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CHARACTERIZATIONS OF BANACH SPACES VIA
CONVEX AND OTHER LOCALLY

LIPSCHITZ FUNCTIONS

J. BORWEIN1, M. FABIAN2 AND J. VANDERWERFF3

Dedicated to Hoang Tuy on the occasion of his seventieth birthday

Abstract. Various properties of Banach spaces, including the reflexivity
and the Schur property of a space, are characterized in terms of properties
of corresponding classes of locally Lipschitz functions on those spaces.

1. Introduction:
“Sequentially reflexive” spaces and motivating results.

We will work with real Banach spaces and let BX and SX denote the
closed unit ball and unit sphere of the Banach space X respectively. As in
[2], we will say that a Banach space is sequentially reflexive if Mackey and
norm convergence coincide sequentially in its dual space. The following
result was proved in [22]; see also [3, Theorem 5].

Theorem 1.1. For a Banach space X, the following are equivalent.

(a) X does not contain an isomorphic copy of `1.

(b) X is sequentially reflexive.

Let us recall that a function f is Gateaux differentiable at x if there is
a Λ ∈ X∗ such that

lim
t→0

[f(x + th)− f(x)− Λ(th)]/t = 0

for each h ∈ SX . If the above limit is uniform over weakly compact sets,
then f is weak Hadamard differentiable at x; if the limit is uniform for
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h ∈ BX , then f is Fréchet differentiable at x. We will denote these no-
tions as G-differentiability, WH-differentiability and F-differentiability. In
reflexive spaces, it is clear that WH-differentiability and F-differentiability
are the same because closed balls are weakly compact. Surprisingly, these
two notions of differentiability coincide for continuous convex functions in
a much wider class of spaces as the following theorem from [3] demon-
strates.

Theorem 1.2. For a Banach space X the following are equivalent.

(a) X is sequentially reflexive.

(b) WH-differentiability and F-differentiability coincide for continuous
convex functions on X.

This result motivated us to consider the following question. In which
Banach spaces do Fréchet differentiability and weak Hadamard differentia-
bility coincide for general Lipschitz functions? The following observation
adds to the intrigue of this question.

Theorem 1.3. Suppose a sequentially reflexive space X admits a Lipschitz
WH-differentiable bump function, then X is an Asplund space.

Proof. By the smooth variation principle for bump functions (see e.g. [23,
Theorem 4.10]) every continuous convex function on X has a point of weak
Hadamard differentiability. According to Theorem 1.2, every continuous
convex function has a point of Fréchet differentiability. Thus X is an
Apslund space.

In spite of the (misleading) evidence provided by Theorem 1.3 that WH-
differentiability of Lipschitz bump functions on sequentially reflexive Ba-
nach space has structural implications similar to those of F-differentiable
bump function, we will provide an elementary proof of the following result
in the next section.

Theorem 1.4. For a Banach space X the following are equivalent.

(a) X is reflexive.

(b) WH-differentiability and F-differentiability coincide for Lipschitz
functions on X.

Since we first proved Theorem 1.4, results have been established show-
ing that WH-differentiability and F-differentiability are distinct notions
on nonreflexive spaces for functions much closer to convex functions than
just Lipschitz functions (see Theorem 2.1). Nonetheless, these stronger
results rely on significantly deeper structural theorems in Banach space
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theory, and as such, the essence as to why these notions of differentiability
are different is not as apparent in their proofs.

In addition to the implications of sequential reflexivity in the study
of differentiability of convex functions, it also has applications to other
notions of fundamental importance in convex analysis as illustrated in the
following result which comes from [5] and [7].

Theorem 1.5. For a Banach space X the following are equivalent.

(a) X is sequentially reflexive.

(b) Every continuous convex function bounded on weakly compact sub-
sets of X is bounded on bounded subsets of X.

(c) If a sequence of lsc convex functions converges uniformly on weakly
compact sets to a continuous affine function, then the convergence is uni-
form on bounded sets.

Let us remark that there are several characterizations of Banach spaces
not containing `1 in terms of functions that are weakly sequentially con-
tinuous. For a flavour of results in this direction, we are content to refer
the reader to Gutiérrez’s paper [16] and the references therein.

