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ON ITO STOCHASTIC INTEGRAL WITH RESPECT TO
VECTOR STABLE RANDOM MEASURES

DANG HUNG THANG

Abstract. Let Zp be a vector p-stable random measure with values in a

q-smoothable Banach space, where p > q if p < 2 and q = 2 if p = 2. It

is shown that the stochastic integral

1∫
0

udZp can be defined for processes

u which are non-anticipating with respect to Zp.

1. Introdution

The Ito stochastic integral with respect to the Brownian motion has
been generalized in several directions. One of these directions is to define
the Ito stochastic integral with respect to a larger class of integrators.
A theory of stochastic integrals for semimartingale integrators has been
developed by many authors (see [1] and the references therein). The Ito
stochastic integral in which the integrator is a Levy process satisfying cer-
tain conditions was constructed by Gine and Marcus [5]. In [4] Dettweiler
considered the Ito stochastic integral of vector-valued processes with re-
spect to a real-valued Gaussian symmetric random measure. Mamporia
[8] defined the Ito stochastic integral of operator-valued processes with
respect to a vector-valued Wiener process.

The purpose of this paper is to construct the stochastic integral of
non-anticipating processes with respect to a Banach space-valued p-stable
random measure. Section 2 contains the definition and some properties of
Banach space-valued p-stable random measures which will be used later.
The main result of the paper is Theorem 3.5 (Section 3) which is based
on Lemma 3.4. The inequality stated in Lemma 3.4 is an extension to
the vector case of a similar inequality proved in [5, Lemma 3.3]. Theorem
3.6, which deals with the Gaussian case is an extension of the isometric
property of the stochastic integral in the real case.
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2. Vector p-stable random measures

Let X be a separable Banach space and (T,Σ) be a measurable space.
Denote by L0

X(Ω) and Lp
X(Ω) the set of all X-valued r.v.’s and the set of

X-valued r.v.’s having strong p-th moment, respectively. A mapping F
from Σ into L0

X(Ω) is called a X-valued random measure on (T, Σ) if for
every sequence (An) of disjoint sets from Σ, the F (An) are independent
and

F (
∞⋃

n=1

An) =
∞∑

n=1

F (An) in L0
X(Ω).

A X-valued random measure F is said to be p-stable (0 < p ≤ 2) if for
each A ∈ Σ, F (A) is a p-stable symmetric random variable. From now on,
Zp always denotes a X-valued p-stable random measure (0 < p < 2) and
Z denotes a X-valued symmetric Gaussian random measure.

Example. Let M be a real-valued p-stable random measure on (T, Σ).
Given a M -integrable function f : T → X, we can define a function F :→
L0

X(Ω) by

F (A) =
∫

A

fdM.

By Rosinski’s results [10], it is easy to show that F is a X-valued p-stable
random measure.

Definition 2.1. A set function Q on Σ whose value on a set A is the
covariance operator of Z(A) is called a covariance measure of Z.

In order to study properties of the covariance measure Q it is useful to
introduce an inner product on L2

X(Ω). For ξ, η ∈ L2
X(Ω) the inner product

of ξ and η, denoted by [ξ, η], is an operator from X ′ into X defined by

[ξ, η](a) =
∫

Ω

ξ(ω)
(
η(ω), a

)
dP,

for each a ∈ X ′.

By standard arguments, the inner products is seen to have the following
properties

Proposition 2.2.

1) [ξ, η] is a nuclear operator.
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2) If lim ξn = ξ and lim ηn = η in L2
X(Ω), then lim[ξn, ηn] = [ξ, η] in the

nuclear norm.

3) ‖[ξ, η]‖nuc. ≤ E‖ξ‖2. Moreover, if X is of type 2, then there exists a
constant C > 0 such that

E‖ξ‖2 ≤ C‖[ξ, η]‖nuc. ∀ξ ∈ L2
X(Ω).

We call [ξ, ζ] the covariance operator of ξ.

From the above proposition we get

Proposition 2.3. The covariance measure Q is a vector measure on
(T, Σ) taking values in the Banach space N(X ′, X) of nuclear operators
from X ′ into X.

Next, we consider the case 0 < p < 2. Let S be the sphere of X and
M(S) denote the set of real-valued measures of bounded variation on S.
M(S) is a Banach space under the norm given by ‖µ‖ = |µ|(S).

Definition 2.4. A set function Qp on Σ, whose value on a set A is the
spectral measure of Zp(A) is called a characteristic measure of Zp.

