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LINEALLY CONVEX HARTOGS DOMAINS

CHRISTER O. KISELMAN

ABSTRACT. We study lineally convex domains of a special type, viz.
Hartogs domains, and prove that such sets can be characterized by local
conditions if they are smoothly bounded.

1. INTRODUCTION

Lineal convexity is a kind of complex convexity intermediate between
usual convexity and pseudoconvexity. More precisely, if A is a convex set
which is either open or closed, then A is lineally convex (this is true also in
the real category), and if €2 is a lineally convex open set in C", the space
of n complex variables, then () is pseudoconvex. Now pseudoconvexity is
a local property in the sense that if any boundary point of an open set
) has an open neighborhood w such that 2 Nw is pseudoconvex, then €2
is pseudoconvex; the analogous result holds for convexity. But it is well
known that the property of lineal convexity is not a local property in this
sense—for easy examples see Section 3. The purpose of this paper is to
investigate to what extent this is true for sets which are of a special form:
the Hartogs domains.

Let us now give the main definition: a set A in C™ is said to be lineally
convex if for every point b ¢ A there is a complex hyperplane passing
through b but not intersecting A. In other words, the complement C" \ A
of A is a union of complex hyperplanes.

A lineally convex set whose boundary is sufficiently smooth satisfies a
differential condition. Let p be a defining function for €2, and let H and L
denote, respectively, the Hessian and the Levi form at a boundary point
a of . Then the differential condition says that

(1.1) |H(s)| < L(s) for all vectors s € Tc(a),
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where T (a) is the complex tangent space at the point a. See Section 5 for
details. Every lineally convex domain of class C? satisfies the differential
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condition, but it is not known whether the converse is true. We shall
prove that this is so in the special case of Hartogs domains, which we now
proceed to define.

A Hartogs set in C™ x C is a set which contains, along with a point
(z,t) € C™ x C, also every point (z,t) with |t/| = |¢|. It is said to be a
complete Hartogs set if it contains, with (z,t), also (z,t’) for all ¢’ with
|t'] < |t|. Here we shall study open and bounded complete Hartogs sets;
they are always defined by a strict inequality |t| < R(z), thus

(1.2) Q={(2t) € C" xC; |t| < R(2)},

where R is a real-valued function on C". Most of our results will be
concerned with the case n = 1, thus

(1.3) Q={(zt)eCxC; [t| < R(z)}.

Theorem 1.1. Let Q be a bounded complete Hartogs domain in C? with
boundary of class C%. If Q satisfies the differential condition (1.1) at all
boundary points, then € is lineally convex.

Thus, for complete Hartogs domains, the property of being lineally
convex is a local property. Next we consider sets which are not smooth
but of the special form

(1.4) Q={(2t) ewxC; |t| < R(2)}.

Here we assume R to be a C? function, so that the differential condition
makes sense for points (z,t) € Ow with z € w, but the boundary is not
smooth at the points (z,t) with z € dw. We shall say that 2 is a Hartogs
domain over w, or that w is the base of Q, if (1.4) holds with R > 0 in w.
In this case we prove:

Theorem 1.2. Let w be a bounded open set in the complex plane C. If
the closure of w is not a disk, then lineal convexity over w is not a local
condition: we can find a Hartogs domain  over w and two open sets
wo and wy such that the Hartogs domains §); over w; are lineally convex,
7 =0,1, but their union @ = Qo U Qy is not. If on the other hand w is a
disk, and § is a Hartogs domain of the form (1.4) satisfying the differential
condition (1.1) at all boundary points over w, then Q is lineally convez.

Corollary 1.3. Let w be an open set in C which s equal to the interior
of its closure, and let ) be a Hartogs domain over w. Then the differential
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condition (1.1) imposed on all boundary points over w is equivalent to
lineal convexity if and only if w is a disk.

I am grateful to Le Hai Khoi for many helpful discussions concerning
this paper.

2. WEAK LINEAL CONVEXITY

There are several other notions related to lineal convexity. The prop-
erty called weak lineal convexity is weaker than lineal convexity: an open
connected set is called weakly lineally convez if through any boundary
point there passes a complex hyperplane which does not intersect the set.
An open set is said to be locally weakly lineally convex if through every
boundary point a € 02 there is a complex hyperplane Y passing through
a such that a does not belong to the closure of Y N €. It is not difficult
to prove that local weak lineal convexity implies pseudoconvexity.

For complete Hartogs sets it is very easy to see that weak lineal con-
vexity implies lineal convexity:

Lemma 2.1. A complete Hartogs domain which is weakly lineally convex
and has a lineally convex base is lineally convex.

Proof. Let (2°,t°) € C™ x C be an arbitrary point in the complement
of Q, a Hartogs domain defined by (1.2). If R(z°) > 0, then the point
(29, R(2°)t°/|t°]) belongs to 99, and if  is weakly lineally convex, there
is a hyperplane passing through that point which does not cut €2. Then the
parallel plane through (2°,¢%) does not cut  either. If R(z°) < 0, then 2°
does not belong to the base, and a hyperplane with equation ¢ - z = ¢ - 2°
will do, since the base is lineally convex. This proves the lemma.

3. THE NON-LOCAL CHARACTER OF LINEAL CONVEXITY

The domain V = {(z,t) € C?% [t| < |z|} is easily seen to be lin-
eally convex. Indeed, if (z9,t9) ¢ V with ¢y # 0, then the complex line
{(2,t); 20t = toz} passes through (zo,%y) and does not cut V; if on the
other hand ¢y = 0, we can for instance take the line {0} x C. A simple ex-
ample of a domain which is locally lineally convex but not lineally convex
can be built up from this set.
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Example 3.1. Define first

Q= {(Z,t); |z| <1 and Jt| < ‘2_2‘};
O = {(Z,t); |z| <1 and Jt| < ‘24_2‘},

and then
Qo= NOQ_; Q1 = {(2,t) € Qo; |t| <7},

where 7 is a constant with 2 < r < v/5. All these sets are lineally convex.
The two points (%i,v/5) belong to the boundary of €p; in the three-
dimensional space of the variables (Re z,Im z, [t|), the set representing
Qo has two peaks, which have been truncated in ;. We now define 2
by glueing together 2y and €2;: define €2 as the subset of 2y such that
(z,t) € Q if Imz > 0; we truncate only one of the peaks of Qy. The
point (i — e,r) for a small positive € belongs to the boundary of Q and
the tangent plane at that point has the equation ¢ = r and so must cut €2
at the point (—i + &,r). Therefore € is not lineally convex, but it agrees
with the lineally convex sets 29 and €27 when Imz < ¢ and Imz > —9,
respectively, for a small positive 4.