A major focus of this note is the natural question that arises from a
comparison of Theorems 1.2, 1.4 and 1.5. That is, do Theorems 1.2 and
1.5 remain valid for differences of continuous convex functions? (These
are variously called difference-convex functions or dc-functions.) Our aim
is to provide an account of the main results of which we are aware that
address this and some related questions, including those pertaining to
“one-sided” or “directional differentiability”. We will say that a function
f is directionally Fréchet differentiable at x if

lim
t↓0

[f(x + th)− f(x)]/t

exists uniformly for h in BX . If the above limit is uniform over weakly
compact sets, then f is weak Hadamard directionally differentiable at x.

In many respects, this paper is a much updated version of the unpub-
lished manuscript [4], and as such presents many of the theorems and
proofs of results therein. In this revision, we have endeavoured to state
many related results obtained subsequent to our original version. Except
in a few instances where we have included complete proofs that are sur-
prisingly simple, we will be content to give references to the proofs of
published results.
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2. Characterizations of reflexive spaces

We state the characterizations in terms of nonreflexivity. One should
also note that Theorem 2.1(c) and (e) show very sharp limitations on the
possibilities of extending (b) in Theorem 1.2, whereas (b) and (d) show
limitations to possible extensions of (b) and (c) in Theorem 1.5.

Theorem 2.1. For a Banach space X the following are equivalent.

(a) X is not reflexive.

(b) There is a non-increasing sequence of equi-Lipschitz norms con-
verging uniformly on weakly compact sets to a norm, but such that the
convergence is not uniform on bounded sets.

(c) There is a Lipschitz convex function φ such that φ is directionally
weak Hadamard differentiable at some point at which it is not directionally
Fréchet differentiable.

(d) There are continuous convex functions f and h on X such that
h− f is bounded on weakly compact sets, but unbounded on BX .

(e) There are norms µ and ν on X such that µ− ν is weak Hadamard
but not Fréchet differentiable at some point.

(f) There is a Lipschitz function φ such that φ is weak Hadamard but
not Fréchet differentiable at some point.

(g) There is a sequence {xn} ⊂ BX and a δ > 0 such that any sequence
{yn} satisfying ‖yn − xn‖ < δ has no weakly convergent subsequence.

Proof. The equivalence of (a) through (e) was established in [8, Theorem 1
and Corollary 5]. We will present the elementary proof of the equivalence
of (a), (f) and (g) from [4].

(a)⇒ (g): Because X is not reflexive, by the Eberlein-Smulian theorem
there is a sequence {xn} ⊂ BX with no weakly convergent subsequence.
We will suppose no subsequence of {xn} satisfies the property in (g) and
arrive at a contradiction by producing a weakly convergent subsequence
of {xn}.

Given ε = 1, by our supposition, we choose N1 ⊂ N and {z1,i}i∈N1
such

that ‖xi − z1,i‖ < 1 for i ∈ N1 and w-limi∈N1 z1,i = z1. Supposing Nk−1

has been chosen, we choose Nk ⊂ Nk−1 and {zk,i}i∈Nk
⊂ X satisfying

(2.1) ‖xi − zk,i‖ <
1
k

for i ∈ Nk and w- lim
i∈Nk

zk,i = zk.

In this manner we construct {zk,i}i∈Nk
and Nk for all k ∈ N.
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Notice that zn − zm = w- lim
i∈Nn

(zn,i − zm,i) for n > m. Thus by the

w-lower semicontinuity of ‖ · ‖ and (2.1) we obtain

‖zn − zm‖ ≤ lim inf
i∈Nn

‖zn,i − zm,i‖ ≤ lim inf
i∈Nn

(‖zn,i − xi‖+ ‖xi − zm,i‖)

≤ 1
n

+
1
m
≤ 2

m
.

Thus zn converges in norm to some z∞ ∈ X.

Now for each n ∈ N choose integers in ∈ Nn with in > n. We will
show xin

w→ z∞. So let Λ ∈ BX∗ and ε > 0 be given. We select an n0 ∈ N
which satisfies

(2.2)
1
n0

<
ε

3
and ‖zm − z∞‖ <

ε

3
for m ≥ n0.

