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REMARKS ON KALTON’S PAPER:
“COMPACT CONVEX SETS AND COMPLEX CONVEXITY”

TRAN VAN AN*, NGUYEN NHUY* AND LE HOANG TRI™ -

Abstract. Kalton [K] constructed compact convex sets which cannot be affi-
nely embedded into the space Lg of all measurable functions. This paper proves
. that compact convex sets constructed by Kalton’s methed.have the fixed point

property.

1. Introductlon

In 1935 Schauder proved that every compact convex set in a locally convex
space has the fixed point property. Moreover, he conjectured that his result
holds for non-locally convex spaces as well. Schauder’s conjecture is one of
the most resistant and outstanding open problems in the fixed point theory.
In fact Schauder posed this problem in the Scotish book in 1935 and despite
great efforts by topologists for more than half a century.his. con_]ecture is still
unproved. This problem is still open even in some very 'special cases: for
instance, it is not known whether compact convex sets in the spaces L;,0 <
p < 1, have the fixed point property. In [NT] , it was shown that all Roberts
spaces have the fixed point property. The aim of this paper is to-pr-ove_- that
all compact convex sets constructed by Kalton’s method [K] have the fixed
point property. Our result is a counter-example to the problem of whether
every compact convex set having the fixed point property can be reduced to
considering Lg. It is also similar to that of [NT] and could be through of as a
positive step toward a solution of Schauder’s conjecture.

Notation and conventiohé. Let X be a linear space over C. A quasi-norm

on a linear space X is a real non-negative function z — |||/« such that
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@) ||z}« > 0 for every non-zero point z € X ;

(ii) ||a:c]| = |al|||z]|. for every @ € C and z € X

(iii) ||z + yll« < k(l|z|]« +Hylls) for every z,y € X,

where k is a constant mdependent of @, 2 '

The zero element of a linear space X is denoted by 6.

The sets {z € X : ||z|l+ < &} form a base of nelghbourhoods of 6 for a
metrizable hnea,r topology on X. If this’ topology is complete then X1 1s called
a complex quasi- -Banach space.’ We shall say that a quasi-norm |}. " is a p “noTm
(0 < p < 1) if it satisfies I

e + |2 < lle|iZ + llylis  for every z,y € X.

The space (X, |||l ) is called a p-normed space.

- A well-known theorem of Aoki and Rolewicz [Ro] asserts that every quasi-
norm is equivalent toa p-norm: for a certain number p with 0 <-p < 1.
Therefore, from now on we shall suppose that a complex quasi-Banach space X

is p-normed for some 0 < p <1 and denote ||z|| =|z||% for every z € X . Then
' the topology induced by the metric ||.|| is equivalent to the original one. -

" Let A denote the open unit disc in the complex plane and T the unit circle.
Let X be a complex quasi-Banach space. A function f A — X is called
'a'nalytic iff for eVeafy % €A, f(z) can be represented as the sum of a power series
HO G ,,,z’"“- ‘wheré the constant coefficients a, belong to X

By As(X ) we denote the space of functmns f A =X so that f is continuous
onAandanalytlconA S : S ‘

' Let: A B be subsetsof a complex quasi-Banach space X. By span A we denote
the linear subspace of X-spanned by A. By co A we denote the convex hull of
A'in X . We also use the followmg notation: '

4 co(Au{a}),-“_'_ |
A= do(A¥ U(CAY)U(AY)U(<id™)),

andif 2,y € X,a € C we write
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' aA ={aa; a € A},
e — Al =inf{]]z — y[l; y € 4},
£, y] ={tz + (1 —t)y; t € [0,1]}.

Let Ly denote the space of all measurable functions from [0,1] into JR. Then

Ly is a linear metric space with the F-norm :

@)
Ifll = -/0 1+]f(t)|dt for every f € Ly.

Let X be a complex quasi-Banach space. Then we say that z € X is an
analytic needle point of X iff for any £ > 0 there exists ¢ € Ap(X) such that:

90 =2, | m
lg(2)l« <& foreveryzeT, (2)
and

If y € co ¢ (A) then there exists an « € [0,1] such that ||y — az|. <.
o | )
A complex quasi-Banach space X is called an analytic needle point space iff

- every non-zero point of X is an analytic needle point.

For undefined nbtaﬁons, see [BP], (K] and [Ro].

