ON HAMILTON CYCLES IN CUBIC (10, n)-METACIRCULANT GRAPHS

NGO DAC TAN

Abstract. We prove in this paper that every connected cubic (10, n)-metacirculant graph has a Hamilton cycle if n is a positive integer such that $\varphi(n)$ is not divisible by 5, where $\varphi(n)$ is the number of integers z satisfying $0 \le z < n$ and $\gcd(z, n) = 1$.

1. Introduction

The problem of the existence of a Hamilton cycle in vertex-transitive graphs apeals the attention of researchers for many years. At present, there is only a very limited supply of connected vertex-transitive non-hamiltonian graphs. These graphs are the Petersen graph, the Coxeter graph and the two graphs obtained from these by replacing each vertex by a triangle. C. Thomassen (see [4]) has conjectured that there are only finitely many such graphs. None of these four graphs is a Cayley graph, so that it may be conjectured that every connected Cayley graph on a finite group has a Hamilton cycle. This has been shown true at least for abelian groups [5] and some other special groups [6, 14].

Among vertex-transitive graphs, (m, n)-metacirculant graphs introduced recently in [1] are interesting because they were defined as a logical generalization of the Petersen graph with the purpose of providing a class of vertex-transitive graphs in which there might be some new non-hamiltonian connected vertex-transitive graphs. It has been asked [1] whether all connected (m, n)-metacirculant graphs, other than the Petersen graph, have a Hamilton cycle.

For $n=p^t$ with p a prime, connected (m,n)-metacirculant graphs, other than the Petersen graph, have been proved to have a Hamilton cycle [2]. Connected cubic (m,n)-metacirculant graphs, other than the Petersen graph, also have been proved to be hamiltonian for m odd [7], m=2 [3, 7], and m divisible by 4 [8, 11]. Thus, the remaining values of m, for which we still do not know whether all connected cubic (m,n)-metacirculant graphs have a Hamilton cycle, are of the form $m=2\mu$ with $\mu\geq 3$ an odd positive integer.

Recently, some results on Hamilton cycles in cubic (m, n)-metacirculant graphs for the case m = 6 have been obtained in [12, 13]. In this paper,

Received May 17, 1994; in revised form September 15, 1995.

This research was supported in part by the Vietnamese National Basic Research Program in Natural Sciences.

we investigate the problem of the existence of a Hamilton cycle in cubic (m, n)-metacirculant graphs for the case m = 10. Namely, we will prove here that a connected cubic (10, n)-metacirculant graph has a Hamilton cycle if n is a positive integer such that $\varphi(n)$ is not divisible by 5, where $\varphi(n)$ is the number of integers z satisfying $0 \le z < n$ and $\gcd(z, n) = 1$.

2. Preliminaries

In this paper we consider only finite undirected graphs without loops or multiple edges. If G is a graph, then V(G) and E(G) denote its vertex-set and its edge-set, respectively. If n is a positive integer, then we write Z_n for the ring of integers modulo n and Z_n^* for the multiplicative group of units in Z_n .

Let m and n be two positive integers, $\alpha \in \mathbb{Z}_n^*, \mu = \lfloor m/2 \rfloor$ and let $S_0, S_1, \ldots, S_{\mu}$ be subsets of \mathbb{Z}_n satisfying the following conditions:

- (1) $0 \notin S_0 = -S_0$;
- (2) $\alpha^m S_r = S_r$ for $0 \le r \le \mu$;
- (3) If m is even, then $\alpha^{\mu}S_{\mu} = -S_{\mu}$.

Then we define the (m,n)-metacirculant graph $G = MC(m,n,\alpha,S_0,S_1,\ldots,S_{\mu})$ to be the graph with vertex-set $V(G) = \{v_j^i : i \in Z_m; j \in Z_n\}$ and edge-set $E(G) = \{v_j^i v_h^{i+r} : 0 \le r \le \mu; i \in Z_m; h, j \in Z_n \text{ and } (h-j) \in \alpha^i S_r\}$, where superscripts and subscripts are always reduced modulo m and modulo n, respectively.