Proposition 3.2. Let wy and wy be two bounded open subsets in the
complex plane such that none is contained in the closure of the other.
Then there exists a Hartogs domain over w = wgUwi which is not lineally
convezx, but is such that the subsets 0; over w; are both lineally convex,
j=0,1.

Proof. Take two points a € w; \@wp and b € wy \ w1, which exist by
hypothesis. It is no restriction to assume that a = ¢, b = —i. Then take
¢ > 0 so large that w is contained in the disk of radius ¢ — 1 and with
center at the origin. We then define as in Example 3.1,

Qo ={(z,t) € C?% |t| < |z £c| and [t| < |zj:z‘(1+,/62+1)|}7

and
Q= {(z,t) € Qo; |t| <7},

where r is a number slightly smaller than v/c2 + 1 but so close to that
number that the peak that we have truncated in ; near 7 lies outside
wp, and the peak near —i lies outside wy. This is possible since we have
assumed that ¢ ¢ Wy, —i ¢ Wi, and Qp and Q; differ only above small

neighborhoods of +i which shrink to {£i} as r tends to v¢? + 1.
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We now define 2 to agree with ; over wj, j = 0,1. The conclusion is
as in Example 3.1.

4. SMOOTH VS. LIPSCHITZ BOUNDARIES

The lineally convex set {2y constructed in Example 3.1 has the remark-
able property that it cannot be approximated by lineally convex sets with
smooth boundary. Its boundary, which is Lipschitz, cannot in any reason-
able way be rounded off if we want to preserve lineal convexity. This is
why we shall continue this investigation to see whether smoothly bounded
sets admit a passage from the local to the global.

Before doing so, however, we shall illustrate the difference between
domains which can be approximated by smoothly bounded lineally convex
domains and those that have only Lipschitz boundary.

Let Q be a complete Hartogs domain defined by (1.3) or (1.4) with R a
function of class C'. In the former case we define w as the open set where
R > 0. Often it will be convenient to use not R but h = R? to define the
set, thus, respectively,

(41) Q={(2,t) € CxC; |t| <R(2)} ={(2,t) € Cx C; |t|> < h(z)},
and

(4.2) Q={(zt) ewxC; [t| <R(2)} ={(2,t) Ew x C; |t]* < h(2)}.

The complex tangent plane at a boundary point (zo,ty) with zp € w
has the equation

hz(Z()) 2t0Rz (Z())
(4.3) 0 =a(z—2p), where « T R(z0)

Here and in the sequel we write h, for the partial derivative Oh/dz, h.z
for 92h/020%, etc. The tangent plane intersects the plane ¢t = 0 in the
point

(44) b(Zo) =20 —

If R.(z9) =0, the tangent plane has the equation ¢ = ¢y, and in this case
we define b(zg) = oo, the infinite point on the Riemann sphere S2.
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Proposition 4.1. Let R € C'(C) and define Q by (1.3). If Q is bounded
and lineally convez, then b(z), defined by (4.4), does not belong to w, so

that b is a continuous mapping from w into S* \ w. Its range contains
S22\ .

Proof. Clearly b is continuous as a mapping into C except where R, = 0.
Near such points, however, 1/b is continuous. The point (b(2(),0) cannot
belong to 2 since 2 is lineally convex; thus b(zg) ¢ w. From every point
(z,0) outside the closure of Q2 we can draw a tangent to 2: this shows that
the range of b contains C \ @; clearly it also contains co.

Corollary 4.2. If Q is as in Proposition 4.1, then € is connected. The
same is true if € is the union of an increasing family of bounded lineally
convez sets ) defined by functions R; € C*(C).

Proof. Let wy be a connected component of w. Then the image of w; under
b contains S? \ w;. Since b(zg) ¢ w there can be no other component: we
must have w; = w. The statement about J€; is now immediate.

Corollary 4.2 should be compared with the following easy result for
Lipschitz boundaries.

Proposition 4.3. Given any open set w in C there exists a Lipschitz
continuous function R € C(C) such that w is the set where R is positive
and the set ) defined by R is lineally conver.

Proof. We define R(z) = inf |z — a|. The set Q is lineally convex since

it is an intersection of sets of the type V discussed in the beginning of
Section 3.

If a set does not have a boundary of class C'!, we cannot give a meaning
to the notion of tangent plane. However, if the set is the union of an
increasing family of sets with smooth boundaries, it is possible to use
instead their tangent planes and then pass to the limit. Such limits of
tangent planes can serve as well, as explained in the following easy lemma.

Lemma 4.4. Let ) be the union of an increasing family of open lineally
convez sets Q; with boundaries of class C1. Let (j) be a sequence tending
to +oo, and let Y}, be the complex tangent plane of 0S);, at some point in
the boundary of 2, , k € N. Assume that Y}, converges to a hyperplane Y
i the topology of hyperplanes. Then'Y does not intersect ).

Proof. Suppose there is a point z € Y N ). Then also z € Y N €, for all
large k. Since €2, is open, there is a ball B(z,e) C Q;, for large k, say for
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k > ko. But then Y} intersects B(z,¢) for all large k, say for k > ky. Thus
Y, N Q;, is non-empty for all & > max(ko, k1), contradicting the lineal
convexity of €2, .

To recognize such limits of tangent planes we shall use the concept in
the following definition.

Definition 4.5. Let X be any subset of C™ and a a point in the boundary
0X. We shall say that a complex hyperplane Y is an admissible tangent
plane to X at a if there exists an open set A with boundary of class C*
such that A and X are disjoint, a belongs to the boundary of A, and Y is
the complex tangent plane to A at a.

Proposition 4.6. Let 2 C C" be the union of an increasing family of
open sets ; with boundaries of class C'. Then any admissible tangent
plane Y to ON) is the limit of a sequence of tangent planes Y; to 0S);.
Therefore, in view of Lemma 4.4, Y cannot intersect € if the ; are
lineally convez.