LeMMA 1.1 ([K]). Let x be an analytic needle point of X. Then given any € > 0
there is a finite set F' = F(x,¢) C X and a polynomial P € A¢(X) so that:

P(AYC co F; (4)
P(o) ==z; . (5)
NP« <& * for every ze T; | (6)

If y € co F then there exists a € [0,1] such that |ly — azfl. <& (7)
If ye Fthen |y|.<e. ' (8)

Let X be an analytic needle point space. We shall deseribe compact convex

sets constructed by Kalton’s method. Let {6,} be a sequence of positive
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numbers such that > .- ,(6,) < co. Let Go = {zo}, where z¢ is any non-
zero point of X. Assume that G,_ 1= = {y1,--- » Ym(n— 1y} has been selected. Let

En = m(n — 1):35 and put Gn = U;"__("_l) F(yj,en) where F(y;,eq) is given
by Lemma 1.1 . Then we have : B

G"' 1 C G+ for every n E N ' J (9)
||93 ‘— 1” < m(n - 1)5p < (6 )” for every T € G+ . (10)

Denote ) S _ :
U Gt and K=Fo. (11)

CLAIM 1. 2 K isa compact convex set.

PROOF. Obv10usly, K is convex. Since G, is finite, G} is a finite dimensional
compact convex set. Thus from (10) Ky is totally bounded. Therefore by the

completeness of X, K is compact. It implies that K i is compact
CLAIM 1 3. K has no extreme pomts

PROOF Assume that a is an extreme pomt of K. Obv1ously, 0 e K is not an
extreme pomt S0 we mfer that @ # 6. We have a = anry — @y +za3:r:3 uza4$4
for some z; € Ko, a, [0 1] ¢ =1,...,4 such that E - i 1. Smce ais
an extreme point we have @ = =1 for some i Wlthout loss of generallty we may
say that a3 = 1. Therefore a € K. Take n € N such that Tien(d; Y < 3llall-
CLet'Gn ={yP,... ,ym(n)} and choose Ty € Uz, G+ such- that Tp — d.
For k > n we define Gi(y?) by iduction -~ e R

Gi(y?) = | J{F (e, Ek) b€ G- 1(y?)}

(N’ote that Gr4+1(y?) = F(yP,€at1)). By (9) we may assume that for each
k.€ N, there exists an ny € N such that = € GF Since 8 € G+ and G+

-n+m,e
convex for every 3 ElN we get

m(n) | ()

Cop = Zakbk b € Ghyn (WM)ia? 20, i=1, . ,m(n)and Y af =1.

Cogy
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By selecting subsequences we may assume that af — a; and 6% — b; for

each ¢ = 1,... ,m(n). Then we get

m(n) m(n)
a—Zab,,bEI{O,a,>0 z—l ..,m(n) a,ndZa,-:l. (12)

i=1
Since bf € G}, (y}), from (10), we compute

nd-ny n-t+ng

iBfll < Na?ll+ > ( 3+1)” <(ex)’ + Z(5J+1)
j=n

< _2(53')” < §llall-

Hence ||b;]| < %||a|| for every ¢ = 1,... ,m(n). Consequently, from (12) we
get that a is not an extreme point of K.
The claim is proved.

By Kalton’s method {K] we can prove that there is no affine embedding of
K into L.
REMARK. Our construction of K (11) is slightly different from that of Kalton
[K] . However it also has the property that K cannot be embedded into L,. As
pointed out by Kalton in his recent letter to the authors, there is no reason for

the convexity of K in [K]|, so our definition of K will replace Kalton’s compact
set [K]J.

Fact 1.4.

-Ue.
n=0 _
ProoF. Let z € K. Because 8 € Ky aI_ld Ky is convex, z has the form = =
Ay — A +iAsZs —iAgzg with z; € Ko, A 20, i=1,... ,4and 3i A=

1. We may assume that z; = lim,_. 2}, with ¢, € G}. Put

n — AI:E}I - /\22’53‘ + Z/\gﬂ)i — 3)\435?;

~

Then we have zn, € Gn and T, — T as n — o0o. Therefore z € U°° Gn.

Conversely, if z € |J°°, Gy, then = limp, .o, With z, € [ Joo, G,,. Without

n={_
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loss of generality we may assume that z, € G, for every n € N. Then there
exist 2 € GE, AL > 0,i=1,...,4 with 3;.; A}, = 1 such that

o Zp = ATh — )\2 z2 +iA3zd — d)\imi.

