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P-STANDARD SYSTEMS OF PARAMETERS.
AND P-STANDARD IDEALS IN LOCAL RINGS

NGUYEN TU CUONG

- : 1. Introduction

Let (A, m) be a commutative Noetherian local ring with the maximal ideal
m and M a finitely generated A-module with dim M = d. Let ‘q be a parameter
ideal of M. It is well-known that the difference between the length and the
multiplicity of g '
I(a; M) = (M qM) — e(q; M)

- gives a lot of informations on the structure of the module M. For example,
modules, which satisfy the condition that I(q; M) is constant for all parameter
ideals of M, are called Buchsbaum modules and their structure is well-known

[S-V]. Furthermore, we set I(M) = supI{q; M), where q runs through all
q

parameter ideals of M. Then I(M) < 4oo if and only if 2(H{(M)) < +o0
for i =0,...,d — 1, thereby Hiy(M)) is the i-th local cohomology module of M"
with respect to m. Note that the notion of modules M with I{M) < +co is a
generalization of that of Cohen-Macaulay module in a natural way. This module
is called a generalized Cohen-Macaulay and has been studied first in [C-S-T]. In
the theory of generalized Cohen-Macaulay modules, a so-called standard system
of parameters plays a central roll. Recall that a standard system of parameters
z = {21, ...,24} of M is characterized by the equality I(M) = I(q; M), where
g =(z1,...,24)A. Then M is a generalized Cohen-Macaulay module if and only
if M admits a standard system of parameters. Now, we will extend the above

idea to the following situation:
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Let z = {21,...,za4} be a system of parameters of M and n = (ny,...,nq) a

d-tuple of positive integers. We consider the difference
A z) = qM /() 2g?)) ~nanae(z M)

as a function in n: Then we prove in ‘[02]"4t1"1.et the 'l-ée.stﬂdeg-ree?of all polynomials
in n bounding above I(n;z) is independent of the choice of z. This invariant
is called the polynomial type of M and denoted by p(M). Therefore M is not
generalized Coﬁen—Macaulay if and only if p(M) > 0. The purpose of this paper
-is to define a new kind of system -of parameters called p-standard system of
parameters, whlch is closely related to the invariant oM ) and plays a roll in
M Wlth p(M ) > 0 llke that of standard systems of parameters 111 the theory of
generahzed Cohen—Ma.ca.ulay modules |

Let us give a Summary of thls pa.per In Sectlon 2 we lel gwe several basw&
properties of a p-standard system of pa.rameters In pa,rticular we prove thatifz
is a p-standard system of pa.rameters then the function I (n; ) i1s a polynomial
having very simple‘form; moreover; weé can‘also ‘show i thi§ case that z is-
a strong d-sequence in the sense.of Huneke [Hu]. We define in:this section
one thore notior ¢alled p-standard ideal and examine ‘the relation -between p--
sta.ndard system§'of paraméters atid ] - standa.rd ideals. All defiritions in Section’
2 will be globahzed in Section 3.: We show in this section a geometric meaning-
of the polynomial type p(M ).Wh}ﬁh; has been proved in [C2] for the local case.
Also the existence of global p-standard ideals will be proved based on a result of
Faltings on the annihilators of local cohomology. In the last section; we define
the blowir_;g up rings with respect to a p-standard ideal and give some relations

between their polynomial types.

: :_,2.: P_-stanrf_iardi_systems of parameters ,

“Let (A, m) be a'local ring and M a finitely gerierated A-module with dim M-=
d. Let & ={zy,...,23} be a system of parameters of ‘M and n.= (nl, ,d)-a -

d-tuple of positive integers. We consider the difference

Tn(n; z) = (M[(a}*, .. 7)) -.nl...nde(‘a}'; MY
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as ‘a function in n, where £(M) is the length of the A-module M and e(z; M) is
the multiplicity of M with respect to the system of parameters z. In [Cs],
Theorem 2.3, we have shown that the least degree of all polynomials in n
bounding above Ip(n;z) is independent of the choice of z. Therefore we ha,ve-

the following definition.