Because zn0,i
w→ zn0 , we can select m0 so that

(2.3)
∣∣〈Λ, zn0,i − zn0〉

∣∣ <
ε

3
for all i ≥ m0.

For m ≥ max{n0,m0}, we have
∣∣〈Λ, xim − z∞〉

∣∣ ≤ ∣∣〈Λ, xim − zn0,im〉
∣∣ +

∣∣〈Λ, zn0,im − zn0〉
∣∣ +

∣∣〈Λ, zn0 − z∞〉
∣∣

< ‖xim − zn0,im‖+
ε

3
+ ‖zn0 − z∞‖

[by (2.3) since im > m ≥ m0]

<
1
n0

+
ε

3
+

ε

3
< ε. [by (2.2) and (2.1)]

Therefore xin

w→ z∞ contradicting the fact that {xn} has no weakly con-
vergent subsequence.

(g) ⇒ (f): By (g) we choose {xn} ⊂ BX , and a ∆ ∈ (0, 1) such that
{zn} ⊂ X has no weakly convergent subsequence whenever ‖zn−xn‖ < ∆.
By passing to another subsequence if necessary we may assume ‖xn −
xm‖ > δ for all n 6= m, with some 0 < δ < 1.

For n = 1, 2, . . . , let Bn = {x ∈ X : ‖x− 4−nxn‖ ≤ δ∆4−n−1} and put
C = X \∪∞n=1Bn. Because 4−m + δ∆4−m−1 < 4−n− δ∆4−n−1 for m > n,
we have that Bn ∩ Bm = ∅ whenever n 6= m. For x ∈ X, let f(x) be the
distance of x from C. Thus f is a Lipschitz function on X with f(0) = 0.
We will check that f is WH-differentiable at 0 but not F-differentiable at
0.
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Let us now observe that f is G-differentiable at 0. Fix any h ∈ X
with ‖h‖ = 1. Then [0,+∞)h meets at most one ball Bn. In fact assume
tm, tn > 0 are such that ‖tih − 4−ixi‖ < δ∆4−i−1 for i = n,m. Then
|4iti − 1| < δ∆

4 for i = n,m and

‖xn − xm‖ ≤ ‖xn − 4ntnh‖+ ‖4ntnh− 4mtmh‖+ ‖4mtmh− xm‖
<

δ∆
4

+
2δ∆
4

+
δ∆
4

= δ∆ < δ.

Because ‖xn − xm‖ ≥ δ for m 6= n, this shows that n = m. It thus
follows that for t > 0 small enough, we have f(th) = 0. Therefore f is
G-differentiable at 0, with f ′(0) = 0. Let us further check that f is not F-

differentiable at 0. Indeed,
f(4−nxn)
‖4−nxn‖ =

δ∆
4

for all n while ‖4−nxn‖ → 0.

Finally, assume that f is not WH-differentiable at 0. Then there are
a weakly compact set K ⊂ BX , ε > 0, and sequences {km} ⊂ K, tm ↓ 0

such that
f(tmkm)

tm
> ε for all m ∈ N. Hence, as f is 1-Lipschitz, we have

inf ‖kn‖ ≥ ε > 0. Further, because f(tmkm) > 0, there are nm ∈ N such
that ‖tmkm − 4−nmxnm‖ < ∆δ4−mn−1, m = 1, 2, . . . . Consequently,

(2.4) ‖4nmtmkm − xnm‖ <
∆δ

4
< ∆ and |4nmtm‖km‖ − 1| < ∆δ

4
·

By our initial selection of {xn} and ∆, the first inequality in (2.4) says that
{4nmtmkm} does not have a weakly convergent subsequence. However the
second inequality in (2.4) together with inf ‖kn‖ > 0 ensures that 4nmtm
is bounded. Now because {km} is relatively weakly compact, 4nmtmkm

has a weakly convergent subsequence, a contradiction. This proves f is
WH-differentiable at 0.

(f) ⇒ (a): This is clear since the unit ball cannot be weakly compact.

One should notice that it is also easy to derive (g) from (f) in the above
theorem. Indeed, because f is not Fréchet differentiable, we can choose
{xk} in the unit sphere SX of X and tk ↓ 0 which satisfy

|f(tkxk)− f(0)|
tk

≥ ε for some ε > 0.