Because of the compactness of the sets J = {(A1, A2, Az, Au); Ai € [0 1], 2
1,...,4 EI_ Ai =1} and Kj, by passing to an appropriate subsequence and

renumbermg it 1f necessary, one can assuie that
(AL, 22,23 A )—>()\1,)\2,/\3,)\4)EJ and zt —)z,EKo,z_-l ,4.

Then we have £ = A\jz1 — A222 +1A323 - ilzg €EK.

2. The main result
THEOREM 2.1. K has the fixed point propei'ty.
. To,prove Theorem 2.1 we need the following facts -

LEMMA 2.2([NT]). Let X be a quasi-Banach space and let a be a non-zero
pomt of X . Then there is a retraction r, : X —'{0, a] such that-

||ac — ra(:z:)" < 4”:1: - [9 a]" for every E X
Moreover, 'if z € co F(a,t) then Iz ~ ro(z)|| < 4eP.
Obviously, ﬁre have

FacT 2.3. If B, = {by,.. b2n}andBn_{bl, < bansibi,. .. yiban) then BY

' can be written in the form:

= {m—alzz\ b; —l—agz)\ bn+,+za3§:A b +m4ZA bnﬂ,

J'-l . Si=1 . . j=1
@i>0, A >0,i=1,...,4 j=1,...,n; E,\"—und Za,g}
e S =l

Moreover, if By, is a linearly mdependent subset of X then every z E B+ can

be Wntten umquely in the form
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m—alz)\ b; +a22)\ bn+,+m32,\ b +m4ZA bnt;

J-l_ s

with o; > 0, Ak >0, z_;.‘=1,\3.=1, i=1,..'. ,4; j=1,... ,n and Ei=1a5§1

(if a; = 0 we ‘write, for convenience, )\"-'= Qforj=1,...,n=1, and )\f,- =1.)
The next lemma W111 play a crucml role in the sequel

LEMMA 2.4. Let X be an mﬁmte d1mens:ona,1 quasi- Banach space Gn = {a1,

an} a finite subset of X and £ > 0 Then for every i = 1,. ,2n there
ex:sts b; = b(a,) € X Where an+, = —a, fo'r 1=1,...,n W1f;h the foﬂowmg
propert:es o '

(i) ||b: — ai]} < (4n)~! 1eP for everyi=1,...,2n,

(ii) B, = {by,... ,ban} isa hnearly mdependent subset of X,

(iii) Let B, = {bl,... ybon, by, .. szn}, then there exists a contmuous
map p: Bf - G, satisfyihg"p(a:) — :c|| < €P for every z € B} |

(iv) ||z — B"'H <P for every z € G’ - -

PROOF. Obv1ously, we may assure that a; 7& 0 for every i=1,...,n. Since X

is 1nﬁn1t_e dimensional we can define by induction b1, ... , b2 -such that
B, ={b1,... b3} is a linearly independent subset of X, - (13)
and . . o -
|B; — aif] < (4n)"'e? foreveryi=1,...,2n, (14)
where a,1i = —a; for everyt =1,...,n.
Indeed, put b = a; and assume that {b;,... ,br} have been defined such

that: the conditions (13) and (14) hold. We take bx41 € X \.span {b1,... ; br }
so that the condition (14) is satisfied. _
Since B, is linearly independent, by Lemma 2.3, every z € BF can be

written uniquely in the form:

z=om Z/\ b; -l—agz)\ bn+]+za32)\ b; +20£4ZA‘bn+Js

j=1 =1
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witha; >0, Ai >0, X7 M =1,i=1...,4,j=1,...,n and Yt & < L.
Set

J_'].

p(:t:)—al Zx\la] —azz/\ a3+m3 Z/\ a; —za4z,\ .

It is easy to see that p(:n) € G, and the map p: B+ ~ G, is Well-deﬁned

continuous. Thus the conditions (iii) and (iv) are satisfied.