DEFINITION 2.1. The least degree of all polynomials in n bounding above
In(n; z) is called polynomial type of M and is denoted by p(M).

Many properties of polynomial types of modules were studied in [C;], [Cs].
Here Wé recall some of them which we need for the further investigation in
this paper. First of all, it is easy to see that p(M) € dmM — 1. We
stipulate that the .degree of the zero Il)olynomia'llis eciﬁal to —co. Then the
module M is Cohel_l—Macaula,y if and only if p(M) = —oco. Next, we denote by
a;(M) the annihilator of the i-th local cohomology module H, (M ) of M with
respect to the maximal ideal m and put a(M) = a,(M).. aq_1{M). We also
denote by NC(M) the non-Cohen-Macaulay locus of M, i.e. NC(M) = {p €
Supp(M) , My is not a Cohen- Macaulay module}. An" A-module M is called
equidimensional if dim M = dim(4/p) for all minimal associated prime ideals
p of M. Then the first mea.mng of the polynomlal type is glven in the following

theorem.

THEOREM 2. 2([01] Theorem 1. 2) Suppose that A admlts a dualizing complex.
Then: '

(i) P(M ) dim(A/ “(M ))

(11) If Mis equ1d1mens1onal then p(M ) = dim N C(M ).

Note that if A admits a dualizing complex then, by [Sh], the formal fiber

of A are Gorenstein, and hence also Cohen-Macaulay. Therefore by the same

argument as in the proof of Theorem 4.1 of [Cq] we get the following lemma.

LEMMA 2.3. Let k be an integer. Suppdse that A admits a dualizing complex.
Then the following conditions are equivalent:

(i) p(M)<k; ‘

(ii) for any p € Supp M with dim(A/p) > k, Mp is Cohen-Macaulay and
dim My, + dim(A/p) =
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1t is known that if A has a dualizing complex then dim A/ a(M ) < d (see
[Se1), Korollar 2.2.4). - Moreover, ‘since any homomorphic image of . A also has
a dualizing complex, there always exists in that case a system of parameters

a={xq,:i;24} of M so that the following conditions- -are satisfied:

zq € a(M) ;
i€ a(M/(r';,-H', 2)M), i=1,..,d—1,
where Z; is the image of z; in Af(zig1, - xd)A .

DEFINITION 2.4. Let A be a local ring and and M a ﬁmtely generated A-
module with dlmM =d. Then, a system of pa.ra,meters z = {z1,... :cd} of M

is called p- -standard system of pammeters if « satlsﬁes the a,bove condltlon (*)

DEFINITION 2.5. Given A and M as above Let p(M ) = k > 0
7 (1) Anideal I C A is ca.lled p- standard zdeal of M if the followmg cond1t1ons
are satisfied: '
1) Ic a(M ), , _ _‘ \
2) There ex1sts a p- sta.nda,rd system of parameters z = {:1:1, zt_:d} of M
such that I= ($k+1, a:d)A o

;In this case, {zx41,.. ,:cd} W111 be called P- standard basis of I on M
(1) An ideal T C A is called quasi-p-standard ideal of M if it is genexjat_ed
by & subsystem of a p- standard basls of M. '

"It should be mentmned that p standard systems of pa.ra.meters of local r1ngs
have been examined by Brodmann [Bs] and Schenzel [Scz] in the case p(M ) <0
and by Faltings [F;] and Brodma.nn [Bi] [B] i 111 the case p(M ) <1,

Recall that a system {:r:l, :ct} in A is said to be a d—sequence of M if

- (rzp_lra:--,uﬁti—l_)M,:a_"j : (tl?l, :E; I)M w‘ﬂ:-’

foralli=1,...,t and j 3 7. The notion of d-sequence was introduced by Huneke
[Hu] and has become a useful tool in different topics of commutative.algebrd.‘
In the sequel, we will show that the p-standard system of parameters has

many nice properties,

THEOREM 2.6. Let z°= {4, .. .24} be a p-standard-system of parameters of
M and n = (n1,...,nq) a d-tupel of positive integers. Put p(M) = k. Then:
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(i) {=z1*, ..., 3%} is a d-sequence of M .