By the properties of stable measures on Banach spaces [7], it is not
difficult to show the following proposition.

Proposition 2.5.

1) The characteristic measure Qp of Zp is a vector measure taking values
in M(S). Moreover, Qp is of bounded variation and the variation |Qp|
is given by

|Qp|(A) = Qp(A)(S).

2) If X is of stable type p, then there exists a constant K > 0 such that

P{‖Zp(A)‖ > t} ≤ Kt−p|Qp|(A) ∀A ∈ Σ, t ∈ R.

3. Construction of the Ito vector p-stable
stochacstic integral

Throughout this section, T = [0, 1], Σ is the σ-algebra of Borel sets
of T . Let F be a X-valued random measure on (T, Σ) with the control
measure µ (i.e. µ is a positive measure such that F (A) = 0 a.s. whenever
µ(A) = 0). We associate to F a family of increasing σ-algebra Ft ∈ F
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as follows: Ft is the σ-algebra generated by the X-valued r.v.’s F (A),
A ∈ Σ ∩ [0, t] and by the sets of probability 0.

A process u(t, ω) on T is said to be non-anticipating (w.r.t. F ) if it is
jointly measurable and for each t ∈ T the r.v. u(t, ω) is Ft-measurable. A
process u(t, ω) is said to be non-anticipating if there exists a finite partition
0 = t1 < ... < tn+1 = 1 and the r.v.’s αi, i = 0, 1, ..., n such that α0 is
a.s.constant, αi is Fti-measurable for i ≥ 1 and

(3.1) u(t, ω) =
n∑

i=0

αi(ω)1Bi ,

where for brevity we write B0 for {0} and Bi for (ti, ti+1], i ≥ 1.

Definition 3.1. We say that a process u(t, ω) belongs to the class Vp(F, µ)
if it is non-anticipating in Lp(µ ⊗ P ) and there exists a sequence (un) of
simple non-anticipating processes converging to u in Lp(µ⊗ P ).

Remark 3.2. By the same argument as that given in Remark 3.2 on [5]
we observe that when µ is continuous, V(F, µ) is precisely the class of
non-anticipating processes in Lp(µ⊗P ). If µ is any positive measure with
µ{0} = 0, then the class Vp(F, µ) is still large enough to contain all the
previsible processes in Lp(µ⊗ P ).

Recall that a Banach space X is said to be q-uniformly smooth (1 ≤
q ≤ 2) if the modulus of smoothness ρ(t) satisfies ρ(t) = O(tq), where the
modulus of smoothness is defined by

ρ(t) = sup
‖x‖=1
‖y‖=t

{‖x + y‖+ ‖x− y‖ − 2
2

}
.

A Banach space X is said to be q-smoothable if X is isomorphic to
a q-uniformly smooth space. Assouad and Pisier [9] characterized q-
smoothable Banach space by the following martingale inequality.

A Banach space X is q-smoothable if and only if there exists a constant
C > 0 such that

E‖
n∑

i=1

Di‖q ≤ C

n∑

i=1

E‖Di‖q,

for all X-valued martingale differences (Di)n
1 in Lq

X(Ω) (n = 1, 2, ...). An
immediate consequence of this characterization is that a q-smoothable
Banach space is of type q.
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The stochastic integral of a simple non-anticipating process u is defined
by

1∫

0

u dF =
n∑

i=0

αiF (Bi),

for u given by (3.1).

Lemma 3.3. Let X be a 2-smoothable Banach space and Z be a X-valued
Gaussian symmetric random measure with the covariance measure Q of
finite variation. Then there exists a constant C > 0 such that for each
simple non-anticipating process u in L2(|Q| ⊗ P ) we have

E‖
1∫

0

u dZ‖2 ≤ C

1∫

0

E|u|2 d|Q|.

Proof. Let u be given by (3.1). For brevity we write Zi for Z(Bi).
Since Zi is symmetric, independent of Fti and αi is Fti-measurable with
E|αi|2 < ∞, we have E

[
αiZi

/Fti

]
= 0 and E‖αiZi‖2 = E|αi|2E‖Zi‖2.

Hence (αiZi,Fti+1)
n
i=0 constitutes a X-valued martingale differences se-

quence. In view of the Assouad-Pisier inequality there exists a constant
C1 > 0 such that

E‖
n∑

i=0

αiZi‖2 ≤ C1

n∑

i=0

E‖αiZi‖2 = C1

n∑

i=0

E|αi|2E‖Zi‖2.