The above construction is designed to allow the permutations ρ with $\rho(v_j^i) = v_{j+1}^i$ and τ with $\tau(v_j^i) = v_{\alpha j}^{i+1}$ to be automorphisms of G. Thus, (m, n)-metacirculant graphs are vertex-transitive.

We will use the following results of [9, 10].

- LEMMA 1. [9] Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ be a cubic (m, n)-metacirculant graph such that m > 2 is even, $S_0 = \emptyset, S_i = \{s\}$ with $0 \le s < n$ for some $i \in \{1, 2, \ldots, \mu 1\}$, $S_j = \emptyset$ for all $i \ne j \in \{1, 2, \ldots, \mu 1\}$ and $S_{\mu} = \{k\}$ with $0 \le k < n$. Then
- (i) If G is connected, then either i is odd and gcd(i,m) = 1 or i is even, μ is odd and gcd(i,m) = 2.
- (ii) If i is odd and gcd(i,m) = 1, then G is isomorphic to the cubic (m,n)-metacirculant graph $G' = MC(m,n,\alpha',S'_0,S'_1,\ldots,S'_{\mu})$ with $\alpha' = \alpha^i,S'_0 = \emptyset,S'_1 = \{s\},S'_2 = \cdots = S'_{\mu-1} = \emptyset$ and $S'_{\mu} = \{k\}$.
- (iii) If i is even, μ is odd, $\gcd(i,m) = 2$ and $i = 2^r i'$ with $r \ge 1$ and i' odd, then G is isomorphic to the cubic (m,n)-metacirculant graph $G'' = MC(m,n,\alpha'', S''_0, S''_1, \ldots, S''_{\mu})$ with $\alpha'' = \alpha^{i'}, S''_0 = S''_1 = \cdots = S''_{2^r 1} = \emptyset, S''_{2^r} = \{s\}, S''_{2^r + 1} = \cdots = S''_{\mu 1} = \emptyset$ and $S''_{\mu} = \{k\}$.
- LEMMA 2. [9] (i) Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ be a cubic (m, n)-metacirculant graph such that m > 2 is even, $S_0 = \emptyset$, $S_1 = \{s\}$, $S_2 = \cdots = S_{\mu-1} = \emptyset$

and $S_{\mu} = \{k\}$. Then G is connected if and only if gcd(p,n) = 1, where p is $[k - s(1 + \alpha + \alpha^2 + \cdots + \alpha^{\mu-1})]$ reduced modulo n.

(ii) Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ be a cubic (m, n)-metacirculant graph such that m > 2 is even, $\mu = \lfloor m/2 \rfloor$ is odd, $S_0 = S_1 = \cdots = S_{2^r-1} = \emptyset$ with $r \geq 1, S_{2^r} = \{s\}, S_{2^r+1} = \cdots = S_{\mu-1} = \emptyset$ and $S_{\mu} = \{k\}$. Then G is connected if and only if $\gcd(q, n) = 1$, where q is $\lfloor k(1 + \alpha + \alpha^2 + \cdots + \alpha^{2^r-1}) - s(1 + \alpha + \alpha^2 + \cdots + \alpha^{\mu-1}) \rfloor$ reduced modulo n.

LEMMA 3. [10] Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ be a connected cubic (m, n)-metacirculant graph such that m is even, greater than 2 and not divisible by 4, $S_0 = S_1 = \cdots = S_{2r-1} = \emptyset$ with $r \ge 1$, $S_{2r} = \{s\}$ with $0 \le s < n$, $S_{2r+1} = \cdots = S_{\mu-1} = \emptyset$ and $S_{\mu} = \{k\}$ with $0 \le k < n$. Let $\overline{n} = \gcd(\alpha - 1, n)$ and $\overline{n} = \gcd(1 - \alpha + \alpha^2 - \cdots + \alpha^{\mu-1}, n)$. Then G has a Hamilton cycle if each of the following conditions is met:

- (i) Either $gcd(n/(\overline{n}\,\overline{\overline{n}}), \mu\overline{n}-1)=1$; or
- (ii) $\overline{\overline{n}} = 1$.