(ii) Ip(nyz) = E:;O N1.. M€,
where e; = €(Z1, ..., Zi; (Tigzs oy 2a)M ziv1/(Tiz2,s r®a)M), for i # 0 and
eo = £((z2, -, za)M : 1/(22, -y za) M), '

PROOF. (i) By [C1], Theorem 1.1, Ips(n; z) is a polynomial and for all ny, ..., ng >
0 we have '

(z?‘,...,rx:-”)M cxpyt = (2T et )Mt 3y, 1=0,.,d - 1.
On the other hand, we get by Lemma 3.4 of [C,]

(@3, s 2PIM 21 © (&7 37)M : mF),

k=0

Therefore
(x;u,...,x;‘-')M:x_?;;l—U((;c e 2P )M 2 ¥,

It follows that {z}*,...,23*} is a d-sequence by [T}, Theorem 1.1.

(it) We prove our statement by induction on d. It is obviously true for d = 1.
Put M' = M/z4M, n' = {nl',...,nd_l} and ' = {z1,...,74-1}. Then 2’ is a
p-standard system of parameters of M’. Let p(M) = k. Since {z7',...,z3*} isa
d-_-sequence of M (by (1)), it is also a reducing sequence in the sense of Auslander
and _Buchs_baﬁm in [A-B]. Thus by Corollary 4.8 of [A-B] we have

Dn(n3) = LR 23 I 5 50y 25 OM)
(@] 2l M e (52 ey i3 )M)
_ = Ip(n, 1;3:).. |
On the other hand, since

e(z; M) = e(ﬁ';M') — (21, .0, Td—1;0p1 2 24) = e(z’; M') — ea-1,
it follows that

In(nyz) = I(n',1;2) = IMr(n';m') +nq..ng-1€d—1-
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Thus, if k¥ = p(M) < d — 1 then eq—y = 0 and therefore p(M) = p(M'). So by

induction on d we get
IM(n a:) = IMr(n :r:)

= an .n;e LL‘I, CL',,(.'E,_;_Q, :Ed_l.)M’ :;$f'+1/($?+2,'..-.,:Ed'_}')M')

_E ny...1N4E4.

i=0
Now, suppose that k = d— 1 anid & "= p(M') <'d = 2. Write briefly In(z)
~ instead of I((1,.. 1), z). Using Corollary 4.3 of [A-B] to the system z written
in following order zg4,...,z; we have I M(a:) pay 01 e;. By the induction
hypothesis we get fM;(w’-) = Zf:__o e;. Note that e(m;M).: e(z'; M') — eq_1.
Therefore =

d—2
0= IM(:L') — IMf(ﬂt’) — €4—-1 = Z €;.
. ‘ ‘ :—'k'+1
Hence epyy = - =esq =0 smce e; > 0. It follows tha.t Im(ngz) =

d—1 d.
-21—0 1. n,e,, as require

LEMMA 2.7 .Let I C A be ap- sta.ndard 1deal of M. Then for every: pere ideal
p ;é I, My is a. Cohen—MacauIay module a.nd dim M, p + dim(A/p) =

PROOF Let p bea prlme 1dea] T Z p. Then a(M ) ,Q_ p Choose a subsystem
of parameters {:cl, xj,} of M ¢ontaitied in p such tha.t _7 1s ma}nmal Thus'
p € Ass(M/(z1;-.- :cJ)M) If d1m(A/p) <d-7j “then there exists afi zip1 €
» \ (U q), where g runs through all prime-ideals of Ass(M/ (z1,...,2;) M) with
dim(A/q) = d—j. Therefore {31 yeey B T _,+1} is a subsystem of parameters of M
contained in . This conflicts with the max1ma11ty of j. Hence dim(A/p)=d—7
and p is a minimal prime ideal in Ass(M/(ml, x,)M) By [Scl] Satz 2.4.2,

we have.
(331, )Mp m!-I-lA,p = ((3717 ,:B,)M $:+1) ® -Ap
= ((221, ey :)M . Cl(M)) ® Ap
o .=_(ﬂ?1,__-~-;'$i.)Mp?._ o
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for i = 0,...,5 — 1. Therefore {z1,...,2;} is a Mp-regular sequence. Since
j 2 dimMp it follows that depthMp = dim My = j. Thus My is a Cohen-
Macaulay module and dim Mp + dim(A/p) = d as required.

