ACTA MATHEMATICA VIETNAMICA
Volume 20, Number 1, 1995, pp. 3-30 -

' SYSTEMATIC BUIDING OF A DISTRIBUTED
- RECURSIVE ALGORITHM. = . '
EXAMPLE THE SHORTEST PATH ALGORITHM

G. FLORIN*, R. GOMEZ** AND 1. LAVALLEE**

Abstract. Designers of distributed algorithms must deal with a variety of issues

including sequential algorithms design, communication protocols, fault tolerance.

The distributed design must also include a proof step of the whole algorithm

“features. This paper gives a new scheme for the design of distributed algorithms.

.. In this.approach the design step is performed simultaneously with the proof step.

Our distributed design method is mainly based on parallel recursive schemes,

" but recursivity is used in a distributed environment, so' we use two existing and

widely available tools: remote procedure call, and the PAR instruction parallel
execution of threads. ' N ' '

1. Introduction'

Designers of distributed problems must bring matter to several issues. The
questions at issue include the classical problems of sequential algorlthm des1gn
(for each sequential process running on a given processor). Moreover there are
synchrbniza,tion features to consider. Designers must specify communication
protocols managing coopera.tmn between sequentlal processes.

There are four major problems which can be considered: _

e The communication protocols in order to manage the cooperation befwéen
processes. _

o The fault tolerance which must be studied carefully.

e Performance problems, or dea.d hne time constraints, in- 1h1me cr1t1ca.1 app-
lications. ..

¢ Both formal _srpeci_f.i‘_catio_r._l‘_ solutions and proof. .

Received -October 22, 1994. : :
Key words: distributed algonthms, recursw1ty, wave, remote procedure call, shortest path

G. FLORIN, R. GOMEZ and I. LAVALLEE

The paper [6] proposes a new scheme for the construction of algorithms
founded on distyibuted recursivity.

In sequentia] programming the recursive design of algorithims is elegant but
not very efficient, but recursive design in distributed algorithms is hoth elegant
and efficient,

Moreover, the systematic use of the remote procedure call, (RPC) provides a
high level of designing which avoids managing many problems of synchronization
and communication.

Lamport, Shostak and Pease’s solution of the Byzantine general problem [7]
is, as far as we know, tﬁe first example of distributed recursive programming.
However, since that paper is not concerned with programmiﬁg style, the solution
given there is not easy to follow.

In this paper our purpose is to show, with these concepts, how to generate a
parallel/ distribut;ad program from the proof of an algorithm. We envisage that
the generated program is to be elegant and efficient as possible.

This paper is organized as follow: the first part introduces the recursive
distributed concept. The second part explains the different steps of the formal
proof. Andin the last part we give an example of the proof, namely the shortest

path aIgorithm, and we show how to generate the code from the proof.

2. Recursive distributed programming scheme (RDPS)

In this section we introduce the basic recursive distributed programming
scheme. ' '

2.1. Recursive waves

A recursive wave in this paper is defined by a procedure. This procedure,
. during its eXecﬁtion, calls n (or none) concurrent remote executions of itself.
Hence eXecuting a recursive waye leads to a tree such that:

® the root is associated with the first execution of the procedure.

¢ the root and the nodes are associated with blocked procedﬁres waiting for
the termination of all the respective parallel recursive calls.

® the leaves are associated with the active execution of the procedure; or

-with the ended execution of a procedure that did not make any recursive call.

B |

A DISTRIBUTED RECURSIVE ALGORITHM 5

" Moreover a recursive wave defined by a:procedure is often integrated in a set
of procedures; These procedures encapsulate a data, structure, as for example:
in an ADA package (but also as in the modular; or as.in the object oriented
approaches). The data structure includes; for example ‘the current processor

1dent1ﬁer, a set of neighbour’s 1dent1ﬁers, etc.”