Now we recall the definition of a brick product of a cycle with a path defined in [3]. This product plays a role in the proof of the theorem in the next section. Let C_n with $n \geq 3$ and P_m with $m \geq 1$ be the graphs with vertex-sets $V(C_n) = \{u_1, u_2, \ldots, u_n\}, V(P_m) = \{v_1, v_2, \ldots, v_{m+1}\}$ and edge-sets $E(C_n) = \{u_1u_2, u_2u_3, \ldots, u_nu_1\}, E(P_m) = \{v_1v_2, v_2v_3, \ldots, v_mv_{m+1}\},$ respectively. The brick product $C_n^{[m+1]}$ of C_n with P_m is defined as follows [3]. The vertex-set of $C_n^{[m+1]}$ is the cartesian product $V(C_n) \times V(P_m)$. The edge-set of $C_n^{[m+1]}$ consists of all pairs of the form $(u_i, v_h)(u_{i+1}, v_h)$ and $(u_1, v_h)(u_n, v_h)$, where $i = 1, 2, \ldots, n-1$ and $i = 1, 2, \ldots, m+1$, together with all pairs of the form $(u_i, v_h)(u_i, v_{h+1})$, where $i + h \equiv 0 \pmod{2}$, $i = 1, 2, \ldots, n$ and $i = 1, 2, \ldots, m$

The following result has been proved in [3].

LEMMA 4. [3] Consider the brick product $C_n^{[m]}$ with n even. Let $C_{n,1}$ and $C_{n,m}$ denote the two cycles in $C_n^{[m]}$ on the vertex-sets $\{(u_i, v_1) : i = 1, 2, \ldots, n\}$ and $\{(u_i, v_m) : i = 1, 2, \ldots, n\}$, respectively. Let F denote an arbitrary perfect matching joining the vertices of degree 2 in $C_{n,1}$ with the vertices of degree 2 in $C_{n,m}$. If X is a graph obtained by adding the edges of F to $C_n^{[m]}$, then X has a Hamilton cycle.

3. Main result

The purpose of this section is to prove the following result.

THEOREM 5. Let G be a connected cubic (10,n)-metacirculant graph. Then G possesses a Hamilton cycle if n is a positive integer such that $\varphi(n)$ is not

divisible by 5, where $\varphi(n)$ is the number of integers z satisfying $0 \le z < n$ and $\gcd(z,n) = 1$.

PROOF. Let n be a positive integer such that $\varphi(n)$ is not divisible by 5 and $G = MC(10, n, \alpha, S_0, \ldots, S_5)$ be a connected cubic (10, n)-metacirculant graph. Assume first that $S_0 \neq \emptyset$. Then n > 1 and the order of G equal to 10n is greater than 10 which is the order of the Petersen graph. It follows that G is not isomorphic to the Petersen graph and by [7] it possesses a Hamilton cycle in this case. Thus, we may assume from now on that $S_0 = \emptyset$. Since G is a cubic (10, n)-metacirculant graph, this implies that only the following may happen:

(i) $S_0 = \emptyset$, $S_i = \{s\}$ with $0 \le s < n$ for some $i \in \{1, 2, 3, 4\}$, $S_j = \emptyset$ for all $i \ne j \in \{1, 2, 3, 4\}$ and $S_5 = \{k\}$ with $0 \le k < n$;

(ii) $S_0 = \cdots = S_4 = \emptyset$ and $|S_5| = 3$.

Since G is connected, the possibility (ii) cannot occur. So only (i) may happen. By Lemma 1, without loss of generality, we may assume that $G = MC(10, n, \alpha, S_0, \ldots, S_5)$ has one of the following forms:

- 1. $S_0 = \emptyset$, $S_1 = \{s\}$, $S_2 = S_3 = S_4 = \emptyset$ and $S_5 = \{k\}$;
- 2. $S_0 = S_1 = \emptyset$, $S_2 = \{s\}$, $S_3 = S_4 = \emptyset$ and $S_5 = \{k\}$;
- 3. $S_0 = S_1 = S_2 = S_3 = \emptyset$, $S_4 = \{s\}$ and $S_5 = \{k\}$.

