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ON HAMILTON CYCLES IN CUBIC
(10,n)-METACIRCULANT GRAPHS

NGO DAC TAN

Abstract. We prove in this paper that every connected cubic (10, n)-metacir-
culant graph has a Hamilton cycle if n is a positive integer such that ¢(n) is not
divisible by 5, where ¢(n) is the number of integers z satisfying 0 < 2z < n an
ged(z,n) =1, -

1. Introduction

The problem of the existence of a Hamilton cycle in vertez-transitive graphs
apeals the attention of researchers for many years. At present, there is only
a very limited supply of connected vertex-transitive non-hamiltonian graphs.
These graphs are the Petersen graph, the Coxeter graph and the two graphs
obtained from these by replacing each vertex by a triangle. C. Thomassen (see
[4]) has conjectured that there are only finitely many such graphs. None of
these four graphs is a Cayley graph, so that it may be conjectured that every
connected Cayley graph on a finite group has a Hamilton cycle. This has been
shown true at least for abelian groups [5] and some other special groups {6, 14].

Among vertex-transitive graphs, (m, n)-metacirculant graphs introduced re-
cently in [1] are interesting because they were defined as a logical generalization
of the Petersen graph with the purpose of providing a class of vertex-transitive
graphs in which there might be some new non-hamiltonian connected vertex-
transitive graphs. It has been asked [1] whether all connected (m,n)-metacir-
culant graphs, other than the Petersen graph, have a Hamilton cycle. '

For n = p* with p a prime, connected (m,n)-metacirculant graphs, other -
than the Petersen graph, have been proved to have a Hamilton cycle [2]. Connected
cubic (m,n)-metacirculant graphs, other than the Petersen graph, also have
‘been proved to be hamiltonian for m odd [7], m = 2 [3, 7], and m divisible by 4
[8, 11]. Thus, the remaining values of m, for which we still do not know whether
all connected cubic (m, n)-metacirculant graphs have a Hamilton cycle, are of
the form m = 2u with g > 3 an odd positive integer. _

Recently, some results on Hamilton cycles in cubic (m,n)-metacirculant
graphs for the case m = 6 have been obtained in [12, 13]. In this paper,
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we investigate the problem of the existence of a Hamilton cycle in cubic (m,n)-

metacirculant graphs for the case m = 10. Namely, we will prove here that
a connected cubic (10, n)-metac1rcula.nt graph has a Hamilton cycle if n is a
positive integer such that (n) is not divisible by 5, where @(n) is the number
of integers z satisfying 0 < z < n and ged(z,n) = 1.

2. Preliminaries

In this paper we consider only finite undirected graphs without loops or
multiple edges. If G is a graph, then V(G) and E(G) denote its vertex-set and
its edge-set, respectively. If n is a positive integer, then we write Z, for the
ring of integers modulo n and Z, for the multiplicative group of units in Z,.

Let m and n be two positive integers, @ € ZX,p = |m/2] and let
S0y S1,- .. , S, be subsets of Z, satisfying the following. conditions:

(1) 0 ¢ So = —S0

(2) ™S, =S for 0 < r < gy

(3) If m is even, then o*S, = ~S,.

Then we define the (m,n)-metacirculant graph G- = MC(m,n,q, 50,5'1, ey

S,) to be the graph with vertex-set V(G) = {v} : i € Zn; j € Zn } and edge-
set E(G) = {vv“"’ 0<r <y i€ %y hj€ Zyand (h—j) € a'S,},
where superscripts and subscripts are always reduced modulo m and modulo n,
respectively.

The above construction is designed to allow the permutations p with p(v; ) =

+1 and T with 7(v} ) = U’"H to be a.utomorph1sms of G. Thus, (m, n)-metacir-
culant graphs are vertex tra:rlsltlve

We will use the following results of [9, 10]

LEMMA 1. [9] Let G = MC(m,n o, Sg,Sy,... ,5,) be a cubic (m, n)-metacir-
culant graph such that m > 2 is even, Sq = 0, S = {s} with 0 < s < n for some
ie{l,2,...,u—1},S;=0foralli #j € {1,2,... ,u—1} and S, = {k} with
0 <k<n. Then

(i) If G is connected, then either i is odd and ged(i,m) = 1 or i is even, p is
odd and ged(i,m) = 2.