In this paper we assume that a.ll communxcatmns and synchromza,tmns
between the successive remote executions are defined by the remote procedure
call scheme. RPC: for example the transmission of. control and input: parame-
ters, and the procedure exit (return to the calling progedure associdated with the
transmission of the output parameters). There.- are 1o complementa,ry data or
messages exchanged between the remote execution of the procedure on different
processors. R e

On the other ha.nd‘-there can be. a need :i"or ’comrnu'nica.tions! between the
different executions of the same procedure on a g:ven processor These commu-

mcatlons are achewed by using shared variables. -
2.2. Specification of the general scheme’ -

We Wﬂl describe features that will help to devetop the proof- a.nd the con-
struction of distributed recursive algorithms. We use two approaches for this:

programming and mathematical scheme.
2. 2 1. Programmmg scheme

._ We con31der concurrent executlon of n procedures therefore a programmmg{
control structure for the parallel executlon of n threads on. the same processor
must be available. We | assume that the followmg mstructxon par, snmlar to ther
OCCAM can be used.

par i in <domam> do
<INSTRUCTION BLOCK>
~ “enddo; -

For each parameter value in a discrete set, (<doma1n>), a thread a.ssocmted
with the instruction block is activated on the processor executing the par
instruction. This mstructlon 1s terminated when all actlva.ted threads have

terminated and the next instruction is executed.

6 G:. FLORIN, R. GOMEZ and I. LAVALLEE

In order to define the location of rernote procedure execution we consider the
following syntax for 2 RPC execution of a given procedure, (named
<pcd.name>) on a remote processor (named <presid>).

- <pcd-name> (<parameterlist>) on <presid>; 7

In Figure 1 we present the general description,of a recursive wave. The

instruction blocks represent any kind of sequence.

type processor_identifier is....; - Type processor name
i: processor-identifier; : :
- procedure recursive_wave ({pa.ra.meters}) is
<DECLARATION BLOCK>.
begin
<INSTRUCTION BLOCK A> _
if { condition } then - stop/exit of the recursive wave
<INSTRUCTION BLOCK B>)
par 1in < DOMAIN> do - execution of concurrent threads
<INSTRUCTION BLoCK C>
recursive_wave ({ para.rneters }) on 1 - RPC execution -
. <INSTRUCTION BLOCK D>
enddo;
' <INSTRUCTION BLOCK E>
~ endif;
<INSTRUCTION BLOCK F>
end recursive_wave; '

Figure 1: General description of the recursive wave

The structure is defined in an ADA like spec1ﬁcat10n langua.ge As we often
use the notion of processor groups we have to manage sets. Therefore we
consider that a package 1mplementmg a type set (setof) is ava,ﬂable w1th 1ts
associated operatlons (umon, mtersectlon,)

The execution of this recursive wave builds a tree of active processes on the
network, and this tree is oriented by the relation ca.l_ler-ca,lled_ﬂwhleh define a
father-son relationship and the root of this tree is the iﬁitiator of the:eo_rriputa.—

tion.

A DISTRIBUTED RECURSIVE ALGORITHM : 7

2.2.2. Mathematical scheme

The previous definition of a recursive wave, induces that the recursive pa-

rallel called R can be defined as a set of four functions:
R={L,S G H}.

These four functions are many to many ones.

Function L ,

‘This function defines the set of local data to each site. In each site t, there
can be several simultaneous executions of the recursive procedure.

To each execution of the procedure is associated a data set. In a recursive
environment the same data can take different values acc:ording; to the execution
level. Let .DL{ be the local data set of the execution level J on the site 7. This
set DLf-l 1s built from two.subsets of data:

1. THE SITE DATA: the data local to i and global to the executions of the

‘procedure: named DS;

2. THE EXECUTION DATA: the data proper to each execution:.local to i and

used only at the execution level : named DEf .
Therefore we can say:
DL! = DS;UDE!.

During a procedure execution the values of the local data can be modified
by the locaI code. L is the function that represents any of these modifications.
It depends on two parameters: the values of local variables modified at the
execution level k, DL", and the mmput parameters values of the procedure,

called V P.

Thus we define the functmn L as;
DLJ L(DL VP).
Function S _
The par mstructmn activates a set of threa,ds The function S creates the

set of indices of these threads, (i.e. the discrete set named <domain> in the

l

|

8 G. FLORIN, R. GOMEZ and I. LAVALLEE

general scheme). The set is calculated with the local values, DL;, of the present
active procedure; and the input parameters values, V P. Then we define the

funection S as:

{< DOMAIN >}“= S(DL;, VP).