The following result shows a relation between _p#standafd ideals and p-

standard systems of parameters.

THEOREM 2.8. Let z = {1,...,za} be a p-standard system of parameters of

M and p(M)=k. ThenI = (it ,zgt)A s a p-standard ideal of M, for

all npp1,y.-ytd 2 d.
To prove Theorem 2.8 we need the following lemma.

LEMMA 2.9. Let z = {=1,...,24} be a p-standard system of parameters of M.

Then : '
o;Hin(M/(z3, ..., zpt ) M) =0

forall j=1,...,d, h+i<j and ny,...,na > 0.

PROOF. Since 7', ...,z5¢ is a d-sequence by Theorem 2.6, (i) , the lemma is
proved if we can show the following statement:

Let {z}*,...,z};°} be a d-sequence for all nq,...,mq > 0. Then
o Hin(M/(@P ey zi? )M) = 0

forall j=1,..,dand h+:<J.

In fact, we have .
:r:,((:c;” e TR )M m® /(23 ey T )M) =0,
forall j >k and n > 0. Therefore
| in%i(M/(x;" e R M) = 0,
for 7 > h. Suppose that |
oy Hin (M@l ozt )M) = 0,
for a fixed ¢ and all k < j — i. We only need to prove that

o HE (M (@} hey )M = 0.
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Set o o SR ‘

F= M/(:c i “")M "'E—M/(:t : ',a:;:"l‘)M

Since {z3", 2] Ty } is a.ga,m a d—sequence on E (see [Hu]) 0 E xy 0 Bz =

Un>0(OE : m”) So Hm(E) Hm(E/OE ,,) for all ‘ > 0 From the exact

sequence
. "’h

we get the followmg long exact cohomology sequence 7
s Hin(B) — Hin(F) — Hif(E) 25 =+‘(E)
This sequence yields epimorphisms -
Hin(F) = Opi ) : 23

From the induction hypothesis we have z;H {n(F)z 0. It follows that - -

: wi(OH;{'{‘(E)': @:h-)i'? 0.:
for all np > 0. Thus | ‘

:cJH""l(E) = z,( U (OH‘H(E) :ch )) =0.

. nh >0 ’

The lemma is proved.

PROOF OF THEOREM 2.8. Put J = (zg4q,... :cd)A It is enough to show that
JH: (M) =0for i = 0,.yd~1. The case k = —oo is obvious. So, let £ > 0.
First, we prove that JH (M )=0 for i=k,. .,d—1by 1nduct10n on d. It is clear
ford<1. Letd>1. Ifd= k+1, the statement follows from the definition of p-
standard system of parameters. Suppose now that d—1 > k. Put M' = M/z,M.

Then p(M') = p(M) by the proof of Theorém 2. 6, (ii). Therefore JH{,(M') =0
| for ¢ = k,...,d — 2 by the induction hypothesis. Consider the exact.sequences. -

0 — 0y :zg M — MOy 24— 0,

0 — M/Op:zs —M— M —0.:
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As a(M)(0p : z4) = 0 and dim A/a (M) = k by Theorem 2.2, (i) we deduce
that a(M)(0n : za) = 0 ; therefore H}{(Opr = zq) = 0 for all 7 > k. By our
choice of z we moreover have :):dH L(M)=0fori=1,. ..,d — 1. So, applying

cohomology to the above exact sequences we get the followmg exact sequence
0 — Hp(M) — Hm(M’) — H'(M)} — 0

for i = k,...,d — 2. Thetefore JHin(M) = 0 for i = k,...,d — 1. On the other
hand, using Lemma 2.9 with & = 0 and ¢ = 0,..., k—1 we thus get JHH(M)=0
for: =0,..,d— 1 and the theorem is proved.