Using the fact that f is Lipschitz and WH-differentiable at 0, one can
easily show that {xk} satisfies (g).
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We should also remark that the sequence as given in (g) has been
used to characterize reflexivity in terms of comparing two forms of set
convergences of bounded weakly closed sets (see [6, Theorem 4.2(b)]).
For a thorough account on set convergences and their applications, we
recommend Beer’s monograph [1].

Unlike the proof presented above that (f) holds in nonreflexive spaces,
the proof given in [8] that (b) through (e) are valid in nonreflexive spaces
uses a decidedly nonelementary result. Indeed, it relies on a result from
[17] that uses Rosenthal’s `1 theorem and has the Josefson-Nissenzweig
theorem as a direct consequence. The following remark justifies the use
of the Josefson-Nissenzweig theorem in the proof that (d) occurs in non-
reflexive spaces.

Remark 2.2. The condition in Theorem 2.1(d) directly implies the exis-
tence of a sequence in SX∗ that converges weak∗ to 0.

Proof. Since each continuous convex function is bounded below on BX ,
we know that one of the functions, say h, is unbounded above on BX

and so the remark follows from [5, Lemma 2.3]. We include a very simple
proof of this. Let Fn = {x : h(x) ≤ n} and choose xn ∈ BX such that
h(xn) > n. Using the separation theorem we choose φn ∈ SX∗ such that
φn(xn) ≥ sup

Fn

φn. If φn did not converge weak∗ to 0 we could choose x̄ ∈ X

such that φn(x̄) > 1 for infinitely many n. However, φn(xn) ≤ 1, and so
x̄ 6∈ Fn for each n which means h(x̄) > n for each n, a contradiction.

Sadly, we do not know if the Josefson-Nissensweig theorem can likewise
be directly derived from Theorem 2.1(b),(c) or (e).

Notice that Theorem 2.1 illustrates that, with many properties, diffe-
rences of convex functions have more in common with Lipschitz or locally
Lipschitz functions than they do with convex functions. Relatedly, how-
ever, it is not clear that there are any non superreflexive Banach spaces
on which arbitrary Lipschitz functions can be approximated uniformly on
bounded sets by differences of convex functions.

While we have shown that WH-differentiability and F-differentiability
are distinct notions for Lipschitz functions (and hence for continuous func-
tions), the implications of the existence of WH-differentiable bump func-
tions on sequentially reflexive Banach spaces have not been completely
clarified. In particular, we mention the following questions arising from
Theorem 1.3 (we refer the reader to the monograph [9] for an exposition
on Banach spaces admitting smooth bump functions).
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Question 2.3. (a) If X is sequentially reflexive and admits a Lipschitz WH-
differentiable bump function, does X admit a Lipschitz F-differentiable
bump function?

(b) If X is sequentially reflexive and admits a continuous WH-diffe-
rentiable bump function, is X an Asplund space?

The existence of norms that are directionally Fréchet differentiable has
also received considerable attention; see for example [13], [15] and the
references therein. The following question, which is somewhat related
to Question 2.3(b), was posed by Giles and Sciffer in [14], where it was
first shown that directional WH-differentiability need not imply directional
Fréchet differentiability for convex functions on c0.

Question 2.4. If the norm on X is directionally WH-differentiable and
X 6⊃ `1, is X an Asplund space?

Concerning this question, let us note that [15] shows any space with a
directionally F-differentiable norm is an Asplund space. However, Theo-
rem 2.1 shows that directional WH-differentiability need not imply direc-
tional F-differentiability for convex functions on spaces that do not contain
`1. For some further questions related to directional differentiability, we
refer the reader to [15].

3. Spaces in whose duals weak∗ and Mackey
convergence coincide sequentially

If X is such that weak∗ and Mackey convergence coincide sequentially
in X∗, we will say X has the DP∗ property. Our interest in this property
stems from the following theorem.

Theorem 3.1. Let X be a Banach space. Then the following are equiva-
lent.

(a) X has the DP∗ property.

(b) WH-differentiability and G-differentiability coincide for all lsc con-
vex functions on X.