Function G

It gives the set of parameters of the RPC, which is going to be sent to the
site k from the site 7. This set is computed with the local data of ¢, the input
parametérs values, and the receiver site identification, k. So G is a function of

three parameters:
{PARAMETER VALUES} = G(D’L,J,VP, k).

Function H -

It computes the return value before the end of the recursive. This value
will be sent to the calling procedure. This furniction represents the last step in
the recursive wave. It is computed with the local values, the input ‘parameters
values, and the set of values collected from the son’s sites, Hyons. We are going

to define H as a three parameters function:
< RETURN VALUE >= H(DL;, VP, Hyops)-

H, .. is a set, made by the results of the sons of the site . ¥ ¢ is a leaf then

H,ypns is an empty set.
2.2.3. Example of the mathematical scheme

In'2.1 we said that the execution of a recursive wave leads to a ‘tree. Here
we present a general example of that tree, and the relationship between this

tree and the functions defined above.

Figure 2 presents a tree generated by a recﬁrsivé ﬁra.vé, némed r.ecrle', with
three parameters, initiated at the site 7, (the root in the tree).

Following the description of a recursive wave, the site ¢ executes a RPC on
his neighbours: j, k, I. Each RPC has different parameters values: {u., v, w} for

7, {u', v', w'} for k, and {u", ", w"} for I. The set of ngighbours is géne;gted

A DISTRIBUTED RECURSIVE ALGORITHM 9

recre (a,b,c) _
' S(DLi{a,b,c}) = {u,v,w} -
G(DLi,{a,b,C},,j) = {U',V',W'}
G(DLi{a,b,c},k) = {u',v'w'}
G(DL,{a,b,c}.k} = {u'v'.w}

recre(u,v,w)
S(_DLji{ulvlw}) = {X,y,Z}

G(DLj,{u,v,w}x) = {A,B,C)

SEL{uv W) =0
G(DI.;,{u.V,w},y) ={A',B',CY} :

recre(u v'.W) recre(u”,vw")

GOL{u.vw2) = AnBCY G(OLi{u' V' WhNil) = §

- S(DLu{A"B".CH =0
‘ o . G(DLZ,{A“,B'_',C"},NII) ={
~ recre(A,B,C) 'recre(A',B'.'C') recre(A".B"',C")' h -

~ Figure 2: Example of the mathematical séheine

by the functlon S, and the function G gives the value pa.rameters of the RPC
for each site.

Since sites k,1 do not perform any Tecursive ca.Il these sites are two leaves
of the tree. When k and ! end their computations, they send the results to 1,
(thelr father in the tree). Each result is calculated by means of the function H.

The site j executes a RPC on the sites y,z calculated by S, with the
value parameters computed by G: {A,B,C} for =z, {A" B' C’} for y, and
{4",B",C"} for z. Later, they send their results to the site] .

2.2.4. Formal descrlptlon

We use the set of funetions deﬁﬁed' in Subsectiod 2.2.3 and the general desc-
nptlon of a recursive wave (Figure 1) in order to create a formal description of
a recursive wave. This forrnal description is presented in Flgure 3.

The liries of code have been numbered because they will be referenced in

the next section for the explanation of the general description development._.

3. General description of algorithm’s development

In this section we will show the steps for the development of a recurs:ve
dlstnbuted algorithm. '

10 G. FLORIN, R. GOMEZ and I. LAVALLEE .

Omne of our objectives is the generation of the code from the proof of the
a.lgonthm In this way we d1v1de the description in five steps, these steps are
. in a. speclal order ‘

1. Deﬁmtlon of the local values

2. The visii strategy.

3. The descending,.

4. The backtracking, |

5. The coherence of the local values.

"Durmg the development of the general proof scheme weé will make reference

to the’ code descmbed in the last subsectlon :

1 type processor__identlﬁer lS - Type processor name
2 DS‘ -Site local data set ~ : = ' o
3 i: processor_identifier;
4 procedure recursive_wave (VP: parameters value, Hi: Result) is
H DE - Execution local data set
76beg1n ' P
7 DL=A(VP, DL) - < INSTRUCTION BLOCK A>>
'8 _ Jif{ condition } then - stop of the recursive wave