LEMMA 2.10. Suppose that z = {z1,...,2¢} is a subsystem of parameters of M
satisfying the following conditions: ' '

() (z1,.2)A C o(M);

(ii) t < d—p(M).

Then {3:1 sy Tyt } is @ subsystem ofap—sta.ndard basis on M for all ny, .. .ng >
d.

PROOF. Since there always exists a p-standard systém of parametersin M/(z7*,
vz )M . we have only to show that the system {z7',...,z7'} satisfies the
condition (*) for fixed integers ny,..,n: > d, ie. xll € a(M) and Z;' €
a(M/(z7,...,a¥ )M for i = 1,...,t — 1. We denote by r(}) the intersection
of annihilators of A-modules (1, ...,y,-)M.: Yiv1/(Y1, - yi)M fori=1,...,d—1
and for all systems of parameters {y'l,:_...‘, ya} of M. Then by [Sc;], Satz 2.4.5
we have a(M) C (M) and (r(M))? C a(M). We set M; = M/(z}",...,27 )M,
A; = Al(zP, ..., zl)A for i = 1,...,t and denote by @ the image ofa € Ain A;.
Then, from the definition of r{M ) we deduce that (M) C r(M;). Therefore

Tips € q(M);r(M);r(M,-)_. B

Since (r(M;))* C a(M;) we obtain that Fost € a(M;). As 27 € a(M) our

claim is proved.

COROLLARY 2.11. Let I = (z1,...,2()A be a quasi-p-standard ideal of M.
Then S ‘
I M (Y@h s o) M = I (2}, 27 )M
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. for all positive integers n,m. -

PROOF. Let {y,:z:} = {y,.. Yk, €1, .- a:t} be a p- _standard system of parame—
ters of M. By Kru]l’s Intersectlon Theorem a.nd Theorem 2 6, (1) we get -

- :‘:.;*)M e = (- Y R DIV SR

n>1
- n((yl,-.-o;y?,-’ﬂ?’, o :1!_11)M :B ) .
C m>1
_(ﬂ(yizasy;:sm?l: ’:hll)M) :!!

e =M Y |
for i = 1,.,t and t > j > 4. Thus {z]';...;z;*} is a d-sequence for all
ni,...,n¢ > 0. Since I C a(M), ‘ o

(@ ey B0 e )M 2 C (@] 0y )M a(M)
| G @Mt g™ My,
for i = 1,...,t, by [Sc1], Satz 2.4.2. Usmg the Krull’s Intersection Theorem as

a.bove we eas:ly show that for every permuta,tmn a=(o,.., ozd) of {1 }

(ﬂcal, “"‘)M wor = (@aq - “‘“I)M a(M)

0-1 ’0'-1

for i = 1 t — 1 Therefore by [T] Theorem 1 1it foHows that {:51, ,:z:t} is
an uncond1t10ned strong d—sequence in the sense of Goto a.nd Ya.ma.g1sh1 [G Y.
Thus the corollary follows by Theorem 2.6 of [G- Y]

3. Global p—stand_eard-ideal_s.

In this section we shall extend some results of the previous section to the
case that A is not local. Let M be an A-module of finite dimension. We denote
by Q(M) the set of all maximal ideals of A contained in Supp M.

DEFINITION 3.1. Let M be an A-module as above. Then: .
: (i) The polynomial typ,e of M is defined by

M) = iz, (M),
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(i1) Let I be anideal of A. I'is called a p-standard ideal of M if the following
conditions are satisﬁed'
1) dim(4/I} = p(M); o
2).There exists a system of generators i, ..., % of I with t = d — p(M)
such that {zcl/ 1,..., 2 / 1} is a subsystem of a p-standa.rd basis on Am for all
m € QM) ﬂNC'(M) ‘where z;/1 is the image of z; in Am.
Without difficulty we can generalize Theorem 2.2 to the following.

LEMMA 3.2. Suppose that M is equidimensional and that A admits a dualizing

complex. Then
p(M) = dim NC(M).