Noting that X is of type 2 and using Proposition 2.2 we get

E‖Zi‖2 ≤ C2‖
[
Zi, Zi

]‖nuc. = C2‖Q(Bi)‖nuc. ≤ C2|Q|(Bi),

where C2 is a constant. Consequently,

E‖
1∫

0

u dZ‖2 = E‖
n∑

i=0

αiZi‖2 ≤ C1C2

n∑

i=0

E|αi|2|Q|(Bi)

= C1C2

1∫

0

E|u|2 d|Q|.

Lemma 3.4. Let X be a q-smoothable Banach space and Zp be a X-valued
p-stable random measure with the characteristic measure Qp. If q > p then
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there exists a constant C such that for each simple non-anticipating process
u in Lp(|Qp| ⊗ P ) and each t > 0, we have

P

{
‖

1∫

0

u dZ‖ > t

}
≤ Ct−p

1∫

0

E|u|p d|Qp|.

Proof. Let u be given by (3.1). For brevity we write Mi for Zp(Bi). We
have

P

{
‖

1∫

0

u dZp‖ > t

}
= P

{
‖

n∑

i=0

αiMi‖ > t

}

= P

{
‖

n∑

i=0

αiMi‖ > t, max
i
‖αiMi‖ > t

}

+ P

{
‖

n∑

i=0

αiMi‖ > t, max
i
‖αiMi‖ ≤ t

}

≤
n∑

i=0

P
{‖αiMi‖ > t

}

+ P

{
‖

n∑

i=0

αiMi1{‖αiMi‖≤t}‖ > t

}
.(3.2)

Since X is of type q > p, by Proposition V.5.1 of [14] X is of stable type
p. From Proposition 2.5 and the independence of αi and Mi we obtain

P
{‖αiMi‖ > t

}
=

∞∫

0

P
{‖Mi‖ > t/x

}
dP{|αi| ≤ x} ≤

Kt−p|Qp|(Bi)

∞∫

0

xp dP{|αi| ≤ x} = Kt−p|Qp|(Bi)E|αi|p,

where K is a constant. Hence

n∑

i=0

P{‖αiMi‖ > t} ≤ Kt−p
n∑

i=0

E|αi|p|Qp|(Bi)

= Kt−p

1∫

0

E|u|p d|Qp|,(3.3)
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Next, for brevity we denote the set {‖αiMi‖ ≤ t} by Ci. Since Mi is
symmetric, independent of Fti

and αi is Fti
-measurable , we have

E
[
αiMi1Ci

/Fti

]
= αiE

[
Mi1{‖Mi‖≤t/|αi|}

/Fti

]
= 0,

i.e.
(
αiMi1Ci

,Fti+1

)n

i=0
is a X-valued bounded martingale differences

sequence. In view of the Assouad-Pisier inequality there exists a constant
C1 > 0 such that

P

{
‖

n∑

i=o

αiMi1Ci‖ > t

}
≤ t−qE‖

n∑

i=o

αiMi1Ci‖q

≤ C1t
−q

n∑

i=0

E‖αiMi1Ci‖q.(3.4)

By the independence of Mi and αi we get

(3.5) E‖αiMi1Ci‖q =

∞∫

0

yqE
[‖Mi‖q1{‖Mi‖<t/y}

]
dP{|αi| ≤ y}.

Integration by parts and Proposition 2.5 yield

E
[‖Mi‖q1{‖Mi‖<t/y}

]
=

t/y∫

0

xq dP{‖Mi‖ ≤ x}

≤ q

t/y∫

0

xq−1P{‖Mi‖ > x} dx

(3.6) ≤ Kq|Qp|(Bi)

t/y∫

0

xq−1x−p dx = C2|Qp|(Bi)(t/y)q−p,

where C2 = Kq
q−p

From (3.5) and (3.6) we get

E‖αiMi1Ci‖q ≤ C2|Qp|(Bi)tq−p

∞∫

0

yp dP{|αi| ≤ y}

= C2|Qp|(Bi)tq−pE|αi|p.
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Using this and (3.4) we get

P

{
‖

n∑

i=o

αiMi1Ci
‖ > t

}
≤ C1C2t

−p
n∑

i=o

E|αi|p|Qp|(Bi)

= Ct−p

1∫

0

E|u|p d|Qp|,(3.7)

where C = C1C2.

Finally, we get the inequality stated in Lemma 3.4 by using (3.2), (3.3)
and (3.7).