9 DL-—B(VP DL) - <INSTRUCTION BLOCK B>
100 pariin S(DL, VP) do ‘- S: set of indices threads™- T .-

P11 ‘DL=C(VP, DL) .- <INSTRUCTION BLOCK C> - o

12. recursive_wave (G(DL VP, i), Hi) on 1, G: pa.ra.met.erl functmn_

13 L—-D(VP DL) - <INSTRUCTION BLOCK D> '

14 - enddo; s S -

15 DL= E(VP,‘ DL). - <IN_S'I‘_RUCTVION BLOCK E> -

16 endif; '

17 DL=F(VP,DL) - <INSTRUCTION BLOCK F>>'
18 R_H(DL VP Hl) - H: backtrack function
19 end recursive.wave; e e
B Fzgure 3: General descnptmn of the Recursive Wave

3 1 Flrst step° Deﬁmtlon of the local values set

The first step is. to define the local va.lue set. Thls deﬁmtlon is concerned
with the next arguments:
¢ Definition of the site data: DS;
. ® Definition of the execution data: DEJ

¢ Definition of the input parameters

A DISTRIBUTED RECURSIVE ALGORITHM 11

These arguments will lead us to a. constfuetion of the declaration part of a
recursive wave code. Following the: cod¢ presented in Figure 3 it is easy to see
that the ﬁrst step of the proof is concerned with the lines 2,34 and 5 of this
code.

3.2. Second step: The‘i}'isit"'strategy |

- The designer of a dlstrlbuted algorithm is concerned ﬁrst With the cho:ce
of a visit strategy to different sites. For example the visit can be performed
according to a predeﬁned spanning tree, [5]; or it must be such that each path,
wrthout c1rcu1ts from a root site to any reachable site represents a path of the
recurswe tree. o

.So the goal in thxs step is to show that the dxstnbuted algorxthm reahzes
the designed visit stra.tegy s

From the previous concepts we . can see that 1t 18 necessary to

o Define a run way of the algorithm coherent with'the goal of the calculus

o Show that the pattern of the recursive -calls and the stop test induce the
expected visit strategy. ' b

. Show that the termination .condition is correct, i.e.” the visit '.strategy'
doesn’t generate an infinite tree. '

-We can see that these a.rguments are.concerned with Lines. 8,9 and iO of the
code presented in Figure 3. More spec:ﬁcally, they are related to the. definition
of “condltlon at Line 8-and the deﬁmtron of the. functlon S at: Line 10.

3.3. Thlrd step. The descendmg

The recursive calls mduces a network traversal Whlch supports a dlstrlbuted
computation. This dlstnbuted computation is done in two steps: the first is
called the descending, and the second backtmckmg o R

. The descending traversal of the network generates a tree In the last sectlon
we give arguments to calculate the different identifier sites to whlch the RPCs.
are to be sent; but we also need to know the ‘parameters values of these RPCs.

Within each procedure execution on a vertex, we perform operatlons with
local data and input parameters values of the procedure. After perforrmng

these operations we send a RPC, with new parameters values, according to the

12 G. FLORIN, R. GOMEZ and 1. LAVALLEE

background traversal and the result of the perform on local data. After some
recursive calls, the descending stops. The last vertices reached by a RPC are
the leaves of the recursive calls tree. -

The proof of the “descending” is concerned with the following arguments:

e The presentation of an assertion, and its demonstration for all different
levels of the tree. '

 The criterion of correctness of the calculated parameters (it is different in
each algorithm).

» The stopping criterion.

Thus, we obtain the proof of some properties in all visited vertices, and.
then particularly for the leaves of the tree. We can see that these properties are
concerned with the lines 12, 13 and 14 of the formal description of the wave;
especially with the definition of the function G at Line 13.