PROOF. First, since A admits a dualizing complex, N C(M) is a closed set in
Supp M (see [Sh]) and dim A < oo ([Haq], Ch. V, Cor. 7.2). Let p € NC(M)
such that dim(A/p) = dim NC(M) and let m € Q(M) such that dim(A4/p} =
dim(Am/pAm). Since Mm admits a dualizing complex over Am, N C{Mm)
is again closed. As pAm € NC(Mm), we have dim NC(Mm) = dim NC(M).
The converse inequality dim NC(Myn) < dim NC(M ) is easily shown to hold
true for any n € QM). So we get dim NC(Mm) = dim NC(M). Therefore by
Theorem 2.2,

p(M) > p(Mm') = dim NC(Mm) = dimNC(M). |
Now let p(M ) = p(Mn) for an n € Q(M ). Then again by Theorem 2 2 we get
(M) = p(Mn) = dim NC(Ma) < dim NC(M).
Thus p(M) = dim NC(M) as required. )

LEMMA 3.3. Suppose that A admits a dualizing complex and dim Mm = dimM
for every m € QM. Let k be an integer. Then, p(M) < kifand only if Mp isa
Cohen-Macaulay module and dim Mp +dim(A/p) = dim M forallp € Supp M,
with dim(A/p) > k.

PROOF. The sufficient condition is immediate by Lemma 2.3. For the converse,
let m be a maximal ideal in Supp M where p(M) = p(Mwm). By Lemma 2.3 we
only have to show that whenever dim(A/p)m > k with p € Supp Mm, Mp is
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~ Cohen-Macaulay and dim My + dim(4/p)m = dim Mm. But, dim(A/p)m > k

“implies dim(A/p) > k. Therefore, by the assumption, Mp is Cohen- Macaulay
and dim M}, + dlm(A/p) dim M = dim Mmn. ‘ L T

'On the other hand, since: p € Supp M, from the assumptmn we deduce that

dlm(A/p) = dlm(M/pM) dlm(M/pM)m dxm(A/p)m
Hence the lemma follows by Lemma 2.3.

COROLLARY 3.4. Given A and M as in Lemma 3.3.. Let p ‘be a prune ideal
contained in NC(M). Then -

P(Mp) < P(M ) = dlm(A/P)

PROOF Smce A admlts a duahzmg complex, Ais catenary Hence the lemma‘
follows 1mmed.1a.te1y by Lemma, 3.3. ' i .
The followmg result on the existence of a p—standa.rd ideal is 1mp0rtant for‘

the further exammatmn :

THEOREM 3. 5 ‘Suppose that A admits a duahzmg complex-‘and that M- is
equ1d1mens:ona.1 with dim M = dim Mm for all m € Q(M). Then there always
exists a p-standard ideal of M. o

PROOF. We write'’Y = NC{M) and Z = Q(M-)[)Y . Then, since A is catenary
and equ1d1men51onal for all P ¢y and meV(p)nZ, My isa Cohen-Ma.caula,y
module and dim Mp + dlm(A/p)m = dlmMm = dimM. It follows" by Satz
1 of [F2] that there exists an ideal 0@ C A such that-Vi(a).C NC(M) and
0H{(Mm) = 0 for all m € Q(M) and for i-= 0,...,d — 1. Thus we can find
an ideal J € a such that V(J) = NC(M). Then, by Lemma 3.2 dlm(A/J)
p(M). Put t = d— p(M). We can choose a sequence of elements z,...,z; of -
A such that I = (z1,...,2¢)A C J and dim(A/I 4+ Ann (M)) = p(M). Taking
powers {of order at most d) of z1, ..., 24, if necessery, We can assume that TAm C
a(Mr) for all m € Z. As dim Mm — p(Mm) > dim M — p(M) = it follows
from Lemma 2.10 that {:cl, zf} can be extended to a p-standard basis on
Mm So (a:l, Y )A is a p- sta.ndard ideal of M as required.
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4. The polynomial types of p-standard blowing up rings

In this section we shall examine the relationship between the polynomial
types of an A-module M on the one hand and of its associated graded module
and of its Rees module with respect to a p-standard ideal on the other hand.