Proof. Let a and A be as in Definition 4.5. By a coordinate change
we may suppose that a = 0, that the real tangent plane to JA at the
origin has the equation y,, = 0, and that A is defined by an inequality
Yn > f(21,...,2n_1,Ty) near the origin for some function f of class C*,
which consequently vanishes at the origin together with its gradient. Write
2 = (21,...,2n-1) € C"1. We then know that all points in Q satisfy
Yn < f(2',2,). Define g(2',x,) = f(2',2,) + |2/|? + 22, and let A, be the
set of all points such that y, > g(z’,z,) —c. We let ¢ = ¢; be the largest
real number such that A, and 2; are disjoint. Now 0 € 92 and Q; " ;
therefore we can be sure that c¢; tends to zero as j — oo. There is a point
29 which is common to the boundaries of Ag; and ;. Since A and §2;
are disjoint, we have |(27)'|* 4 (24)? < ¢;. The real tangent plane to A,
at 2z’ is identical to the real tangent plane to 0€); at that point. We can
control its slope, for the gradient of g is

grad g = grad f + grad (|2/|> + 22),

which is continuous and vanishes at the origin. Since ((z7)’,x7) tends to
the origin, this shows that the real tangent plane to 0A.; at 2 must be
close to the real hyperplane y,, = 0 if j is large, and then of course the
complex tangent plane to dA., at 27 is close to the complex hyperplane
zn = 0. The last statement now follows from Lemma 4.4.

If there are three points in a triangle on the boundary of a lineally con-
vex set, certain values of the gradient at any of these points are forbidden
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as we can see from simple geometric considerations. In the space of three
real variables (Re z,Im z, |t|) we can think of 2 as a banana and the tan-
gent plane t =ty + a(z — zp) as a cone [t| = |tg+ a(z — z0)|; a cone of large
opening cannot touch a banana everywhere. The next lemma expresses
this in a precise way.

Lemma 4.7. Let R be the limit of an increasing sequence of functions
R; € C'(C) and assume that the sets Q; defined by R; are lineally convez.
Let three points 1, —1 and zg = xo+iyo be such that R(1), R(—1), R(z) > 0
and assume that —1 < xo < 1 and yo > 0. Consider an admissible tangent
plane of 0N) at the point (29, R(z0)) with the equation t =ty + a(z — zp)
and assume that Ima is negative. Define

B =min(1 — |zo|,0) > 0,
v = R(2)* — min(R(1)* R(-1)?) € R.

Then « satisfies

(4.5) (2+yp)lal* = 28R(20)|a| +~ > 0.

This inequality will give us forbidden values of |a| provided Im«a < 0,
most easily if v < 0, for then (4.5) implies that

(4.6) o] > 28RG0)

> 5 as soon as Ima < 0.
2+ 95

But also when v > 0 there are forbidden values. If we fix a such that
28R(z0)|a| — (2 + y3)|a|?> > 0, then the lemma shows that

Y 2 28R (z0)la] — (24 3)af’ > 0.

Thus it is impossible to obtain smaller values of ~.

Proof of Lemma 4.7. By Proposition 4.6 the admissible tangent plane
cannot cut the lineally convex set €2, so in particular we must have

lto + a(£1 — 20)|? > R(£1)* > R(20)* — v =t2 — .
Expanding the expression we find

la?|4 1 — 2]* + 2tgRe a(£1 — zp) + 7 > 0.
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Now |+ 1 — 20|? < 2+ 92 and Rea(£1 — 29) = (£1 — z9)Rea + yolm o,
so that
(24 y3) + 7 > —2to((£1 — z0)Rea + yolm a)

for both choices of sign. Noting that Im « is negative we obtain
a*(2 + y5) + v = 2to((1 — |zo])|Re a + yo[Ima]) > 28to|al.

The lemma is proved.

Theorem 4.8. Let R be a function of class C* or more generally a con-
tinuous function which is the limit of an increasing sequence of functions
R; of class C' in the sets {z;R;(z) > 0}. We assume that R is pos-
itive only in a bounded subset of the complex plane. The functions R;
define open sets ();, which we assume to be lineally convex. Then the set
Mp = {z; R(z) = sup R(w)} is convez.

w

Proof. Let a,b € Mp. We have to prove that the whole segment [a, b]
is contained in Mpg. It is no restriction to assume that a = —1, b = 1.
For every ¢ € [—1,1] there must exist a point z € w with Rez = ¢, for
otherwise w would not be connected, in contradiction to Corollary 4.2.

Thus sup R(z) > 0 for these c¢. Moreover this supremum must be equal
Re z=c
to R(1) = sup R, for if there is a ¢ € [-1, 1] such that sup R(z) < R(1),

Re z=c
then there must exist a saddle point zy of R; somewhere in the strip

|Re z| < 1 with R;j(z9) < R(1), and even R;(z9) < R;(1) for j large. The
gradient at a saddle point is zero, so that the tangent plane of 0€); at
the boundary point (2o, R;j(20)) has the equation t = R;(20) and cuts §;
at some point over 1 since R;(z9) < R;(1). This contradicts the lineal
convexity of €);.

We thus have the situation that sup R(z) = R(1) for every c € [—1,1],

Re z=c
which, since R is assumed continuous, means that there exists a point w

with Rew = ¢ and R(w) = R(1), thus w € Mg. If Imw = 0 we are done:
c=w € Mg. If Imw # 0, we may assume that Imw > 0; the other
case is symmetric. We may also assume that |Imw| is minimal with this
property, i.e., that the points z = ¢ + iy with |y| < [Imw| do not belong
to MR.

Now Lemma 4.7 shows that the situation with these three points 1, —1
and w in Mg with Imw > 0 must lead to forbidden values of a at points
near w. Most easily this is seen if R is of class C*. We have R, (w) = 0, so
a = 2R, (z0) is small at all points near w; moreover, since R(z+iy) < R(w)
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for all y with 0 < y < w, there must exist points 2y = ¢ + iy arbitrarily
close to w with R,(zo) positive. Since R(zp) < R(1), we have v < 0 and
(4.6) shows that all small values of |«| are forbidden.

When R itself is not of class C! but a uniform limit of functions R; of
class C! we must find an admissible tangent plane.