3.4. Fourth step: The backtracking

~ The backtracking of a recursive wave is done from leaves to the root; it goes
through the father, and the father of the father, etc. This:wa.y induces a result
collect of the recursive calls, and a local computation with the local data and
the collected results. '

When the computation on local parameters induces that any other conse-
quent call has to be performed; then the current process is a leaf of the recursive
calls tree, and the recursive backtrack. can begin. The proof of the properties
of this backtrack is obtained according to the following arguments:

e from the leaves we prove that a pi‘o;l;erty is true on all leaves which have
the same father; - ' |

e proving the passing way from the vertex of depth p, to one of depth p—1,
in the recursive call tree. - | '

This step-is related to the function H. If we take a look at the formal desc-
ription code, we can see that this function is related to the line 18 speciﬁéally
and to the lines 16, 17 and 19, too. | | | |

A DISTRIBUTED RECURSIVE ALGORITHM _ 13

3.5. Fifith step: Coherence of the local values

Every time that a procedure is e.xecut:e'd in a site V't"h""e local values ‘of that
site are modified. 'We must take care- of this mod1ﬁcat10ns because they can
change the final result of the algorithm. ' '

In Section 2.2.2 (Mathematlcal Scheme) we defined .DLJ as the set of local
da.ta of the execution 7 on the site i. Each time when a procedure is executed
on a site, the local data are modified, but we can’t know the sequence of the
dlﬂ’erent mochﬁca.tlons Then we are obhgate to synchromze and/or ser1al1ze
the different modifications of the data. l ‘

For thlS purpose we.can use the next arguments

‘1. RPC management!.

2. The multual excl‘uslon;

3. Stamping the modifications of the local data.

4. The algorithm’s nature.

The selection of the solutzon ‘depends on the problem For example, in the

shortest paths problem the ser:a,llzatlon is unphed by the algomthm

4. Example: The shortest path problem ‘

In this section we Wlll apply all concepts in the prevmus sectlon to the
shortest path problem In view of a better understanding of the proposed
solution we will show the mformal consideration that have been taken. Next we
will proceed with the deVelopment of the proof, 1nstea,d of ﬁnd.tng a recurszve
solution to th.ls problem We will follow the different steps 1ntroduced in Section
3.

4.1. Informal considerations _ -

In a computer network each edge has a certain cost, (for example induced
by the state of the messages in the buffer). A typical’ problem is to ﬁnd the
path between two vertices with the minimum cost possible. -

Here the problem consists in the computation of the shortest paths from a

vertex r called root, (which is the initiator of the calculus), to all vertices of a

1This management is made by a lower level software.

14 . G. FLORIN, R. GOMEZ and I. LAVALLEE

valued graph. In order to build the shortest paths tree, eventually we want to
obtain all single paths. of the graph from the root to all others.
_ Ma.ny solutions have been proposed [4 3] to the shortest path problem
Our Solut1on is based on an implicit enumeration method. This means that the
lJa.sm algorithm potentla,lly scans all posmble rooted paths

On the other hand we use two opt1m1zat1ons in order to av01d scannmg
unnecessary paths. _ S

Our first opt1m1zat1on av01ds bulldmg elementary c1rcu1ts sendlng RPCS
to the ca.ller The second optimization uses the Bellmann s pr1nc1p1e [1]
computés the path length-and then selects the shortest

In contrast with many authors, we suppose that all costs are pos1t1ves and
all edges are bidirectional, i.e. the valuation of (a,b) is not necess_anly the same
as the one of (b,a). This case is the most _realistic; but _perhaps more difficult
to handle. | | | _ L

Thus -at the start of . the calculus each vertex E> knows 1ts 1dent1ﬁer, the
identifier of its nelghbours (1 e. I‘(:n)) and the costs of all arcs, C(z, Y). At the__
end of the computatmn, each vertex knows its father in the shortest paths tree, |
the weight of the path from r to itself , and its sons in the shortest paths tree?.

In view of the formal proof of the scanmng, we must estabhsh the followmg
propertles

e all pos51ble pa.ths are potent1a.11y sca.nnecl and partmulanly the shortest'
one. ' |
| . the e11m1na,t1on of longer paths doesn t a.vmci the constructlon of the.
shortest pa.th

o if some path from the initiator to another vertex is longer, (i.e. with larger
cost) than another path from the initiator to the same vertex; it is not necessary
to continue the construction of this path since it can 't become the shortest path.
This is due to the fact that all costs are positives and with a convex cost func--
tion; which induces that the global optlmun_l is a function of local costs. It is
the Bellmann’s principle which is an application-of the Pontryagin principle to

the convex functions.