First, we need some auxiliary results when M is a graded module. Let
A = @p>ohn :be a Noetherian: graded ring defined over 4p which admits a
dualizing complex. Let M be a Noetherian graded A-module of finite dimension.
In the sequel, we shall show that in qrder to cornputer the polynomial types in

the graded case we can.onlj; work with the homogeneous prime ideals.

LEMMA 4.1. Let A be a graded ring and M a graded A-module as above.
Suppose that dim M = dim M for all maximal homogeneous ideals m € Q(M).
Then p(M) < k for an integer k if and only if My, is a Cohen-Macaulay module
and dim My + dim(A/p) = dim M, for each homogeneous prime ideal p €
Supp M with dim(A/p) > k.

PROOF. By Lemma 3.3 we only have to show that the condition in the lemma
imposed on the homogeneous prime ideals implies the same condition for all
prime ideals. So, let p be an inhomogeneous prime ideal in Supp M with
dim(A/p) > k. Let S be the set of all homogeneous elements of A\ p and
denote by H(p) the biggeét hbmogeﬁeous priﬁ_w ideal contained in p. As A is
o finitely generated Ag—algébra,, A also admits a dualizing complex (see [Sh,
Theorem 3.9). Thus A is ca‘.cenary;r fherefore dim(A/H(p)) = dim(A/p)+1 >k
by [H-I-0], 9.1. So we get |

Mofeover, H (p)A s is the unique maximal homogeneous ideal of Ag and M HP)
is a Cohen-Macaulay module by the hypothesis. Therefore Mp is a Cohen-

Macaulay module by virtue of [M-R], Theorem. This proves our claim.

COROLLARY 4.2. Let A be a graded ring and M a graded A-haqdule as above.
Then ' '

p(M) = max p(Mm),
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where m runs through all maximal homogeneous ideals in Q(M).

COROLLARY 4.3. Given A, M as above. Then p(Mp) = p(M(m) for each
homogeneous prime ideal p € A, ‘where My, is the module. of elements of

“degree zero in the-localized module M.

PROOF. As the canomcal homomorphism A(p) — Ap is local flat by [H-I-O],
12.18 and dlm(Mp / (p)Mp) = 0, where (p}A p, is the unique maximal ideal of
A(p), by virtue of Lemma 4 1 and Corollary 4.2 we can generalize Theorem 5. 1

of [Cy] to modules and our claam follows s:mﬂarly as Corollary 5. 5 of [Cz]

Next, we recall some notatlons
Let A be a Noétherian ring and M a firiitely generated A-module. Let I be
an ideal of A. The assoc1ated graded module of M with respect to the ideal I
is defined by
| Gu(D) = EI’M/I’“M
=0
The Rees module of M with respect to the ideal Iis deﬁned by

RM(I) Z:I‘
.- i=0
If the ideal I is fixed we also wiite G'M, R 1nstead of Gp(I), RM(I) res-
pectively and G, R instead of G A(I ), RA(I ) respectwely We always consider
Gy and Ry as ‘R-modules and sometune we 1dent1fy Rar w1th the submodile
M[IT) of M [T], where T is ani 1ndeterrmnate Now we are ready to prove the

main result of this section.

THEOREM 4.4. Let A be ‘a local ring admittiﬁg a dualizing eoﬁrplex and M a
ﬁmtely generated A—module of dimension d. Let I be a quasi-p-standard ideal
ofM Suppose that p(Gyr) < dim(A/I). Then p(Ry) < dim(A/I).