To produce points near w where there is an admissible tangent plane
with Im o < 0 we define an auxiliary function

pa(2) = R(1) + (x — ¢)? -I—e(y - %Imw)2 —a,

where € > 0 and «a is a real parameter. We have p,(z) < R(1) only when
2 1 2
(x —c) +5<y—§Imw> < a,

i.e., inside an ellipse, which we shall choose quite narrow. We fix ¢ > 0
and define b = 5<%Imw)2. This implies that py(w) = pp(c) = R(1), so
that w and ¢ are on the boundary of the domain p, < R(1). If € is small
enough, then py(z) > R(z) when Im z < %Im w. Since pp(w) = R(w), the

inequality p, > R implies a < b. We now choose a as the largest real
number such that p, > R; we must then have 0 < a < b. Moreover there
must exist a point zg such that p,(z0) = R(z9) in view of the maximality

of a, and we know that Im zg > §Im w, ensuring that the imaginary part

1
of @« = 2p, . = Pa,x — 1Pa,y 1s nNegative: Ima = —2¢ <y0 — §Im w) < 0. We

also note that

1
Im | = 25)3/0 — §Imw’ < elmw and |Rea| = 2|zg — ¢| < 2v/a < Velmw
are arbitrarily small. Thus |«| is as small as we like, which contradicts

(4.6).

The next result describes a situation in contrast to Theorem 4.8:

Proposition 4.9. Given any closed set M in the complex plane such that
its complement is a union of open disks of radius € there exists a Lipschitz
continuous function R such that Mr = M and the domain Q) defined by
(4.1) with this R is lineally conver.

Proof. Define R(z) = min(e,inf,c 4 |2—al), where A is the set of all centers
of disks of radius ¢ in the complement of M.
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5. DIFFERENTIAL CONDITIONS

Let © be an open set in C" with boundary of class C'. Then there
exists a function p € C1(C"), called a defining function, such that dp # 0
wherever p = 0 and

Q={zeC"p(z) <0}

The complex tangent space at a point a on the boundary of §2 is defined
by

and will be denoted by Tr(a). If p is of class C? we define the Hessian
form of p as the quadratic form

"~ 020z,

H(s) = |

>

(a)s;sg, se C",

and the Levi form of p as the sesquilinear form

Definition 5.1. We shall say that a set { with boundary of class C?
satisfies the differential condition at a boundary point a of Q if

(5.1) |H(s)| < L(s) for all vectors s € Tc(a).

We shall say that () satisfies the strong differential condition at a if we
have

(5.2) |H(s)| < L(s) forall se&Tc(a)\{0}.

These conditions should be compared with the differential condition for
convexity: |H(s)| < L(s) for all vectors s in the real tangent space Tgr(a).
This is a local condition, and it is well known that it is equivalent to
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convexity of €). The proof of this fact most conveniently goes via approx-
imation of the set by sets satisfying the corresponding strong condition,
i.e., |H(s)| < L(s) for all s € Tr(a) \ {0}.

The following two lemmas are well known (cf. Zinov’ev [1973] and
Hormander [1991, Corollary 4.6.5]). We include them for ease of reference.

Lemma 5.2. Let Q be an open subset of C™ with boundary of class
C2. If Q is locally weakly lineally convex, then Q0 satisfies the differential
condition at every boundary point.

Proof. Let a be an arbitrary boundary point of a locally weakly lineally
convex open set (2. Then there exists a complex hyperplane through a
which does not cut € close to a. This hyperplane cannot be anything
but Tc(a) since the boundary is of class C!. Therefore if we take an
arbitrary vector s € Tc(a) and consider the function ¢(t) = p(a + ts)
of a real variable t, its second derivative must be non-negative at the
origin. If we express the condition ¢”(0) > 0 in terms of H and L we get
Re H(s) + L(s) > 0, which, since H is quadratic and L sesquilinear, is
equivalent to |H| < L.

Lemma 5.3. Let §) be an open subset of C™ with boundary of class C?. If
Q satisfies the strong differential condition at every boundary point, then
Q is locally weakly lineally convex.

Proof. With ¢ as in the proof of the previous lemma we must have ¢”(0) >
0 if Q satisfies the strong differential condition. This implies that Tc(a)
cannot cut €2 close to a.

It is known that if 2 is a connected open set with boundary of class C*
which is locally weakly lineally convex, then () is weakly lineally convex;
see, e.g., Hormander [1, Proposition 4.6.4]. We shall come back to this
result in Section 7.

6. DIFFERENTIAL CONDITIONS FOR HARTOGS DOMAINS

In this section we shall see what the differential conditions look like
in the case of a complete Hartogs domain in C2. Let Q be a complete
Hartogs domain in C? defined by (4.1). If h is of class C', we can choose
as its defining function

p(z,t) =tt — h(z).
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It must satisfy d’p # 0 when p = 0, which means that d'p = tdt —h.dz # 0
when [t|? = h(z). Since the first term of d’p is #dt, which is non-zero
everywhere except in the plane ¢ = 0, the only condition is that h, # 0
when h = 0, i.e., that h itself shall be a defining function in C. It defines
a subset w of the complex plane over which (2 is situated.

Lemma 6.1. Let h be a defining function of an open set w in C of class
C¥, k > 1. Then the complete Hartogs domain in C? defined by (4.1) has
boundary of class C*. When k > 2, it satisfies the differential condition
at every boundary point if and only if h satisfies the condition

||

(6.1) > h,z + |h,.| wherever h > 0.

Furthermore Q satisfies the strong differential condition if and only if there
is strict inequality in (6.1).

Proof. Let us look at the Hessian and Levi forms of p(z,t) = [t|? — h(z).
They are, respectively,

H(s) = —hzzS% and L(s) = —hzz|81|2 + |82|27 s = (s1,82) € C.
The differential condition |H| < L takes the form
|ho|[s1]? < —hoz|s1|? + |s2]*  for all s € Te(a).

The tangent plane is defined by —h_s1 +tso = 0. When t # 0 we use this
equation to eliminate sy: the condition takes the form (6.1). Near ¢t = 0
we eliminate instead s; and get

h

hz? hzz =
(hez + |hesl)

1.

This inequality is satisfied, even strictly, at all boundary points sufficiently
close to t = 0, provided h, # 0 near h = 0. Therefore, if h is a defining
function for w, then p is a defining function for 2 and condition (6.1)
implies the differential condition at all boundary points of €2, including
those where t = 0. Conversely, if p is a defining function for €2, then h is
a defining function for w, and the differential condition for §2 implies the
condition (6.1) for h.