From Lemma 2.4 we get the followmg corollary Whlch is analogous to Co-
rollary 1 in [NT] ' -

COROLLARY 2. 5 Let G = {al, . ,am(n)}, Where m(n) card Ghn. Then
there are finite subsets B,,,, B, of X satisfying the following propert1es
() B, = {b7,... ,bzm(n)}, where b} = b(a}) for all i = 1,...,2m(n) and
a.;(ﬂ)_i_1 =—a; foralli=1,... ,m(n); ‘
= {b7,... ,bzm(n),zbl, . ,zme(n)}, :
(11) la? — 82| < [4m(n)] l(en)p where &p —-,[m(n - 1))~ 1/P§n,
(iii) B, = {bl, 103 m(my} IS 2 Imea.rly mdependent subset of X;
0ﬂBM4—ﬂf””BMKWDUQFW%BwﬂWD1ﬁﬂdﬁ=ﬂf)wd
: (a,)_ Bria(b}) = {b€ Bpyy:b="ba) forsome ac F(aJ ,€n+1}
B n_}.l(b;(n')_'H) ={b € Bpt1:b="5b(—a) forsome a€ F(a,J ,6n+1)},
where j = 1,... ,m(n);
(b) Bn+1(b )an+1(bk) —9 fOT all j 75 k .
(v) For every n € N there exists a contmuous map  Pn Bf - Gy
such that ||pn(2) — z|| < (ea)? for all z-€ BF;-
(vi) |z — B}|| < (€,)? forallz € G,.

LEMMA 2.6. For every ] = 1,...,2m(n) there exists a continubus map fi -
0 Busa(B7) — 6,5 1m¢wmwmﬁ@m<wmw*@m+m%ﬂwm-
all = € co Bn+1(b )

PROOF. From the proof of Lemma 2.4 it follows that

Prt1( €0 Bpy1(})) C co F(a},en41) forallj =1,...,m(n).

pn+1("CO Bﬂ+1(6?n(n)+3)) C - COF(G?,,En—f-Ll_) for all J = 1: am(n)
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and _ , .
|pnt1(z) — zl} < (€ng1)’ forallz € co Baga(by). (15)

Denote
Pl = Poy1] €0 Bagpi(83), 7 =1,...,2m(n).
By Lemma 2.2 we have 7,p( co F(a},en41)) C [B,a?] ‘and
lz = rar (@) < 4ens1)? forall z € co F(a},ensr), j=1,...,m(n).
Now let r; : co F(a%,ent1) — {6,4a}] for j = 1,... ,m(n), be defined by
rj(z) =rap(z) foreveryz € co F(a},ent1),

and let rm(ny+j 2 — co F(a},epq1) = (6, —a]] for j = 1,...,m(n), be defined
by

Tm(n)+i{—2) = —rar(z) forall z € co F(af,ent1).
From the above argument, it follows that rjris continuots map such that
ly =75 (W)|| < 4(ent1)? forall j=1,...,2m(n). (16)

Let A i [6,a}] — [0, b%] be the continuous map defined by hj(ta}} = b7 for all
te0,1], 7 =1,...,2m(n). By Corollary 2.5 we have

|2;(z) — z|| < [dm(n)] ' (en)? forall x €[,a}] and j =1,...,2m(n).
Put f;=nh jrjpf; +1- 1t is easy to see that _fj is continuous. Morgover, we have
1£5@) = all = llhsmiPhen(@) = 2l < [hs7iPha(@) = riphan @+
Hirph g1 (2) = Pha(@)| + IPhsa (2) — 2l <

< [Am(n)] " (en ) + 4ent1 ) + (€nt1) = [dm(n)] 7 (€n)? + 5(entr)?,

for all € co Bry1(b}) and j = 1,...,2m(n)..

The lemma is proved.
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COROLLARY 2.7._ Let X* = U;T;(;‘) Boy1(b}) and X? = U;“_(") Brt1 (b ny45)-
Then for each k = 1,2 there exists a continuous map rk .. co X* — B} such

that ||r¥(z) — z|| < [4m(n — D)]7(65)? + 5(én41)? for aH z € co X".