21t is possible to modify this algorithm in order to obtain more mforma,tlon a.t each vertex,
and especially the root could know the entire shortest paths tree.

A DISTRIBUTED RECURSIVE ALGORITHM 15

4.2. Notations in view of the formal algorithm proof -

The following notation is used in the proof:

GR=(X,T,C) . the welghted and directed graph
(=) the set qf nelghbours of the site «
r | o the root |
PC(z,y) the cost (weight) of path (z, y)
PChrin(z,y) the. mi;liﬁ;lai p'a,th cost from z to Y
C(z,y) the cost (weight) of arc(z,y) |

Ch\Y) = {0 =7, %i;,2i;,...z;} the path from the root to z;.

The path weight value can also be expressed as follow:

PC(CRD) = PC(zy, z;) the path cost from the Foot to zj.

5. First step of the proof: Définition of the local value set

- The first step is the definition of the local value set. Like it was stated in
Section 3.1, this step must follow the next arguments: ‘
» Definition of the local data to each site.
o Definition of the local data to each execution.

¢ Definition of the input parameters.
5.1. Definition of the local data to each site, DS;

In the shortest paths problem the local data set of a site ¢, DS;; is composed
of two subsets: a dynamic one; named DSd;; and a static one, named DSs;.
The data in DSd; is said to be dynamical because theu" values are mod1ﬁed

every time that a new 51_te is involved. T_hen we _deﬁn_e.
DSd; = {mpc;, son(y), father;}.

The data in the statical set, DSs;, will not change at any moment of the

execution, (the cost of the edges is the same during all the running time).

DSs; = {y € T(2), C(1,y)}.

16 G. FLORIN, R. GOMEZ and I. LAVALLEE
'Thus the local data set at-a-site ¢ is:- ~ -
DS DS d; U DSs,

I'(Z) and C(z,y) have been deﬁned as for the rest: R “\‘L
mpce; current minimum cost of the path from the root .r,
to the site ¢
eoﬁ,- i;he son of {;he'site i
fatﬁer,- k the -fa,t,he; of the site 2.
5.2. Definition of the local data to each executibn,--DEf -

In Subsection 2.2.2 the D'Ej has been defined as the data proper to each
execution. The loca,l data in every site , that change at every executmn j are

the sons of that site <. So we define:
DE’ {local_son;}.

local _sons; represents the -sons of the site i at the execution j. They are all the
neighbours of the site i, except his father®. Then Iocal_.sdr@s,- can be computed
like:

| . DE! = I‘(z) — callers_lzst(z), :
‘where callers_list(i) are the callers arriving to the actual site 7, (hefe is included
the father of the site)." | 'l

'5.3. Definition of the parameters, VP

" From the previous subsections we can see that the values needed in every
site at any execution are the path cost, and the callers list of a site i. Then :

V P, the set of input values pa.rameters is deﬁned like:

VP = {pcost, callers_lzst},

34 problem of coherence will be discussed later in Section 8.

A DISTRIBUTED RECURSIVE ALGORITHM 17

where:
pcost is the cost of the path

caller list the calIers list deﬁned prev10ust _
5.4. Definition of the functlon L

In Subsection 2.2.2 we defined the local data set like:"
DL! = DS; UDE!,
The initial value of the local data is:
mpc? = 400.

The modifications. of the remaining local data, will be defined later.
‘Then from the previous subsections we can make the next declarations of
code:

type InRec is record
callers. list : integer;
pcost : string;

end record -

type OutRec is record
- mpc : integer;
father : string;
sons : strmg,
end record

procedure short.path(m Wave: InRec, out Rec: OutRec) is

Here short_path is the name of the recursive wave, InRec et OutRec are the
input and output parameters. This code, as all the codes 1ntroduced later is in

ADA like specification la.ngua.ge

6. Second step: Formal proof of the visit strategy

In-the shortest path problem the visit strategy proof is to know which nodes
will be the receivers of the RPC calls, This involves the next considerations:
¢ Compute of the set of nodes receiving the RPC, in view of building all the

paths from the root to all sites.

18 G. FLORIN, R. GOMEZ and I. LAVALLEE

e Avoid the construction of the circuits, and show that this action does not
affect the problem of finding the shortest path.
e Set up the stopping condition for the recursive algorithm.