PROOF. Put k= dim(A/I). f0p : I # 0 ‘we set M = M/(OM I), Ry =
Ryr(I ) and Gy = - G(1). Note that I is generated by a part of a system of
: parameters whxch isa d—sequence of M. Then, we have

" Ry = EB(I™M + 037 : 1)/ (0ps : I))

n>0
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= @M/ M [\Ou ;1)))'

a0

—M/(OM I) GB(I"M)

Therefore we get the followmg exact sequence
‘ 0—»0M:I—+RN} — Ry — 0,

where 0 : I'is considered as a graded R-module concentrated in degree 0. From
this exact sequence and the inequality dim{0ps : I) < k, we obtain isomorphisms
Hzm(RM) = HEDT(RM) for i = k + 1,...,d and a surjection H s (Fonr) —
Hgy % (Rar), where 90U is the unique maximal homogeneous ideal of R Therefore,
applymg Theorem 2.2, (i), Corollary 4.2 and Korollar 2.2.4 of [Scl] we can easily
verify that p(Rar) < k when p(RM) < k. Note that in this case I is a quasi-p-
standard ideal of M and p(M) < p(M) < k. As above we can also show that

p(Gum) < p(EM) < k. Hence, without loss of generality, we can assume that
Op : I = 0. Now, followmg Lemma 4.1 we have only to show that (RM) pis
a Cohen-Macaulay module anid that dim(R/P) + dxm(RM) p=d+1 for every
homogeneous prime 1deal P of R w1th d1m(R/ P) > k To prove thlS we set
p=PNA '

Case 1: I c p Identxfy R w1th the subnng A[IT] of A[T] “where T is an
indeterminate. If IT C P then dim(R/ P) < dlm(A/ I) = k. This contradicts

the assumption:’ Thus there ex1sts an element z E I such that mT 55 P
Therefore o ' '

(RM/:”RM)P = (RM)P/v’C(RM)P = (RM/IRM)P = (GM)P

Thus (Ra)p/ z(Ry)p is a Cohen—Maca.ulay module by Lemmas 2.7 and 4 1.
So (Ry)p is a Cohen—Ma.ca,ulay madule since « is (Bar) p-regular. ‘As TC'p,
P@ is obviously a prime ideal of G with dxm(G/P) > k. Moreover, according

to Lemma 4.1 we get
cefegd B A

" dim(Rar)p+dim(R/P) =~(dim(GM)p+1)+'dim(G/PG)' dlmLGWHe‘—“ﬂdH
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Case 2: I'Z p. Then we have Ry = Ap[T] and (Ry)p = My [T]. Thus (Bum)p
is a Cohen-Macaulay module by Lemma 2.7 and so is (Ra)p as a localization
- of (Rym)p-. Furthermore, since T Z p..we' can verify that either P = (p,ITYR
or P=p = p @i (p NI If P = (p,IT)R then dim(R/P) = dim(A/p)
and (Bum)p & (Mp[T])q, where Q = (p, T)Ap[T]. It follows that dim(Ra)p =
dimMp-i—l. Thus : T '

dim(Bpm)p + dim{R/P) = dim(A/p) + dimMp +1=d+1.

If P = p then (Rj)p (Mp[T))g, where @ = pAp[T]. Therefore dim(Rar)p =
dim Mp. On the other hand, we have. R/P RA/p(I) Hence dim(R/P) =
dzm(A/ p)+. 1 It follows that

dlm(RM)p —!— dlm(R/P) - dim Mp + d1m(A/p) + 1=d + 1

The proof of our theorem is now. complete.

Theorem 4.4 leads to the following corollary.

COROLLARY 4.5. ijen A, M as’in ‘Theorem 4.4. Let I be a p—standard 1dea]'
. on M. Suppose that p(G’M) < p(M) ‘Then p(Ru(I)) < p(M) ' '

REMARKS 4 6. (1) Theorem 3.5 guara.ntees the exlstence of a qua.31 p- standard.
ideal I in Theorem 4.4. However, Theorem 4.4 is still true without the assump-

tion that A admits a dua.hzmg complex provided there exists a qua51-p-standard
ideal T on M. | | i

(ii) At the time we are wr1tmg thxs pa,per, we still do not know Whether the.
assumptlon about the polynomlal type p(GM) < dim(A/I) in Theorem 44
is really needed, at least for the case that A satisfies Serre’s condltlon (Sz)

Therefore, we close this paper with the following question. -

Open questlon Let I be a quas1 p-standard ideal of M. Suppose tha.t A
sat1sﬁes the condxtlon (5’2) Is it true that p(RM) < dlm(A/I ) 7
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