(i) If i is odd and ged(i,m) = 1, then G is isomorphic to the cubic (m, n)-
metacirculant graph G' = MC(m,n,d',S;, S1,- - S’) with & = a'; Sy =
8,5 ={sh,Sp=---=8)_ ﬁandS'—{k} :

(iii) If i is even, p is odd gcd(l m)= 2a.nda = 273! withr > 1 and i’ odd, then
G is isomorphic to the cub:c (m n)-metamrculant graph G" MC(m,n,a",
SU,SY, . \S) with o = o, Y = S = +- = Sy = 0,54 = {8}, Sfps =
---=VS"1—-ﬂandS"={k} '

LEMMA 2. [9] (i) Let G = MC(m,n,a,50,51,... ,8,) be a cubic (m,n)-meta-
circulant graph such that m >2 is even, So = 0,51 = {s},52 =+ = 5,1 =0
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and S, = {k}. Then G is connected if and only if ged(p,n) = 1, where p is
[k — s(l +a+a?+ -+ ab1)] reduced modulo n.

(ii) Let G = M C’(m n, @, So,51; - - S,‘) be a cubic (m, n)-metac:rcula.nt
graph such that-m > 2 is even, fi'= |_m/2j isodd, Sg =851 =+ =837 =8
with r > 1 Szr = {S} Szr+1 = s = S,‘_l = @ and S” = {k} Then G is
connected 1f and only if gcd(q,n) = 1, where q is [k(l +ato?+ o=
s(1 + a+ o+ -+ aF)] reduced modu]o no

-,LEMMA 3. [10] Let G = MC(m,n,a So,Sl, S,) be a connected cubic
(m, n)-metamrcu]a.nt graph such that m is even, greater than 2 and not divisible
by4 Sg--sl ——Sgr_l—mW.!thT'>1 Szr—{S} Wlth0<8<’n Sgr+1 .

=5, 1—0and3p—{k}thh0<k<n Let 7 = ged{a — 1,n) and
= gcd(l —a+a?—~---+a*1,n). Then G has a Hamilton cycle if each of
the following conditions is met:

(i) Either ged(n/(R7),yn — 1) = 1; or

()7 =1. |

Now we recall the definition of a brick product of a cycle with a path defined
in [3]. This product plays a role in the proof of the theorem in the next
section. Let C,, with n > 3 and P,, with m > 1 be the graphs with vertex-sets
V(Cr) = {u1,uz,. .. ,un}, V(Pm) = {v1,v2,... ,Um41} and edge-sets E(Cp) =
{uruz, u2us, . .. , Untir }, B(Pp) = {viv2,v203,. .. , UmVUm+1}, Tespectively. The
brick product C[mH] of Cp, with P, is defined as follows [3]. The vertex-set

of CI™HY is the cartesian product V(C,) x V(Py). The edge-set of clm+l
consists of all pairs of the form (u;,vs)(uit1,ve) and (1,9 )} {(¥a,vr), where i
=1,2, ...,n-landh =1, 2, ..., m + 1, together with all pairs of the form
(wi, v )(ui, Vat1), where i + A =0{(mod 2),i=1,2,...,nandh =1, 2, ...,
m.

'The following result has been proved in [3].

LEMMA 4. [3] Consider the brick product ct™ with n even. Let Cri1andCrm
denote the two cycles 1';1 ™ on the vertex-sets {(ui,v1):i=1,2,... ,n} and
{(uiyom) + ¢ = 1,2,...,n}, respectively. Let F denote an arbitrary perfect
matching joining the vertzces of degree 2 in Cy with the vertices of degree 2
in Cp m. If X is a graph obtained by adding the edges of F to C[ ml , then X has

‘a Hamilton cycle.

3. Main result
The purpose of this section is to prove the following result.

THEOREM 5. Let G be a connected cubic (10, n)-metacirculant graph. Then
G possesses a Hamilton cycle if n is a positive integer such that o(n) is not
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divisible by 5, where @(n) is the number of integers z satisfying 0 < z <n and
ged(zn) = 1. '

PROOF. Let n be a positive integer such that ¢(n) is not divisible by 5 and
G = MC(10,n,a, Sy, ... ,Ss5) be a connected cubic (10, n)-metacirculant graph.
Assume first that Sy # 0. Then n > 1 and the order of G equal to 10n is
greater than 10 which is the order of the Petersen graph. It follows that G is
not isomorphic to the Petersen graph and by [7] it possesses a Hamilton cycle
in this case. Thus, we may assume from now on that Sy = @. Since G is a cubic
(10, n)-metacirculant graph, this implies that only the following may happen:

(i) So = 8, 5; = {s} with 0 < s < n for some i € {1,2,3,4},5; = § for all
Ci#£7€{1,2,3,4} and S5 = {k} with 0 < k<n; '

(i) Sp =:-+ = 53 = 0 and |Ss| = 3. ,

Since G is connected, the possibility (ii) cannot occur. So only (i) may
happen. By Lemma 1, without loss of generality, we may assume that G =
MC(10,n,a, So, . .. ,S5) has one of the following forms:

1. S(] =@,Sl = .{S},Sg = S3 =S4 = m and S5 = {k},

2. So = Sl = 0,52 = {S},Sg = 34 = @ and' 55 = {k};

3. So = Sl = Sg = 33'2 0,54 = {S} and 55 = {k}

Therefore, since G is connected, by Lemma 2

ged(k,s(1 +a+a® +a® + at)yn) =1. (3.1)

On the other hand, by the definition of (10,7n)-metacirculant graphs, we have
L a'%s = s (mod n)

= (a®+1)a—1)(1+a+a’+o’ +a*)s =0( mod n); (3.2)
II. &k = —k (mod n)
s (o’ + 1)k =0( mod n). : - (3.3)

Let z = n/ged(a® 4 1,n). Then z is a divisor of both k and (o — 1)(1 + a +
a? + o® + a*)s. Therefore, by (3.1) z is a divisor of oo — 1. Thus, o'® -1 =
(0® +1)(e —1)(1 + a+ a® + &® + a*) = 0 (mod n), i.e., the orderof a in Z;
is a divisor of 10. But it is well-known that |Z}| = ¢{n). So by the hypothesis
of our theorem, a? = 1 {mod n). We consider separately two cases.

Case 1. G = MC(10,n,0,S,...,55) with Sp = 8,81 = {s},52 = 53 =
S4 = @ and 55 = {k}

An edge of G of the type v;'-v;'_’]'_h,-s is called an S;-edge, and of the type
v}v;."_"_sa;k an Ss-edge. A cycle C in G is called an S;-cycle if every edge of C is
an Sp-edge. Consider Sj-cycles in G. Since every vertex of G is incident with
just two Si-edges, any Sy-cycle B; in G can be represented in the form

B.f = P(Ug)P(vg+3)P(Ug+2z) ety
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where z is Bs + Sas and P(v)) = vhvl, V%, ciaeVhiootrasVhtostacs « - -
'”h 45 +4Mv h5stdas’ Further, it is clear that all 5;-cycles in G are isomorphic
to -each other and have an even length £. Moreover, two vertices v’ % and vjt?
of G are vertices at distance 2 apart in the same Si-cycle B; if and only if
g=f+s+asin Z,.

If G has only one Sj-cycle, then this cycle is trivially a Hamﬂton cycle of G.
Therefore, we assume that G has at least two Sy-cycles. Let v} and v;"’z with
i even be two vertices at d1stance 2 apart in the same Si-cycle B;. Then the

vertices of G adjacent to v} . and v} T2 by Ss-edges are v}+5 and v’+7 respectively,

where f' = f+a k= f+k a.ndg =g+at k=g+k. Slnceg-f+_s+as
in Z,,wehave g = g+k=f+s+as+k=f +s+asin Z,. Thus, 0}4’-5 and
"."7 are vertices at distance 2 apart in the same S;-cycle Bjy. Moreover, since

i is even, the superscripts i + 5 and 1 + 7 of respectively vj;"s and v""?

Let C’Er] be the brick product of a cycle Cp with a path Pr_;, where Cy is
isomorphic to Sy-cycles of G and r is the number of distinct Si-cycles in G.

Denote by Cp; and C¢ , the two cycles in CE,] on the vertex-sets {{u;,vy) ¢ =

1,2,...,4} and {(u,,v,) i=1,2,...,¢}, respectively. Using the property of
G proved in the preceding pa.ragraph and the fact that G is a connected cubic
graph, it is not difficult to sec that G is isomorphic to a graph X obtained from
CH by adding the edges of a perfect rna,tchmg joining the vertices of degree 2
in Cy,; with the vertices of degree 2 in Cj,. 'By Lemma 4, X has a Hamilton
cycle. Therefore, G has a Hamilton cycle in Case 1.

Case 2. G = MC(10,n,a,8,... ,Ss) with Sor = {s} (r =1o0r2), S5 = {k}
and S; = 0 for all j # 27 and 5.

An edge of G of the type viv i+2" ? i, is called an Sar-edge, and of the type

are odd.

7 J+ '
v;v;j'_i, . an Ss-edge. A cycle C in G is called an Sy--cycle if every edge of C' 1s
an S2r-edge

Since a? =1 (mod n) (e +1)(a@ — 1) = 0 (mod n). On the other hand,
ged(l — a + o —a® + a*,a — 1,n) = 1 because ged(a,n)=1. Therefore, n=

ged{l—a+al—ad+at,n) 1sad1v1sor of ged(a+1, n) Since 1—a+a?—a’ +a
u(a 4 1) + 5 for some integer u, it follows that 7 is a divisor of 5 . Thus, n = 1
or 5.