Remark 6.2. We can of course express the differential condition (6.1) in
terms of the radius R = v/h. It becomes

(6.2) |R.|* > |RZ + RR,.| + RR.=,



82 CHRISTER O. KISELMAN

which is less convenient to work with than (6.1). If A is concave, then
h.z + |h,.| <0, so that (6.1) holds. More generally, if R is concave, then
R.z + |R,.| < 0, which implies that (6.2) holds. It is also possible to

express the differential condition in terms of the function f = —log R. It
then takes the form
(6.3) |foz = 2f2] < [z

In Kiselman [2] I have studied convexity properties of this function f.

7. APPROXIMATION OF SMOOTHLY BOUNDED LINEALLY CONVEX
HARTOGS DOMAINS

Theorem 7.1. Let
(7.1) 0= {(z,t) € CZ; t] < R(z)}

be a bounded complete Hartogs domain in C? with boundary of class C?.
Suppose Q) satisfies the differential condition at all boundary points. Then
Q can be approximated from the inside by Hartogs domains

Qe = {(Z’t); t] < Re(2)

which satisfy the strong differential condition at all boundary points (z,t)
except those where R,(z) = 0. In fact, we can take R. = vV R? — ¢ with ¢

positive and small enough.

Proof. Of course, we should not try to do any calculations with R but use
R? = h instead. The differential condition (6.1) contains the value of h
only at one place, and h. = h — ¢ has the same derivatives as h, so we can
write

haf? _ Jhaf?

h—e¢ h
except of course when h, = 0. Thus the boundary of 2. satisfies the
strong differential condition except at the points where h, = 0. So far the
argument is valid for all positive e. We need to check that h. is a defining
function; otherwise we cannot apply Lemma 6.1. But the gradient of h.
is the same as that of h, which is non-zero when h = 0, hence also when
he = 0, provided ¢ is small enough. Thus, h. is a defining function for all

small e, proving the theorem.

2 hz? + |hzz|

We shall now see that the approximating sets {2. that we constructed
in Theorem 7.1 are in fact lineally convex. Let us agree to say that a
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complex plane with the equation z = constant is vertical and a plane with
the equation ¢ = constant is horizontal.

Proposition 7.2. Let Q be a bounded complete Hartogs domain in C?
with boundary of class C? satisfying the strong differential condition except
possibly at the points where the tangent plane is horizontal. Then ) is
lineally convexz.

We shall need the following three lemmas.

Lemma 7.3. Let Q be as in Proposition 7.2 and let L be a complex line
in C? which is not horizontal. Then L N Q consists of a finite number
of open sets bounded by C? curves obtained as transversal intersections of
L and 02 (and L N O consists of these curves plus a finite number of
isolated points).

Proof. Take an arbitrary boundary point a and let L be a complex line
through a which is not horizontal. If L is the tangent plane, L = a+T¢(a),
then the proof of Lemma 5.3 shows that L intersects © near a only in
the point a. If, on the other hand, L is not the tangent plane, then
LNn(a+Tc(a)) # L, so Q cuts L transversally, and QN L is a C? curve
in L near a. Thus L N O consists of a number of C? curves plus isolated
points—by compactness there can only be finitely many curves and points.

Lemma 7.4. Let Q) and L satisfy the hypotheses of the previous lemma.
Then QN L is connected, and Q2N (a+ Tc(a)) is empty for all a € ON.

Proof. We shall follow closely the proof of Proposition 4.6.4 in Hérmander
[1]-we only have to be careful to avoid horizontal planes. Let (z;,t;),
7 = 0,1, be two points in LN 2. We have to prove that they belong to the
same component of L N§2. Suppose first that both tg and t; are non-zero.
Since €2 is connected, there is a curve v which goes from ~(0) = (2o, to) to
v(1) = (z1,t1). We can actually do this in such a way that the complex
line Ly which contains v(0) and 7(s), 0 < s < 1, is never horizontal.
Indeed, we first go from (z,to) to (20,0) along a curve in the plane z = 2
avoiding (zop,t1); then along a curve in the plane t = 0 from (2,0) to
(21,0); and then finally from (z1,0) to (z1,%1) along a curve in the plane
z = z1 avoiding (z1,%t0). (We know that ¢ty # t1). Thus none of the lines
Ly is horizontal, and we can apply Lemma 7.3 to them. Consider the set
C of all s € (0,1] such that v(0) and 7(s) belong to the same component
of Ly N ). Then certainly C contains all sufficiently small numbers, for
~v(0) and ~y(s) are then in the line z = 2y, whose intersection with 2 is a
disk. The set C is open as a subset of (0,1] in view of Lemma 7.3, but
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so is its complement with respect to (0, 1]. Since it is non-empty, it must
contain 1, i.e., (20,%0) and (21, 1) belong to the same component of LN.
If one of tg, t1 is zero, we choose a point with non-zero second coordinate
in the neighborhood and argue as above.

Consider now a tangent plane L = a+7¢(a) and planes L. = a.+T¢c(a)
parallel to it, where we write a. = (29, (1 —¢)tg) if a = (20, t9). We already
know from Lemma 5.3 that L cannot intersect €2 close to a. However,
it cannot cut 2 at all, for if it did, then a parallel plane L. for some
small positive € would intersect {2 in a component close to a and another
nonempty set at some distance from a, thus in a disconnected set. This
proves Lemma 7.4.

Lemma 7.5. Let 2 be as in Proposition 7.2 and let a € 02 be such that
the tangent plane is horizontal. Then QN (a + Tc(a)) is empty; in other
words R has a global mazrimum at a. Consequently any horizontal plane
L intersects Q in finitely many open sets bounded by C? curves obtained
as transversal intersections of L by OS).

Proof. Let (z0,t9) be a boundary point such that the tangent plane is
horizontal, i.e., R.(z9) = 0. Suppose the tangent plane cuts {2 in some
point (z1,t1). We must then have ¢; = t3. Since {2 and its base w are
connected, we can find a curve « in w connecting zg to z1, say y(s) = zs,
s € [0,1]. Consider now the tangent planes at the points (zs, R(zs)); we
denote them by Ls = (25, R(2s)) + Tc(zs, R(zs)). It is no restriction to
assume ty > 0, so that R(zg) = tg. We know that Lg is horizontal, but
certainly not all the Ly can be horizontal, since R(z1) > |t1] = |to| =
R(zp). Let so be the infimum of all s such that L, is not horizontal; we
must have 0 < sy < 1. The planes L, with 0 < s < s¢ are identical and all
intersect €2 in the point (z1,%1). It is now clear that there exists a tangent
plane Lg with s just a little bit larger than sy which is not horizontal and
still cuts . This contradicts Lemma 7.4.