Having established Lemma 3.3 and Lemma 3.4, we obtain the following
result by a standard extension procedure

Theorem 3.5

1) Under the assumption stated in Lemma 3.3 there exists a unique linear

continuous mapping u →
1∫
0

u dZ from V2(Z, |Q|) into L2
X(Ω) such that

for each simple non-anticipating u given by (3.1) we have

1∫

0

u dZ =
n∑

i=0

αiZ(Bi).

2) Under the assumption stated in Lemma 3.4 there exists a unique linear

continuous mapping u →
1∫
0

u dZ from Vp(Zp, |Qp|) into L0
X(Ω) such

that for each simple non-anticipating u given by (3.1) we have

1∫

0

u dZp =
n∑

i=0

αiZp(Bi).

The following theorem gives an extension of the isometric property of
the stochastic integral w.r.t. a real-valued Gausian symmetric random
measure to the vector case.

Theorem 3.6. Let u, v be processes in V2(Z, |Q|).Under the assumption
stated in Lemma 3.3, the function t → Eu(t)v(t) is Q-integrable and we
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have

(3.8)
[ 1∫

0

u dZ,

1∫

0

v dZ

]
=

1∫

0

Eu(t)v(t) dQ.

In particular, the covariance operator of
1∫
0

u dZ is
1∫
0

E|u(t)|2 dQ .

Proof. At first, suppose that u and v are simple non- anticipating.

If u =
n∑

i=0

αi1Bi , v =
n∑

i=0

βi1Bi , then

[ 1∫

0

u dZ,

1∫

0

v dZ

]
=

n∑

i=0

[Zi, Zi]Eαiβi =

n∑

i=0

Q(Bi)Eαiβi =

1∫

0

Eu(t)v(t) dQ,

where Zi = Z(Bi) and the first equality follows from the fact that Zi, αi, βi

are independent of Zj for i < j.

Next, let u and v be bounded, |u(t, ω)| ≤ M and |v(t, ω)| ≤ M . Suppose
that (un) and (vn) are simple non-anticipating processes converging to u
and v in L2(|Q| ⊗ P ), respectively. Using Proposition 2.2 and formula
(3.8) for (un), (vn) we obtain

[ 1∫

0

u dZ,

1∫

0

v dZ

]
= lim

n

[ 1∫

0

un dZ,

1∫

0

vn dZ

]

= lim
n

1∫

0

Eun(t)vn(t) dQ(3.9)

in N(X ′, X).

On the other hand, since un → u and vn → v in L2(|Q| ⊗ P ), there
exists a subsequence (nk) such that lim

k
E|unk

(t)− u(t)|2 = 0 |Q|-a.e. and

lim
k

E|vnk
(t) − v(t)|2 = 0 |Q|-a.e.. This implies that lim

k→∞
Eunk

(t)vnk
(t) =
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Eu(t)v(t) |Q|-a.e.. Using this and the dominated convergence theorem for
the vector measure Q we get

(3.10) lim
k→∞

1∫

0

Eunk
(t)vnk

(t) dQ =

1∫

0

Eu(t)v(t) dQ in N(X ′, X).

From (3.9) and (3.10) we get (3.8) for bounded processes in V2(Z, |Q|).
Finally, let u and v be arbitrary. Put un(t, ω) = u(t, ω) if |u(t, ω)| ≤

n, vn(t, ω) = v(t, ω) if |v(t, ω)| ≤ n and un(t, ω) = vn(t, ω) = 0 otherwise.
Clearly, un → u and vn → v in L2(|Q| ⊗ P ). Again, by using Proposition
2.2 and formula (3.8) for (un) and (vn) we have

(3.11)
[ 1∫

0

u dZ,

1∫

0

v dZ

]
= lim

n→∞

1∫

0

Eun(t)vn(t) dQ in N(X ′, X).

Reasoning as in the second part of the proof, we can choose a subsequence
(nk) such that

lim
k→∞

Eunk
(t)vnk

(t) = Eu(t)v(t) |Q|-a.e..

Since u, v ∈ L2(|Q| ⊗ P ), it follows that
1∫
0

E|u(t)v(t)| d|Q| < ∞ which

implies that the function t → E|u(t)v(t)| is Q-integrable. Because
|Eunk

(t)vnk
(t)| ≤ E|u(t)v(t)| for all t, we get

(3.12) lim
k→∞

1∫

0

Eunk
(t)vnk

(t) dQ =

1∫

0

Eu(t)v(t) dQ in N(X ′, X)

by using the dominated convergence theorem. From (3.11) and (3.12) we
get the formula (3.8) as desired.
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