(c) Every continuous convex function is bounded on weakly compact
subsets of X.

(d) A sequence of lsc convex functions {fn} converges uniformly to a
continuous affine function φ on weakly compact sets provided {fn} con-
verges pointwise to φ on X.
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Proof. The equivalence of (a) and (b) was established in [3], while the
equivalence of (a) and (c) is shown in [5]. The techniques of [5] were later
used in [7] to show that (a) implies (d) (while (d) implies (a) is completely
clear).

Let us recall some standard definitions. A Banach space is said to have
the Schur property if weakly convergent sequences are norm convergence
(equivalently weakly compact sets are norm compact). A Banach space X
is said to have the Grothendieck property if weak∗ and weak convergence
agree sequentially in X∗. A Banach space X has the Dunford-Pettis prop-
erty if x∗n(xn) → 0 whenever x∗n

w∗→ 0 and xn
w→ 0. Notice that the DP∗

property differs from the Dunford-Pettis property only in that one merely
requires x∗n

w∗→ 0 rather than x∗n
w→ 0 (and hence the notation ‘DP∗ prop-

erty’).

Remark 3.2. (a) Every Banach space with the Schur property has the DP∗

property.

(b) If X has the Dunford-Pettis property and the Grothendieck prop-
erty, then X has the DP∗ property.

(c) `∞ is a space with the DP∗ property that does not have the Schur
property.

Proof. Both (a) and (b) follow directly from the definitions involved.
For (c) recall that `∞ has both the DP property (see [10, p. 103] and
Grothendieck property (see [1, p. 177]) but does not have the Schur pro-
perty.

It is natural to ask when the Schur and DP∗ properties are equivalent.
The next result and its corollaries will show that they are equivalent for
relatively small spaces. First let us recall that a linear operator is said to
be completely continuous if it maps weakly convergent sequences to norm
convergent sequences.

Theorem 3.3. For a Banach space X, the following are equivalent.

(a) X has the DP ∗ property.

(b) If BY ∗ is weak∗-sequentially compact, then each continuous linear
T : X → Y is completely continuous.

Proof. (a) ⇒ (b): We will prove this by contraposition. Suppose (b)
fails, that is, there is an operator T : X → Y which is not completely
continuous for some Y with BY ∗ weak∗-sequentially compact. Hence we
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choose {xn} ⊂ X such that xn
w→ 0 but ‖Txn‖ 6→ 0. Because Txn

w→ 0,
we know that {Txn} is not relatively norm compact. Hence letting En =
span {yk : k ≤ n} with yk = Txk we know there is an ε > 0 such that
sup

k
d(yk, En) > ε for each n.

By passing to a subsequence, if necessary, we assume d(yn, En−1) > ε
for each n. Now choose Λn ∈ BY ∗ such that 〈Λn, x〉 = 0 for all x ∈
En−1 and 〈Λn, xn〉 ≥ ε. Because BY ∗ is weak∗-sequentially compact,

there is a subsequence Λnk
such that Λnk

w∗→ Λ ∈ BY ∗ . Observe that
〈Λn, yk〉 = 0 for n > k and consequently 〈Λ, yk〉 = 0 for all k. Now let

z∗k = T ∗(Λnk
− Λ) and zk = xnk

. Certainly z∗k
w∗→ 0 and zk

w→ 0 while
〈z∗k, zk〉 = 〈Λnk

−Λ, Txnk
〉 = 〈Λnk

−Λ, ynk
〉 ≥ ε for all k. This shows that

X fails the DP ∗ property.

(b) ⇒ (a): This follows, for example, from [3] which shows that weak
Hadamard and Gateaux differentiability agree for convex functions on X
if each operator T : X → c0 is completely continuous; and hence X has
the DP∗ property in this case.

Corollary 3.4. If X has a weak∗-sequentially compact dual ball or, more
generally, if every separable subspace of X is a subspace of a complemented
subspace with weak∗-sequentially compact dual ball, then the following are
equivalent.

(a) X has the DP∗ property.

(b) X has the Schur property.