Proof of Proposition 7.2. We know from Lemma 7.4 that a tangent plane
which is not horizontal does not intersect {2; we obtain the same conclusion
from Lemma 7.5 for a horizontal tangent plane. Thus €2 is weakly lineally
convex. Lemma 2.1 shows that this implies lineal convexity.

We can now finally state:
Theorem 7.6. Let Q be a bounded complete Hartogs domain in C? with

boundary of class C?. If Q) satisfies the differential condition (5.1) at all
boundary points, then € is lineally convex.



LINEALLY CONVEX HARTOGS DOMAINS 85

Proof. Using Theorem 7.1 we construct open sets 2. which tend to (2.
Also, if R(zp) > 0, the tangent plane of 9. at (zo, /R(20)? — €) tends to
that of 0 at (z0, R(zp)). The sets €. are lineally convex by Proposition
7.2. Then also their limit €2 is lineally convex. Indeed, if a tangent plane
to 0N intersected €, then it would cut also €. for all sufficiently small ¢,
and then also for € small enough the corresponding tangent plane to OS2
would cut .. This is a contradiction.

8. THE NON-LOCAL CHARACTER OF LINEAL CONVEXITY, REVISITED

Having settled the question of lineal convexity of smoothly bounded
Hartogs domains we now turn to sets of the form

(81) Q={(zt) ewxC; |t| <R(2)} = {(2,t) ew x C; |t|* < h(z)},

where w is a given open set in C and h is a C? function in the closure
of w satisfying h > 0 and the differential condition (6.1). Its boundary is
smooth enough over points in w, but is only Lipschitz at points over dw.
It turns out that when w is a disk, then the differential condition implies
lineal convexity: we shall study this question in Section 9. On the other
hand, if w is a set such that @ is not a disk, then the differential condition
does not imply lineal convexity. This is the topic of the present Section.

The property of being a disk is invariant under M6bius mappings, and
disks are the only sets which remain convex under all Mobius mappings.
This is a kind of explanation for the phenomenon we encounter here, and
it is therefore natural to study how the differential condition (6.1) behaves
under Mobius mappings. This is explained in the next lemma.

Lemma 8.1. Let Q be a Hartogs domain in C? defined by |t| < R(z),
let a, b, ¢, d be four complex numbers with ad — bc # 0, and let 1 be
the Hartogs domain defined by |t| < R1(z) = |c+dz|R((a+bz)/(c+ dz)).
Then Q0 and Q1 are lineally convexr simultaneously. The two functions h
and hi(z) = |c+dz|*h((a +bz)/(c+ dz)) satisfy the differential condition
(6.1) simultaneously.

Proof. Consider the mapping
(C \{O}) x CxC> (Zo,Zl,t) — (Zl/Zo,t/Zo) € C2.

Under it the pull-back of the hyperplane ¢+ (z+ 7t = 0 is the hyperplane
czo+ Cz1 + 7t = 0. It follows that the pull-back of a lineally convex set in
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C? is a complex homogeneous lineally convex set in C3. Now any linear
mapping of the form

C? > (20, 21,1t) = (czo +dzy,az + bz, t) € C?

with ad — bc # 0 preserves lineal convexity, and mappings

azy + bz t
C3 3 (20,21, 1, , eC?
(20,21,8) = ( czo +dz czo + dzl)

preserve lineally convex sets which are complex homogeneous. If we trans-
port this back to C? we get a mapping of the form

a—+ bz t
c+dz' c+dz )’

0 (

This proves that €2 and 2; as defined in the statement of the lemma are
lineally convex at the same time. The statement about the differential
condition for h and h; can be verified directly, perhaps easiest if we check
it for the special mappings z — ¢+ dz and z — 1/z, which together
generate all Mobius mappings.

Lemma 8.2. Let K be a compact subset of C with connected complement.
Assume that K is not a disk. Then there exists a closed disk D1 containing
K such that K N 0D has at least two components.

Proof. Let Dgy be the closed disk of minimal radius which contains K.
By hypothesis K # Dy and C \ K is connected, so there exists a point
ap € 0Dy \ K. Let H be an open halfplane which contains K but is
such that ap ¢ H. Now consider the closed disk D; of minimal radius
among those that contain K and have 0H as a tangent. We claim that
there are four points a, b, ¢, d € 0D which are in that order along the
circumference and with a,c ¢ K, b,d € K. This will show that b and
d belong to different components of K N dD;. To find these points we
argue as follows. Let a be the point of 0D, at which 0H is tangent; thus
a € 0Dy and a ¢ K. Next, D1 ¢ Dy, so there is a point ¢ € 9Dy \ Dy.
Thus, ¢ ¢ K. Finally we claim that there are two points b,d € 0D; N K
on either side of the segment [a,c]. This is so because if one of the arcs
from a to ¢ were disjoint from K, then it can easily be seen that D; would
not be minimal among the disks that contain K and are tangent to 0H.
This completes the proof.

Theorem 8.3. Let w be a bounded connected open subset of C such that
the complement S? \ @ of its closure with respect to the Riemann sphere



LINEALLY CONVEX HARTOGS DOMAINS 87

S% = CU{oo} has at least one component which is not a disk. Then there
exists a Hartogs domain defined by a smooth function and with base w such
that it is not lineally convex, although w = woUw1 and the Hartogs domain
over w; s lineally convex, j = 0,1. In particular the function defining €2
satisfies the differential condition (6.1).

Proof. Let K be the complement of a component of S2 \ @ which is not a
disk; thus K contains w. Moreover the complement of K is connected and
OK C Ow. We may assume that K is compact: if not we use a Mobius
mapping to reduce ourselves to that case. Let a, b, ¢, d € 0D be the four
points whose existence is guaranteed by Lemma 8.2; recall that b,d € K
and a,c ¢ K. Now take a new closed disk D, which does not contain
a,b, or d, but contains c¢ in its interior, and is so close to Dy that b and
d belong to different components of K \ Dy. This is possible because a
does not belong to K. Now we map D, onto the closed right halfplane,
taking a to 0 and some point outside K and near c to infinity. We are
thus reduced to a situation where K is still compact in C, whereas 0Ds
is the imaginary axis, with a = 0 and Im b and Im d of different signs, say
for definiteness Imb < 0 and Im d > 0. Moreover we can take D5 so close
to Dq that the points in K which are not in D, are never real. Then we
can define a function R as follows. First take a smooth concave function
1 of a real variable such that ¢(s) = 1 when s > 0 and ¥ (s) < 1 for s < 0,
but still so that ¢)(Rez) > 0 for all points z € @. Then define

(Rez) when z € w, Rez <0, Imz <0,

R(z) = {

1 at other points in w.