Therefore, since G is connected, by Lemma 2

$$gcd(k, s(1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4), n) = 1.$$
 (3.1)

On the other hand, by the definition of (10, n)-metacirculant graphs, we have I. $\alpha^{10} s \equiv s \pmod{n}$

$$\iff (\alpha^5 + 1)(\alpha - 1)(1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4)s \equiv 0 \pmod{n}; \tag{3.2}$$

II. $\alpha^5 k \equiv -k \pmod{n}$

$$\iff (\alpha^5 + 1)k \equiv 0 \pmod{n}. \tag{3.3}$$

Let $z = n/\gcd(\alpha^5 + 1, n)$. Then z is a divisor of both k and $(\alpha - 1)(1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4)s$. Therefore, by (3.1) z is a divisor of $\alpha - 1$. Thus, $\alpha^{10} - 1 = (\alpha^5 + 1)(\alpha - 1)(1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4) \equiv 0 \pmod{n}$, i.e., the order of α in Z_n^* is a divisor of 10. But it is well-known that $|Z_n^*| = \varphi(n)$. So by the hypothesis of our theorem, $\alpha^2 \equiv 1 \pmod{n}$. We consider separately two cases.

Case 1. $G = MC(10, n, \alpha, S_0, ..., S_5)$ with $S_0 = \emptyset, S_1 = \{s\}, S_2 = S_3 = S_4 = \emptyset$ and $S_5 = \{k\}$.

An edge of G of the type $v_j^i v_{j+\alpha^i s}^{i+1}$ is called an S_1 -edge, and of the type $v_j^i v_{j+\alpha^i k}^{i+5}$ an S_5 -edge. A cycle C in G is called an S_1 -cycle if every edge of C is an S_1 -edge. Consider S_1 -cycles in G. Since every vertex of G is incident with just two S_1 -edges, any S_1 -cycle S_1 in G can be represented in the form

$$B_j = P(v_y^0)P(v_{y+z}^0)P(v_{y+2z}^0) \dots,$$

where z is $5s + 5\alpha s$ and $P(v_h^0) = v_h^0 v_{h+s}^1 v_{h+s+\alpha s}^2 v_{h+2s+\alpha s}^3 v_{h+2s+2\alpha s}^4 \cdots v_{h+4s+4\alpha s}^8 v_{h+5s+4\alpha s}^9$. Further, it is clear that all S_1 -cycles in G are isomorphic to each other and have an even length ℓ . Moreover, two vertices v_f^i and v_g^{i+2} of G are vertices at distance 2 apart in the same S_1 -cycle B_j if and only if $g = f + s + \alpha s$ in Z_n .

If G has only one S_1 -cycle, then this cycle is trivially a Hamilton cycle of G. Therefore, we assume that G has at least two S_1 -cycles. Let v_f^i and v_g^{i+2} with i even be two vertices at distance 2 apart in the same S_1 -cycle B_j . Then the vertices of G adjacent to v_f^i and v_g^{i+2} by S_5 -edges are $v_{f'}^{i+5}$ and $v_{g'}^{i+7}$, respectively, where $f' = f + \alpha^i k = f + k$ and $g' = g + \alpha^{i+2} k = g + k$. Since $g = f + s + \alpha s$ in Z_n , we have $g' = g + k = f + s + \alpha s + k = f' + s + \alpha s$ in Z_n . Thus, $v_{f'}^{i+5}$ and $v_{g'}^{i+7}$ are vertices at distance 2 apart in the same S_1 -cycle $S_{j'}$. Moreover, since i is even, the superscripts i + 5 and i + 7 of respectively $v_{f'}^{i+5}$ and $v_{g'}^{i+7}$ are odd.