PROOF. Since X 1 and X? are linearly independent, for z € co X! and y € -
co X? there exist uniquely A; > 0,2; € co Bpya(b7),#; 2 0,w; € co -Bn-[-l(b (n)+3)’

i=1.. m(n) Wlth E;"_(;') Aj = E;"_(r) p; =1 such that
T . m(n)‘ . .m(ﬂ) .
T = E Ajzj and y =,Z Hiw;.
=1 =1
Put , :
m(n) m(n)
ri(z) = Z Aifi(z;) and r2y) = ) i Fm(my+5(w35)-
j=1 '

Obviously, r*(z) € B"‘ for k=1,2. Because of the linear mdependence of X*

and X ?. rl, r? are continuous map, and we have

m(n)

lIr* (=) - xll = Z 1£i(z3) = =l < m(ﬂ)[[‘im(n)]“’(en)” +5(€nt1)’]

j=
= m(m)lm(m)) = DI (6 + Sm(m)] ™ (6n41)7)
= [4m(n — 1))71(8,)P + 8(6n+1)F for every £ € co Xt

and -

m(n)
||f2(y) yll < Z | Fmimy3(s) = will
< m(n)[[4m(n)] ‘(s,,)f’ +5(gnt1)?]
= m(n)[[dm(n)] 7 [m(n — 1] 7 (6:)" + 5[m(n)) T (Sns1)’]
= [dm(n —1)]7' (8. ) + 5(6ns1)! forally € co X2,
The corollary is demonstrated

COROLLARY 2.8. For everyn € N thereexists a continous map Rn-l-l B
B} such that |Rp41(z) — 2] < (6,)P +20(én41)? for all z € Bt
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PROOF. Since -én+1 is linearly independent, every z € B +1 18 written uniquely
in the form: = = ay21 + agzy + fa3zs + te4zy, where 71,23 € co Xlixg,z4 €
co X?,a; > 0,i=1,...,4 and oy +az+ a3 +ay <1. Put

Ruji(z) = ayri(z;) + cpr(zg) + iaarl(zs) + iogr? ().
Obviously, the map R,y : B 41— B is continuous. Moreover, we get
|[Rn+1($) - m” = ”0.'1?‘1(&2'1)'4- crgrz(:xg) + ia3f1($3) -}-.2.0147'2(334)

— 121 — Qpiy — 1033 — LoaTyl|

SHrt(@) — a1l +HIr®(z2) = 22l + [Ir' (23) — 23l + r%(2a) — 24|

< 4{[4m(n — 1)) 7165 )" + 5(8n+1)") < (6n)® + 20(6p41)”
for all z € B+

COROLLARY 2.9. For each n € N and k € N there exists a continuous map
Ry : Bf . — B} such that '

| Ri,n(z) — z|| < 21{(8,)P + -+ + (6n4x)?] forall z € B:+k

PRrOOF. Put Rk,,; = Rn+1 Rpt2... Ruyr. From Corollary 2.8 it follows that

1Re,n(2) = 2l| < | Re,n() — RugaRnss ... Rugi(@)]| + -+ + |Ruy(z) — 2
< (6a)? +20(8n41)” + -+ + (Snpr—1)? +20(6p1s)?
<21[(én)? + -+ + (6p4r)?] forall z € BY,,.

The pfoof of the Corollary 2.9 is completed.

LEMMA 2.10 ([NT]). Let P be a finite dimensional compact convex polyﬂedron
in X and let f : P — K be a continuous map Then for every ¢ > 0 there exist
k € N and an aﬂnemapg P B"' such that ||f(a:) g(m‘)" <eforallz e P

PROOF OF THEOREM 2.1. Assume that there is a contmuous rnap f:K—- K
such that f(z) # z for every z ¢ K. By the compactness of K there exists
an € > 0 such that ||f(z) —z|| > ¢ for every z € K. Take n € N such that
8832 ,(6;)P <eandlet f, = fle, : Gn — K. By Lemma 2.10 there exists an
affine map g, : G, — B}, such that [|g.(2) — fa(2)]| < 2% for all z € G,,.
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' We put._. : . o ‘ 7
g :ﬁank,ngn :_én —_ én, . P (17)

where p, and Ry, were defined in Corollary 2.5 and Corollary 2.9. Then for
all z € Gy, from (17) we have

1fa(2) = 2l < 1 fa(=) = ga(2)ll + llgn(2) ~ Ri,ngn(e)|+
‘ | Ri,ngn(z) — Pan ngn(m)“ + “Pan ngn(x) - -'L'“
<2 6+I|g($)—$ll

The;efgre for all T € G, we hav.e
lg(2) =zl 2 Ifalz) — 2| -2 e 2 27

This contradicts the fact that a finite dimensional compact convex set G’n'- has
the fixed point property.
 The proof of Theorem is ﬁmshed
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