This function is continuous, even identically one, in a neighborhood of the
intersection of w and the real axis.

The tangent plane at a point (zg,tg) € 02 with 2y € w has the equation
(4.3). In particular, we may take to = R(20) and get

t = R(z0) + 2R.(20)(z — 20)-

In the present case R is locally a function of Rez, say R(z) = k(z), so
that R, = k, /2 is real. Thus the tangent plane is

t = R(20) + kz(20)(z — 20) = R(20) + ku(z0)(z — z0) + tha(z0) (Y — yo),
and, writing z = zg + 21, we obtain

|t|* = R(20)” + 2kz(20) R(20)21 + ko (0)* 2] + ka(20) 91
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When 27 < 0 and k,(z¢) is positive and small,
t|? ~ R(20)* + 2k.(w0)R(20)71 < R(20)%.

Since w is connected and has the point b on its boundary, we can choose
2o such that yg < 0 and ¢ < 0 with k,(z() arbitrarily small, so small
that indeed |t| < R(zp). Then we choose z = zp + 21 € w with Imz > 0.
Thus R(z) = 1, so the tangent plane at (zg, R(zp)) cuts 2 in a point above
z. This proves that 2 is not lineally convex. However, if we look at the
parts of w where Imz > —e and Imz < ¢ respectively, then R is the
restriction of a globally concave function in each of them and therefore
defines a lineally convex set.

Theorem 8.4. Let w be a bounded open set in C such that S* \ © is not
connected. Then there is a function h € C*>(w), h > 0, which satisfies the
differential condition (6.1) but is such that the Hartogs domain it defines
over w is not lineally convex.

Proof. 1f one of the components of S? \ @ is not a disk, we already know
the result by Theorem 8.3. The case when all components of S? \ @ are
disks remains to be considered. This means that w is a disk from which
countably many disks (at least one) have been removed. Any one of these
holes can be moved by a Mobius transformation so that it becomes con-
centric with the outer circumference of w; in other words @ is an annulus
ro < |z| < ry from which possibly a number of disks have been removed.
It is clearly enough to consider the case of the annulus, for the possible
presence of other holes will not destroy our conclusion.

So assume @ is the annulus ro < |2| < ry and define Ry(z) = 1 — ax? —

by?, where 0 < a < b and b is so small that Ry > 0 in @. Next define ¢
to be a concave C* function of one real variable such that ¢(s) = s for
all s <1 —brg +¢ and p(s) = ¢ when s > 1 — ar2 — ¢ for some positive ¢
and a suitable constant ¢; by necessity we must have ¢ < 1 — arg. Define
Ri(z) = ¢(Rp(2)). We observe that Ry = R; in a neighborhood of the
intersection of the imaginary axis and w. Both Ry and R; are concave
in C, so the corresponding Hartogs domains over |z| < r; are convex and
therefore lineally convex. It follows that the Hartogs domains over w are
lineally convex. Now define R to agree with Ry in the right halfplane and
with R; in the left halfplane. Note that R(z) = R1(2) = ¢ at points z € w
close to —rg, so that the tangent plane at a boundary point over such a
point has the equation t = ¢y with |tg| = ¢ < 1 — ar3. But over a point
z in w close to 79 we have R(z) = Ry(z) > ¢, so the tangent plane t = t
cuts 2. This proves that {2 cannot be lineally convex.
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9. HARTOGS DOMAINS OVER A DISK

The differential condition over a disk remains to be studied. We shall
see that it is then equivalent to lineal convexity.

We shall write D(c,r) for the open disk in the complex plane with
center ¢ and radius r, and just D for the open unit disk D(0, 1).

Proposition 9.1. Let h € C%(D), h > 0, be a real-valued function which
satisfies the differential condition

(9.1) ||

Let ¢ € C*(R) be real-valued, decreasing and satisfy ¢ < 1 everywhere
and ¢ < 0 wherever ¢ < 1. Assume that there are constants a and A
such that

(9.2) Re [%hhé()z)} <a<1
and
(9.3) 2Zhh<zz ()Z) < A< 4o

wherever 0 < ¢(zZ) < 1. Then g(z) = p(2Z)h(z) satisfies the differential
condition wherever ¢(zZz) > 0 and |z| < 1, provided ' /" is small enough,
more precisely if either A <1 or else

¢'(s) _2(1—a)
s (s) = A2 -1

when s is such that 0 < p(s) < 1.

Proof. With g(z) = ¢(2Z)h(z) we have
9. = ¢'zh + ph,,

Gzz = §0/,22 + 2S0/2hz + Qthza
gz = @"|2)?h + ¢'h + 2¢'Re zh, + ¢h.5.

Thus what we have to prove is, writing r for |z|,

'z + ph.|?

oh > r2@" h+ @' h+2¢p'Re zh, +phz+|¢"Z2h+2¢'Zh, +¢h..|.
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We expand the left-hand side and find that the term 2¢'Re zh, appears
on both sides. We shall therefore prove

r2¢"h  plh.]?
¢"h | elhl

> 120" h+ @'h+ phaz + |9"Z2h + 202N, + Ohes|.
¢

This formula follows from |h.|?/h > h.z+|h..|, which holds by hypothesis,
and

20 h

(9.4) > r2"h 4+ o'h+ |2 h + 20'Zh.|,

which we shall prove now. We divide both sides of this inequality by the
positive quantity —r2¢’h (if ¢ is zero there is nothing to prove), and find
the equivalent inequality

/2 /

=2 1= / ,
—SOHZ—l— ;0H+_Z_2_ Q[;Z/}fz _ 4 ;0 I P 2zh |
PP reQ T r2¢"h r2p 20" h
Since _90/2 /" is positive, it suffices to prove that
/(.2 251
1+t> |1—|—tw| when t:M and w = < z(z)
2o (r?) h(z)

This inequality in turn follows from
(14+t)> > |1 +tw]* = 1 + 2tRew + t*|w|?,

which holds as soon as 2+t > 2Re w + t|w|?. By hypothesis Rew < a < 1
and |w| < A, so (9.4) follows as soon as either A < 1 or else A > 1 and
t <2(1 —a)/(A? —1). This proves the proposition.