Let $C_{\ell}^{[r]}$ be the brick product of a cycle C_{ℓ} with a path P_{r-1} , where C_{ℓ} is isomorphic to S_1 -cycles of G and r is the number of distinct S_1 -cycles in G. Denote by $C_{\ell,1}$ and $C_{\ell,r}$ the two cycles in $C_{\ell}^{[r]}$ on the vertex-sets $\{(u_i, v_1) : i = 1, 2, \ldots, \ell\}$ and $\{(u_i, v_r) : i = 1, 2, \ldots, \ell\}$, respectively. Using the property of G proved in the preceding paragraph and the fact that G is a connected cubic graph, it is not difficult to see that G is isomorphic to a graph X obtained from $C_{\ell}^{[r]}$ by adding the edges of a perfect matching joining the vertices of degree 2 in $C_{\ell,1}$ with the vertices of degree 2 in $C_{\ell,r}$. By Lemma 4, X has a Hamilton cycle. Therefore, G has a Hamilton cycle in Case 1.

Case 2. $G = MC(10, n, \alpha, S_0, ..., S_5)$ with $S_{2r} = \{s\}$ (r = 1 or 2), $S_5 = \{k\}$ and $S_i = \emptyset$ for all $i \neq 2^r$ and 5.

An edge of G of the type $v_j^i v_{j+\alpha^i s}^{i+2^r}$ is called an S_{2^r} -edge, and of the type $v_j^i v_{j+\alpha^i k}^{i+5}$ an S_5 -edge. A cycle C in G is called an S_{2^r} -cycle if every edge of C is an S_{2^r} -edge.

Since $\alpha^2 \equiv 1 \pmod{n}$, $(\alpha + 1)(\alpha - 1) \equiv 0 \pmod{n}$. On the other hand, $\gcd(1 - \alpha + \alpha^2 - \alpha^3 + \alpha^4, \alpha - 1, n) = 1$ because $\gcd(\alpha, n) = 1$. Therefore, $\overline{\overline{n}} = \gcd(1 - \alpha + \alpha^2 - \alpha^3 + \alpha^4, n)$ is a divisor of $\gcd(\alpha + 1, n)$. Since $1 - \alpha + \alpha^2 - \alpha^3 + \alpha^4 = u(\alpha + 1) + 5$ for some integer u, it follows that $\overline{\overline{n}}$ is a divisor of 5. Thus, $\overline{\overline{n}} = 1$ or 5

If $\overline{n} = 1$, then G has a Hamilton cycle by Lemma 3(ii). If $\overline{n} = 5$, then $n = 5^a x$ with $a \ge 1$ and $\alpha + 1 = 5^b y$ with $b \ge 1$. Since G is connected, by Lemma 2(ii),

$$gcd([k(1+\alpha+\cdots+\alpha^{2^{r}-1})-s(1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4})],n)$$

$$=gcd([k(\alpha+1)(1+\alpha^{2}+\alpha^{4}+\cdots+\alpha^{2^{r}-2})-s(1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4})],n)=1.$$
(3.4)

On the other hand, since $\alpha^2 \equiv 1 \pmod{n}$, from (3.3) we have

$$k(\alpha+1) \equiv k(\alpha^5+1) \equiv 0 \pmod{n}. \tag{3.5}$$

From (3.4) and (3.5) it follows that

$$\gcd(s,n) = 1. \tag{3.6}$$

Let $G' = MC(10, n, \alpha', S'_0, \ldots, S'_5)$ be a cubic (10, n)-metacirculant graph such that $\alpha' = \alpha, S'_{2r} = \{1\}, S'_5 = \{0\}$ and $S'_j = \emptyset$ for all $j \neq 2^r$ and 5. Further, let $V(G') = \{x_j^i : i \in Z_{10}; j \in Z_n\}$. Then since (3.6) holds, it is not difficult to verify that the mapping

$$\psi: V(G') \to V(G): \left\{ egin{array}{ll} x^i_j & \mapsto v^i_{js} & ext{if i is even,} \ x^i_j & \mapsto v^i_{js+k} & ext{if i is odd} \end{array}
ight.$$