6.1. Recursive building of the paths of length [
The specification of the path building is given by:

1=0 Ch® ={z¢=r}
1=1 CRY ={zq,z; |zo € CAY, and Vz; € T(zo)}

l=n Ch(n) ={$0,$i1,$:’2g "',"B.in—l ’ Efnl L0y TiysTiny ey Tin_y € Ch(n—l)a
and Va;, € N(z;,_,)}- | |
PROPERTY. All paths of length # are built in this described way*.
PROOF. If all paths of length n — 1 are built, then all paths of length n are

potentially built. This is due to the fact that they are obtained by extension of
all paths of length n — 1 and by all neighbours of their last edges. '

LEMMA. According to the property, there is no path of length n omittied.

PROOF. Suppose that it is false. Then there is a path of length n which was
not obtained as an extension of a path of length n — 1. It is absurd because all
paths of length n contain one path of length n — 1 and, by the way a.ll pa.ths of

length n — 1 were previously built.
6.2. Avoidance of cu’cuxts constructlon

One of the characténstws of this algonthm is tha.t 1t avoxds the construction
of elementary circuits.. We will show how to do this, and give consequences of

~ this peculiarity.

$Remember that the length of a path is given by the number of edges.

A DISTRIBUTED RECURSIVE ALGORITHM 19

r'xn;

Fzgure 4 Example of a path conta,mmg c1rcu1ts .

PROPERTY «Avoxdmg the construct.ton of c1rcu1ts preserves the m1n1mum cost

patbs

e

PROOF. Consider the path descnbed in Flgure 4 We can see tha.t thlS path

contains a c1rcu1t denoted by Tiy, Ti) and Tig . . _
Let PCeiret be the cost of the path from :z:zl to z, mcludmg the c1rcu1t ThlS _

cbst is glven by

P(?'“’""‘ PC’(:::II ; :1:,2) + <+ PC’('J;,J , :c,k) + PC’(w,k . a:.,) +
-i—PC(:r;,m,a:,k) +PC(:r,k,:c,n) + +PC($,p,m)

Let PC™°~*i" be the cost of the path from ‘z;, to z, without the circuit; it is

computed as follows:

pCre—eirt o PC’(:czl s &iy) e+ PC(:C,J , z,k) + PC?(:::,,e , x,n) +-
-+ PC’(:::tp , ;c)
Then we can say that:
PCCir’ct'}'v‘PC"o——‘?iﬂ_ LT e

The circuits construction can be ‘avoided by sendmg no RPCs to the prevmos

caller,® (i.e. the father in the’ executlon tree)

5This avoidance is a crltlcal_pomt of the a]gonthrq, a.nd it is linked to the stopping‘(;ondition..

20 G. FLORIN, R. GOMEZ and I. LAVALLEE
 Thus.at Step_ n we have:

[=: n Ch() —{moxl a:,,| Tg.op—1 € CH("“I) and
. ‘Tn € I‘(m‘n_l),and T 75 Tnia}

6.3. Stopping con_dition

Our goal is to find the shortest path cost from the root to all sites. We can .

_take this as an argument to esta.bhsh a condltlon that stops the RPC sendmg
7 We start w1th the next property '

PROPERTY. Let pe, be the path cost of a path caHed pathl and pecy the path
cost of another path called pathﬂ If pey s greater ‘than pc,, it is not’ necessa.ry
to continue with the pathl. :

PROOF The path obtained from pathl ¢an not be better than the contmua,txon

,of path2 Hence there is not necessary to contmue ‘with the ﬁrst one

' CON SEQUENCE 1 It is not useful to contmue the buddmg of a path that W.IH

reach a site, in which the cost will be greater than a prewously computed one.

CONSEQUENCE 2 If the path cost needed mth the current RPC is not better
than a prevmust computed one, then the wave is stopped and the RPC acti-

vation is terminated.
Considering this, we set the next rule:
Rule: L
PC(CR®) <« RC’(Ch(k_l)) = send the recursive call.
PC(CRh®) > PC(Ch*~1) = stop the recursive call.