If % = 1, then G has a Hamilton cycle by Lemma 3(ii). Ifn 7 = 5, then
n = 5%z with'a > 1 and a + 1 = 5% with b > 1. Since G is connected, by
Lemma 2(ii),

ged([k(1 + a4+ +a¥ T —s(l+a+ o? +a® +a*)]n)
= ged([k(a + 1)1+ o +a® +---+a® ) —s(l +at
o + o +a*)),n) = 1. (3.4)
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On tile other hand, since a* = 1 (mod n), from (3.3) we have
ko +1) = k(a® + 1) = 0 ( mod n). (3.5)
From (3.4) and (3.5) it follows that
ged(s,n) = 1. (3.6)

Let G' = MC(10,n,a',S),...,5%) be a cubic (10,n)-metacirculant graph
such that o = , S}, =:{1},5; = {0} and S} = @ for all j # 2" and 5. Further,
let V(G') = {z% : 1 € Z10; j € Zn}. Then since (3.6) holds, it is not d1fﬁcu1t to
verify that the mapping

o :c; — v” if 1 is even,
Y: V(G — V(G): ;
. j

zt vj8+k ifiis odd’

is an isomorphism of G' and G. Therefore, without loss of generality we may
assume that G is a connected cubic (10,n)-metacirculant graph MC(10,n,a,
Soy... ,95) such that n = 5% with a > l,a 4+ 1 = Sby with & > 1,5, =
{1}, 5'5 = {0} and §; = @ for all j # 2" and 5. It is not difficult to see that such a
graph has just 10 dlsJomt Syr-cycles, namely, A°, A1, A2, A3, A*, B®, B!, B?, B®

* r 5 1” r r
and B* which contain vg,v} ,v5? , vy 2 uE? vg,vg+2 ,vg+2 2 , g+3 ¥ and
3+4 2" respectively. Moreover, for each Sy--cycle Af or BY, £ = 0,1,2,3,4,

each element of Z, appears as a subscript of one and only one vertex of this
cycle.
Let p and 7 be the -automorphisms of G deﬁned by p(v; ) = ot Vi1 and T('l) ) =
'+1 . Set 8= pr?". Then '

B} ) = p'r (v ) = p(v;‘gf = p(v‘+2') = v;flr. ' (3.7)

So ﬁ maps every vertex of Af, £=0,1,2,3, 4 to the vertex following it in A*.
Further, since a + 1 = 5by w1th b>1, a= 4 (mod 5). Therefore,

B(B%) = Bz, p(B*) = B, 6(34) = B, _ﬂ(_Bl_)'z B® and [3(33) = B°. (3.8)

From (3.7) and (3.8) it is not difficult to see that G is isomorphic to the graph
H such that :

V(H) {E W4 € Zs, j € Zn}, and
E(H)=FUEUE,UE, UE; UE,,
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where

F= {E}ﬁ“j-H, ot wJ_,_a: 1€ Z5, ] € Zn}s .

Ey = {uiW,: i € Zs, j € Zn-and j = 0 (mod 5)},

El = {uiw;"? : i € Z5, j € Zn and j = 1 (mod 5)},
{u‘—”"" : 1€ 25, j € Zy and j = 2 (mod 5)},
{u*"l+1 : 1€ 25, j € Z, and 7 =3 (mod 5)},

E4 = {_’_'+3 : 1€ 25, ] € Zpand § =4 (mod 5)},

and all superscripts and subscripts are always reduced modulo 5 and modulo
n, respectively. In its turn, H is isomorphic to the graph H with

V(H)= {u;, wj- t 1€ 25, J €Zy}, and

E(H)=FUEOUE1UE2UE3UE4,
where

F= {uju;_'_l, wh 'w;+1 : 1 € Zs, ] E Zn},
Ey = {ujw,;: 1€ Zs, j € Z, and j = 0 (mod 5)},
El—{u ’+2: 1€ Zs, j € Zypand j =1 (mod 5)},
E, = {u ‘+4 : 1€ 25, ] € Zp and j = 2 (mod 5)},
E; = {u '+1 : i€ Zs, j € Zp and j = 3 (mod 5)},
By = {u} =+3: i€ Zs, § € Zn and § = 4 (mod 5)},

and all superscripts and subscripts are always reduced modulo 5 and modulo

n, respectively. Since @ = 4 (mod 5), the graph H has a Hamilton cycle shown °

in Figure 1. Therefore, G also has a Hamilton cycle in Case 2.
The proof of the theorem is complete. [
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