Proof. Because (b) ⇒ (a) is true more generally, we show (a) ⇒ (b). If
BX∗ is weak∗-sequentially compact and X is not Schur, then I : X → X
is not completely continuous and Theorem 3.3 applies. More generally,
suppose xn

w→ 0 but ‖xn‖ 6→ 0 and span{xn} ⊂ Y with BY ∗ weak∗-
sequentially compact. Supposing there is a projection P : X → Y , then
P is not completely continuous since P |Y is the identity on Y .

We can say more in the case that X is weakly countably determined
(WCD); see [21] and [9, Chapter VI] for the definition and further pro-
perties of WCD spaces.

Corollary 3.5. For a Banach space X, the following are equivalent.

(a) X is WCD and has the DP∗ property.

(b) X is separable and has the Schur property.
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Proof. It is obvious that (b) ⇒ (a), so we prove (a) ⇒ (b). First, since
BX∗ is weak∗-sequentially compact (see e.g. [21, Corollary 4.9] and [19,
Theorem 11], it follows from Corollary 3.4 that X has the Schur property.
But WCD Schur spaces are separable (see e.g. [21, Theorem 4.3]).

Remark 3.6. The following items contain facts concerning the DP∗ prop-
erty.

(a) Corollary 3.4 is satisfied, for instance, by Gateaux differentiability
spaces see [19, 23] for definition and [19, Theorem 11] for a proof that
such spaces have weak∗ sequentially compact dual balls. A wide class of
spaces for which every separable subspace is a subspace of a complemented
separable subspace is the class of spaces with countably norming M -basis;
see [24, Lemma 1], see also [26] and the references therein for further
properties and definition of M-bases. Notice that `1(Γ) has a countably
norming M -basis for any Γ, thus spaces with countably norming M -bases
and the Schur property need not be separable.

(b) Let X be a space such that X has the Schur property but X∗ does
not have the Dunford-Pettis property (cf. [11, p. 178]). Then X has the
DP∗ property, but X∗ does not have the DP∗ property.

(c) There are spaces with the DP ∗ property that have neither the Schur
nor Grothendieck properties; for example `1 × `∞.

(d) It is well-known that `∞ has `2 as a quotient (see [20, p. 111]).
Thus quotients of spaces with the DP ∗ need not have the DP ∗. It is
clear that superspaces of spaces with the DP ∗ need not have the DP ∗;
the example c0 ⊂ `∞ shows that subspaces need not inherit the DP ∗.

(e) In [18], Haydon has constructed a nonreflexive Grothendieck C(K)
space that does not contain `∞. Using the continuum hypothesis, Tala-
grand constructed a nonreflexive Grothendieck C(K) space X such that
`∞ is neither a subspace nor a quotient of X (see [25]). Since C(K) spaces
have the Dunford-Pettis property (see [10, p. 113]), both these spaces have
the DP ∗.

Given the previous corollaries and remark, it seems natural to ask what
natural (widely studied) properties of Banach spaces in conjunction with
the DP∗ property imply that the Banach space has the Schur property.
For example, as far as we know, the answer to the following question is
not known.

Question 3.7. If a Banach space has an M -basis and the DP∗ property,
does it have the Schur property?
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We close this section with a curious example concering the extension
of convex functions where smoothness cannot be preserved.

Example 3.8. Let X be a space with the Grothendieck and Dunford-
Pettis properties such that X does not have the Schur property (e.g. `∞).
Then there is a separable subspace Y (e.g. c0) of X and a continuous
convex function f on Y such that f is G-differentiable at 0 (as a function
on Y ), but no continuous convex extension of f to X is G-differentiable
at 0 (as a function on X); there also exist y0 ∈ Y \{0} and an equivalent
norm ‖ · ‖ on Y whose dual norm is strictly convex but no extension of
‖ · ‖ to X is G-differentiable at y0.

Proof. Let Y be a separable non-Schur subspace of X. By Corollary 3.4,
there is a continuous convex function f on Y which is G-differentiable at
0, but is not WH-differentiable at 0. Since any extension f̃ of f also fails
to be WH-differentiable at 0, it follows that f̃ is not G-differentiable at
0 because X has the DP ∗. Because Y fails the DP ∗ property, there is
a sequence {Λn} ⊂ X∗ such that Λn converges w∗ but not Mackey to 0.
By the proof of [3, Theorem 3], there is a norm ‖ · ‖ on Y whose dual is
strictly convex that fails to be WH-differentiable at some y0 ∈ Y \{0}; as
above, no extension of ‖ · ‖ to X can be G-differentiable at y0.