is an isomorphism of G' and G. Therefore, without loss of generality we may assume that G is a connected cubic (10,n)-metacirculant graph $MC(10,n,\alpha,S_0,\ldots,S_5)$ such that $n=5^ax$ with $a\geq 1,\alpha+1=5^by$ with $b\geq 1,S_{2r}=\{1\},S_5=\{0\}$ and $S_j=\emptyset$ for all $j\neq 2^r$ and S. It is not difficult to see that such a graph has just 10 disjoint S_{2r} -cycles, namely, $A^0,A^1,A^2,A^3,A^4,B^0,B^1,B^2,B^3$ and B^4 which contain $v_0^0,v_0^{2^r},v_0^{2\cdot 2^r},v_0^{3\cdot 2^r},v_0^{4\cdot 2^r},v_0^5,v_0^{5+2^r},v_0^{5+2\cdot 2^r},v_0^{5+3\cdot 2^r}$ and $v_0^{5+4\cdot 2^r}$, respectively. Moreover, for each S_{2r} -cycle A^ℓ or B^ℓ , $\ell=0,1,2,3,4$, each element of Z_n appears as a subscript of one and only one vertex of this cycle.

Let $\dot{\rho}$ and τ be the automorphisms of G defined by $\rho(v_j^i) = v_{j+1}^i$ and $\tau(v_j^i) = v_{\alpha j}^{i+1}$. Set $\beta = \rho \tau^{2^r}$. Then

$$\beta(v_j^i) = \rho \tau^{2^r}(v_j^i) = \rho(v_{\alpha^{2^r}j}^{i+2^r}) = \rho(v_j^{i+2^r}) = v_{j+1}^{i+2^r}. \tag{3.7}$$

So β maps every vertex of A^{ℓ} , $\ell = 0, 1, 2, 3, 4$, to the vertex following it in A^{ℓ} . Further, since $\alpha + 1 = 5^{b}y$ with $b \ge 1$, $\alpha \equiv 4 \pmod{5}$. Therefore,

$$\beta(B^0) = B^2$$
, $\beta(B^2) = B^4$, $\beta(B^4) = B^1$, $\beta(B^1) = B^3$ and $\beta(B^3) = B^0$. (3.8)

From (3.7) and (3.8) it is not difficult to see that G is isomorphic to the graph \overline{H} such that

$$V(\overline{H}) = \{ \overline{u}_j^i, \ \overline{w}_j^i : i \in Z_5, \ j \in Z_n \}, \text{ and }$$

$$E(\overline{H}) = \overline{F} \cup \overline{E}_0 \cup \overline{E}_1 \cup \overline{E}_2 \cup \overline{E}_3 \cup \overline{E}_4,$$

Fig. 1

where

$$\overline{F} = \{\overline{u}_{j}^{i}\overline{u}_{j+1}^{i}, \ \overline{w}_{j}^{i}\overline{w}_{j+\alpha}^{i} : i \in Z_{5}, \ j \in Z_{n}\},
\overline{E}_{0} = \{\overline{u}_{j}^{i}\overline{w}_{j}^{i} : i \in Z_{5}, \ j \in Z_{n} \text{ and } j \equiv 0 \pmod{5}\},
\overline{E}_{1} = \{\overline{u}_{j}^{i}\overline{w}_{j}^{i+2} : i \in Z_{5}, \ j \in Z_{n} \text{ and } j \equiv 1 \pmod{5}\},
\overline{E}_{2} = \{\overline{u}_{j}^{i}\overline{w}_{j}^{i+4} : i \in Z_{5}, \ j \in Z_{n} \text{ and } j \equiv 2 \pmod{5}\},
\overline{E}_{3} = \{\overline{u}_{j}^{i}\overline{w}_{j}^{i+1} : i \in Z_{5}, \ j \in Z_{n} \text{ and } j \equiv 3 \pmod{5}\},
\overline{E}_{4} = \{\overline{u}_{j}^{i}\overline{w}_{j}^{i+3} : i \in Z_{5}, \ j \in Z_{n} \text{ and } j \equiv 4 \pmod{5}\},$$