Example 9.2. As an example of the function ¢ in Proposition 9.1 we
let sg be an arbitrary number such that 0 < sy < 1 and take a smooth
function ¢ satisfying ¢(s) = 1 for s < sy and whose derivative is ¢'(s) =
—Cexp(—1/(s—sg)) for s > s9. Then we determine C' to make ¢(1) = 0;
this means that we choose C' to satisfy

1
C’/e_l/(s_SO)ds =1.

S0
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We note that ¢'(s)/s¢”(s) = (s — s9)?/s, which varies between 0 and
(1 — sg)?. Thus if 1 — s is small enough, we can conclude that the new
function ¢(2z)h(z) satisfies the differential condition (9.1) over the open
unit disk and it agrees with h when [z| < /5.

We need to study condition (9.2) more closely. In fact it has a simple
geometric meaning.
Definition 9.3. Let a complete Hartogs domain

Q={(zt) ewxC; [t|* <h(z)}

be defined over a bounded domain w in C by a function h € C1(w), h > 0.
Denote by (b(z),0) the point at which the tangent at a point (z,t) € 99
with z € w intersects the plane t = 0 (put b(z) = oo if there is no such
point). We shall say that ) satisfies the tangent condition if

inf d(b(z),w) > 0,

zZEw
where d denotes the distance from a point to a set.

If © is defined by a function R > ¢ > 0 and is lineally convex, then
it must satisfy the tangent condition, but not only that—we can deduce
important quantitative information from its lineal convexity:

Lemma 9.4. Let R € C'(w) be such that the set Q defined by (8.1) is
lineally convex. Then

infR infh
. inf d(b > > = .
(9-5) e (b(2), w) = 2sup|R.| ~ sup|h.|

If R > ¢ >0 in w, then Q) satisfies the tangent condition.

Proof. The tangent plane at a point (zg,tg) € 9Q with zy € w is given by
equation (4.3), and b(z) is given by equation (4.4). The equation for the
tangent can also be written as t = a(z — b(zp)). If Q is lineally convex,
then this tangent cannot intersect €2, so we must have |t| > R(z) whenever
z,20 € w. Thus

It| = |a(z — b(20))| > R(z) for all z, 2z € w;
inserting the value of |a| = 2|R.(20)| = |h2(20)|/+/h(z0) we obtain

o _BE)_ VRERG)
TR0l halao)]

|2 = b(20)
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We now let z, zp vary in w to get the desired conclusion.

The idea is to prove that the tangent condition is not only necessary
as in Lemma 9.4, but also sufficient if w is a disk, which we shall do in
Proposition 9.5. We then proceed to prove that €2 does satisfy the tangent
condition under our hypotheses if w is a disk.

Proposition 9.5. Assume that h € C%(D), h > 0, satisfies the differen-
tial condition (9.1) and that §) satisfies the tangent condition. Let ¢ be the
function constructed in Example 9.2. Then p(2Z)h(z) satisfies the differ-
ential condition if s is sufficiently close to 1. Therefore, by Theorem 7.6,
the open set {(z,t) € D x C; |t|* < ¢(2Z)h(z), which has a C* boundary,
18 lineally convex; as a consequence also its limit as sg tends to 1, viz. )
itself, 1s lineally convex.

Proof. Using formula (4.4) for b(z) the relation between the inequality
(9.2) used in the proof of Proposition 9.1 and the tangent condition is
easy to establish. We observe that |b(z)| = |z — h(z)/h.(2)| > |#| if and
only if Re2zh,(z)/h(z) < 1. Thus if Q satisfies the tangent condition,
then h satisfies (9.2) for some a < 1 and all z in some sufficiently narrow
annulus /sp < |z| < 1.1

Define
2zh., 2zh,;
A = sup 2zh(2) and a(sg)= sup Re {z—(z)] :
|z|<1 h(z) Vs0<|zI<1 h(z)

!Here we could remark that it would be enough to require that b(z) ¢ @ only for
all z € Ow, supposing that h € C?(@). The stronger condition used in Definition 9.3 is
however easier to handle in the proof of Proposition 9.6.
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If A <1 we are done; otherwise we can choose sy < 1 so close to 1 that
(1 —50)? < 2(1 —a(sg))/(A% — 1). Proposition 9.1 can be applied and
shows that ¢(2Z)h(z) satisfies the differential condition.

We shall now prove that it can never happen that Re2zh,(z)/h(z) > 1
for any z with |z] < 1.

Proposition 9.6. If h € C?(D), h > 0, satisfies the differential condition
(9.1), then Q satisfies the tangent condition.

Proof. Let us define

bo(r) = inf |b(2)], 0<r<I1.

|z|<r

This is a decreasing function and it is continuous where it is finite. The
tangent condition for Q, = {(z,t) € D(0,r) x C; [t|> < h(z)} means
precisely that bo(r) > r. It is clear that the condition is satisfied for
a very small r. Indeed, b(0) = —h(0)/h,(0) is either oo or a non-zero
complex number; in view of the continuity, |b(z)| > r if |z| < r and 7 is
small enough.

If the tangent condition is satisfied for a particular €2,., then by Propo-
sition 9.5 the set €2, is lineally convex, so Lemma 9.4 can be applied and

shows that bo(r) > r + &, where ¢ = (|i|n<f1R)/(2 sup |R.|) > 0. We
2l< 21<1

know that by(r) > r for small values of r, and we have just seen that if
bo(r) > r, then also by(r) > r + ¢, for a positive £ which does not depend
on r. Therefore that function cannot assume any value in the interval
(r,r + €): it must satisfy by(r) > r all the way up to and including r = 1.
This means that 2 satisfies the tangent condition.

Theorem 9.7. Let h € C?(D), h > 0, satisfy the differential condition
(9.1). Then the open set Q = {(z,t) € D x C; |t|* < h(z)} is lineally

conver.

Proof. If h € C%(D) with h > 0 in D, we see from Proposition 9.6 that
satisfies the tangent condition, so that Proposition 9.5 can be applied. In
the general case with h € C?(D), h > 0, we apply this result to a smaller
disk rD, r < 1, to conclude that the domain over rD is lineally convex.
Then we let r — 1.
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