For additional results concerning the extension of smooth norms the
reader may wish to consult [27]; see also [9].

4. Characterizations of spaces with Schur or
Dunford-Pettis properties

The following theorem provides some characterizations of Banach spaces
with the Schur property.

Theorem 4.1. For a Banach space X, the following are equivalent.

(a) X has the Schur property.

(b) G-differentiability and F -differentiability coincide for w∗-lsc con-
tinuous convex functions on X∗.

(c) G-differentiability and F -differentiability coincide for dual norms
on X∗.

(d) Each continuous weak∗-lsc convex function on X∗ is bounded on
bounded subsets of X∗.

(e) G-differentiability and WH-differentiability agree for Lipschitz func-
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tions on X.

(f) G-differentiability and WH-differentiability coincide for differences
of Lipschitz convex functions.

(g) Every continuous convex function on X is weak Hadamard direc-
tionally differentiable.

Proof. Let us outline the equivalence of (a) and (e) first. Clearly (a)
implies (e), so we will show (e) implies (a).

(e) ⇒ (a): We suppose X is not Schur and proceed by contraposition.
Let {xn} ⊂ SX be such that xn

w→ 0. Since {xn} is not relatively norm
compact, we may assume by passing to a subsequence if necessary that
‖xi − xj‖ > δ for some δ ∈ (0, 1) whenever i 6= j.

As in the proof of Theorem 2.1, let Bn = {x ∈ X : ‖x − 4−nxn‖ ≤
δ4−n−1}, C = X\∪∞n=1Bn and let f(x) = d(x,C). Now f(0) = 0 and
the argument of Theorem 2.1, shows that f is G-differentiable at 0 with
f ′(0) = 0. However,

f(4−nxn)
4−n

=
δ

4
for all n ∈ N.

Since {xn}∪{0} is weakly compact, it follows that f is not WH-differentiable
at 0.

(a) ⇔ (d): This was outlined in the remark in [5, p. 67]; see also
Remark 2.2 and Theorem 4.2.

(a)⇒ (b): Suppose (b) does not hold. Then for some continuous convex
weak∗-lsc f on X∗, there exists Λ0 ∈ X∗ such that f is G-differentiable
at Λ0 but f is not F-differentiable at Λ0. Let f ′(Λ0) = x∗∗ ∈ X∗∗. We
also choose δ > 0 and K > 0 such that for x∗1, x

∗
2 ∈ B(Λ0, δ) we have

|f(x∗1)− f(x∗2)| ≤ K‖x∗1 − x∗2‖ (since f is locally Lipschitz). Because f is
not F-differentiable at Λ0, there exist tn ↓ 0, tn < δ

2 , Λn ∈ SX∗ and ε > 0
such that

(4.1) f(Λ0 + tnΛn)− f(Λ0)− 〈x∗∗, tnΛn〉 ≥ εtn.

Because f is convex and weak∗-lsc, using the separation theorem we can
choose xn ∈ X satisfying

(4.2) 〈xn, x∗〉 ≤ f(Λ0+tnΛn+x∗)−f(Λ0+tnΛn)+
εtn
2

for all x∗ ∈ X∗;
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Putting x∗ = −tnΛn in (4.2) and using (4.1) one obtains

〈xn, tnΛn〉 ≥ f(Λ0 + tnΛn)− f(Λ0)− εtn
2

≥ 〈x∗∗, tnΛn〉+
εtn
2
·

And hence, ‖xn − x∗∗‖ ≥ ε
2 for all n.

Let η > 0 and fix x∗ ∈ SX∗ . Since f is G-differentiable at Λ0, there is
a 0 < t0 < δ

2 such that for |t| ≤ t0 we have

(4.3) 〈x∗∗, tx∗〉 − f(Λ0 + tx∗) + f(Λ0) ≥ −η

2
t0.