and all superscripts and subscripts are always reduced modulo 5 and modulo n, respectively. In its turn, \overline{H} is isomorphic to the graph H with

$$V(H) = \{u_j^i, w_j^i : i \in Z_5, j \in Z_n\}, \text{ and } E(H) = F \cup E_0 \cup E_1 \cup E_2 \cup E_3 \cup E_4,$$

where

$$F = \{u_j^i u_{j+1}^i, \ w_j^i w_{j+1}^i : i \in Z_5, \ j \in Z_n\},$$

$$E_0 = \{u_j^i w_{\alpha j}^i : i \in Z_5, \ j \in Z_n \text{ and } j \equiv 0 \pmod{5}\},$$

$$E_1 = \{u_j^i w_{\alpha j}^{i+2} : i \in Z_5, \ j \in Z_n \text{ and } j \equiv 1 \pmod{5}\},$$

$$E_2 = \{u_j^i w_{\alpha j}^{i+4} : i \in Z_5, \ j \in Z_n \text{ and } j \equiv 2 \pmod{5}\},$$

$$E_3 = \{u_j^i w_{\alpha j}^{i+1} : i \in Z_5, \ j \in Z_n \text{ and } j \equiv 3 \pmod{5}\},$$

$$E_4 = \{u_j^i w_{\alpha j}^{i+3} : i \in Z_5, \ j \in Z_n \text{ and } j \equiv 4 \pmod{5}\},$$

and all superscripts and subscripts are always reduced modulo 5 and modulo n, respectively. Since $\alpha \equiv 4 \pmod{5}$, the graph H has a Hamilton cycle shown in Figure 1. Therefore, G also has a Hamilton cycle in Case 2.

The proof of the theorem is complete. \square

REFERENCES

- B. Alspach and T.D. Parsons, A construction for vertex-transitive graphs, Canad. J. Math. 34 (1982), 307-318.
- [2] B. Alspach, Hamilton cycles in metacirculant graphs with prime power cardinal blocks, Annals of Discrete Math. 41 (1989), 7-16.
- [3] B. Alspach and C.-Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), 101-108.
- [4] J. C. Bermond, "Hamiltonian graphs," In: Selected topics in graph theory (eds. L. W. Beineke and R. J. Wilson), Academic Press, London, 1978.

- [5] C. C. Chen and N. F. Quimpo, "On strongly hamiltonian abelian group graphs," In: Combinatorial Mathematics VIII (ed. K. McAvaney), Lecture Notes in Math. 884 (1980) 23-34.
- [6] K. Keating and D. Witte, On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Annals of Discrete Math. 27 (1985), 89-102.
- [7] Ngo Dac Tan, On cubic metacirculant graphs, Acta Math. Vietnamica 15 (1990), 57-71.
- [8] Ngo Dac Tan, Hamilton cycles in cubic (4, n)-metacirculant graphs, Acta Math. Vietnam. 17 (1992), 83-93.
- [9] Ngo Dac Tan, Connectedness of cubic metacirculant graphs, Acta Math. Vietnamica 18 (1993), 3-17.
- [10] Ngo Dac Tan, On Hamilton cycles in cubic (m, n)-metacirculant graphs, Austral. J. Combin. 8 (1993), 211-232.
- [11] Ngo Dac Tan, Hamilton cycles in cubic (m,n)-metacirculant graphs with m divisible by 4, Graphs and Combin. 10 (1994), 67-73.
- [12] Ngo Dac Tan, Sufficient conditions for the existence of Hamilton cycles in cubic (6,n)-metacirculant graphs, I (Submitted).
- [13] Ngo Dac Tan, Sufficient conditions for the existence of Hamilton cycles in cubic (6,n)-metacirculant graphs, II, (Submitted).
- [14] D. Witte and J. E. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 (1984), 293-304.

INSTITUTE OF MATHEMATICS P.O. BOX 631, BO HO, 10 000 HANOI, VIETNAM