy = BBB uuu + bbb,

xxx ∈ K and yyy ∈ K∗.
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This LP over cones is equivalent to the LCP (2) over cones in the sense
that

• (xxx,yyy) is a feasible solution of the LCP (2) over cones if and only if
(xxx,yyy,uuu, α,zzz) is a feasible solution of the LP (17) over cones for some
(uuu, α,zzz),

• (xxx,yyy) is a solution of the LCP (2) over cones if and only if (xxx,yyy,uuu, α,zzz)
is a minimum solution of the LP (17) over cones with the objective
value α + qqqTuuu + r = 0 for some (uuu, α,zzz).

3. Reduction of the monotone SDLCP
in symmetric matrices to an SDP

Let F be an n(n + 1)/2 dimensional affine subspace of S(n)2. We
assume that F is monotone, i.e.,

(XXX −XXX ′) • (YYY − YYY ′) ≥ 0 for every(XXX,YYY ), (XXX ′,YYY ′) ∈ F .

The monotone SDLCP in symmetric matrices is the problem:
(18)
find (XXX,YYY ) ∈ S(n)2; (XXX,YYY ) ∈ F , XXX ∈ S+(n), YYY ∈ S+(n) and XXX •YYY = 0.

This problem is a special case of the LCP (2) over cones. In fact, (XXX,YYY )
is a solution of the monotone SDLCP (18) in symmetric matrices if and
only if (xxx,yyy) = (σσσ(XXX; n),σσσ(YYY ;n)) is a solution of the monotone LCP over
cones:

(19) find (xxx,yyy) ∈ R2m; (xxx,yyy) ∈ F, xxx ∈ T+(n), yyy ∈ T+(n) and xxx · yyy = 0,

where

m = n(n + 1)/2,

F = {(σσσ(XXX;n),σσσ(YYY ;n)) : (XXX,YYY ) ∈ F} ,

T+(n) = σσσ(S+(n); n).

(Recall that σσσ(·;n) is the isomorphism from S(n) onto Rm defined by (15)
and that it satisfies (16)). We remark here that

{YYY ∈ S(n) : XXX • YYY ≥ 0 for every XXX ∈ S+(n)} = S+(n).

This implies that the dual of T+(n) coincides with T+(n) itself.
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Applying the way of reducing the LCP (2) to the minimization problem
(14) in the previous section to the LCP (19) over cones, we obtain an SDP
which is equivalent to the monotone SDLCP (18) in symmetric matrices:

(20)





minimize α + qqqTuuu + r,

subject to ZZZ =
(

III LLLuuu

uuuTLLLT α

)
∈ S+(m + 1),

xxx = AAAuuu + aaa, yyy = BBB uuu + bbb,

XXX = GGG(xxx) ∈ S+(n) and YYY = GGG(yyy) ∈ S+(n).

Here

r ∈ R,

qqq, aaa, bbb ∈ Rm,

AAA, BBB, LLL : m×m matrices,

GGG(·) = σσσ−1(·;n) : an isomorphism from Rm onto S(n)

(see (15) for the definition of σσσ).

4. Concluding remarks

We have shown in this short note that the monotone LCP (2) over
cones is reducible to an LP over cones, which is obviously a special case of
convex programs. So the readers might think that LPs over cones and/or
monotone LCPs over cones are less general than convex programs. It
should be noted, however, that a convex program is reducible to an LP
over cones (see Chapter 4 of [13]). On the other hand, we know under
the assumption (6) that a necessary and sufficient optimality condition
for the primal-dual pair (4) of LPs over cones can be stated in terms of a
monotone LCP over cones. Therefore we may say that convex programs,
LPs over cones and monotone LCPs over cones are of similar generality.
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