Using (4.2) with the fact that f has Lipschitz constant K on B(Λ0, δ), for
|t| ≤ t0 we obtain

〈xn, tx∗〉 ≤ f(Λ0 + tnΛn + tx∗)− f(Λ0 + tnΛn) +
εtn
2

≤ f(Λ0 + tx∗)− f(Λ0) +
εtn
2

+ 2Ktn.

Choosing n0 so large that
εtn
2

+ 2Ktn <
η

2
t0 for n ≥ n0, the above

inequality yields

(4.4) f(Λ0 + tx∗)− f(Λ0)− 〈xn, tx∗〉 ≥ −η

2
t0 for n ≥ n0, |t| ≤ t0.

Adding (4.3) and (4.4) results in

〈x∗∗ − xn, tx∗〉 ≥ −ηt0 for n ≥ n0, |t| ≤ t0.

Hence |〈x∗∗ − xn, x∗〉| ≤ η for n ≥ n0. This shows that xn
w∗→ x∗∗. Com-

bining this with the fact that ‖xn − x∗∗‖ 6→ 0 shown above, we conclude
that for some δ > 0 and some subsequence we have ‖xni − xni+1‖ > δ for

all i. However xni − xni+1

w→ 0 (in X) because xni − xni+1

w∗→ 0 (in X∗∗).
This shows that X is not Schur.

Since (b)⇒ (c) is obvious, so we show that (c)⇒ (a). Write X = Y ×R
and suppose that X is not Schur. Then we can choose {yn} ⊂ Y such
that yn

w→ 0 but ‖yn‖ = 1 for all n. Let {γn} ⊂ ( 1
2 , 1) be such that γn ↑ 1

and define ||| · ||| on X∗ = Y ∗ ×R by

|||(Λ, t)||| = sup
{|〈Λ, yn〉+ γnt|} ∨ 1

2
(‖Λ‖+ |t|).
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This norm is dual since it is a supremum of weak∗-lsc functions and the
proof of [3, Theorem 1] shows that ||| · ||| is Gateaux but not Fréchet dif-
ferentiable at (0, 1).

Finally, (a) implies (g) follows from Dini’s monotone convergence the-
orem, while (a) implies (f) is clear from the definitions; [8, Proposition 8]
shows that both (f) and (g) fail in spaces without the Schur property.

The Schur property can also be characterized by comparing pointwise
and uniform convergence of equi-Lipschitz functions; see [7, Proposition
3.5].

Our final theorem provides a characterization of the Dunford-Pettis
property via functions on the dual space.

Theorem 4.2. For a Banach space X, the following are equivalent.

(a) X has the Dunford-Pettis property.

(b) G-differentiability and WH-differentiability coincide for real-valued
w∗-lsc convex functions on X∗.

(c) G-differentiability and WH-differentiability coincide for dual norms
on X∗.

(d) Each continuous weak∗-lsc convex function on X∗ is bounded on
weakly compact subsets of X∗.

Proof. The equivalence of (a), (b) and (c) can be proved using results
from [3] and Smulian’s test in a fashion similar to Theorem 4.1.

(a) ⇒ (d): Although this is outlined in [5, p. 67], we will present a
simpler proof which does not rely on a weak∗ variation of the technical
lemma [5, Lemma 2.6].

Suppose there is a continuous weak∗-lsc function f that is unbounded
on a weakly compact set W . Choose x∗n ∈ W such that f(x∗n) > n and let
Fn := {x∗ ∈ X∗ : f(x∗) ≤ n}. Because Fn is weak∗ closed and convex, we
use the separation theorem to choose xn ∈ X such that

(4.5) xn(x∗n) ≥ sup
Fn

φn.

As in Remark 2.2, it follows that xn
w∗→ 0 in X∗∗ and hence xn

w→ 0 in
X. Because W is weakly compact, by passing to a subsequence we may
assume x∗n converges weakly. Now the Dunford-Pettis property implies
x∗n(xn) → 0. However, this cannot occur because (4.5) and the fact that
there is a neighborhood V of 0 in X∗ and K > 0 such that f(x∗) ≤ K for
all x∗ ∈ V .
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(d) ⇒ (a): This follows from [5, Lemma 2.1].
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