6.3.1. Proof of the algorithm termination

- The only case where the algonthm never ends can be ‘presented when the
recursive calls continue without stopping it. This means that the stop condition
of the recursive call PC(Ch(”)) > PC(C’h(" 17} will never be true.-

" 'On the other hand the number of edges is finite and the bu1ld1ng paths are

elementary, (i.e. without circuits) then the number of building paths is finite

A DISTRIBUTED RECURSIVE ALGORITHM 21

and at the end of each path the previous condition becomes necessary true and

then the algorithm stops.

6.4. Definition of the function §

S is the function that creates the indice set containing the identifiers of the

sites which will receive the RPC. From the previous sections, we define S as:

. e j—~1
(oL, VP) = {8} if mpci- >= mpec]
{T(@) - callers_list} if mpc] otherwise,

where mpc is the current minimum path cost from the root to the site 4,
calculated at j.

NOTE: The function S could be define differently. If we don’t want to send
the parameter callers_list, which is a long message, it is possible to use only
['(¢) - father. In such a case the sent message size is shorter, but the average
number of messages can be higher. The hzgher average messages of the shortest
path tree algorithm is O(log,,) and if we suppose that the message size is log, ,
as in the present case, then the complexity of sending callers:list i is, roughtly

speaking, O(logn)
6.5. Code generation

From the definition of the function S and the previous demonstrations we

can-generate the following lines of code:

if pcost <mpc then
union(caller list,site_id)
mpc=pcost
pariin (T'(z) - callerslist) do

enddo.

NOTE: In the previous code union is a set function, that adds a new element
to a set. Its syntax definition is

union(<set identifier>, <new element>).

22 'G. FLORIN, R. GOMEZ and 1. LAVALLEE

- 7.-Third step: The recursive descending scheme proof

The method enumerates a set of paths in order to find the shortest one. It
is necessary to show that the proposed paths construction.from the root to the
different sites, includes the shortest path. Thus we have to:

o show how to ca.lcula.te the cost of a path, a.nd the minfmum path cost.

o show that at the end of the descendlng, all the leaves will have a possible
shortest path. ' '

7.1. Path costs comﬁutation

For the root zg = 7 we set
PC(Ch(D)) = PC‘(:ro,:co) =

i, e. the path cost of the root to the root is zero. From thls we can compute
the path cost from the root to other sites: '

 PC(CRM) = PC’(:co,xn) = Pc'(c;'h(ﬂ)) + C‘(mo, z;,) for z;, € T(zo),

| PC’(ChW(,.Z)) = PC({mg,m,l,m,z}) PC(C’h(l)) + C’(m,1 :c,z) for .1\c,2 €
e, -
and in general we have:

PC(Ch(“))"—PC({xg,m,“ - wn})—PC‘(Ch("‘l))+C(mm,:cn) Q)

Using (1) we will compute the minimal.path cost in the following subsection.
7.9. Definition and calculus of the minimum cost

We define Ef , a3 the p”" value of the minimum -c-ost wdited frc;m the site z. :

Initially, at p = 0, the cost will be infinite to all sites except for the site 0,
(remember that we want the minimum cost from the site 0, i.e. the root, to
any site).

E! =00 fori#0.

The site i receives a first cost value, PC(C R, from = neighbour j. Then from
the equation (1) of the last subsection, we can estimate a first path cost value

from the site ¢ to the root:

PCW(Ch®) = PC(CRYD) + C(3, 1),

A DISTRIBUTED RECURSIVE ALGORITHM 23

where PC(I)(Ch(i)) is the first path cost value. Then the minimum -cost

expected in the site ¢ is:
E}! = mm[Pc(l)(Ch(')) EJ.

A second cost value arrives, PC’(Ch“‘)) from a.nother ne1ghbour, (or from |
the father in the recursive tree). Let k be the identifier site of that nelghbour,
and PC’(Ch(k)) its path cost. Then we can compute a second path cost value,

from the root to the site ¢ :
PCO(CRD) = PC(CR®) 4 C(i, k). -
The second minimum cost waited at i will be:
El = min[pc@(c'ﬁ(")'), EY.
Let PC('mj(Ch(i)) be the.n.z”‘ path cost value, cb'mputed f#o.m ali pa,tEh costs

that arrive to the site i, then we can define Ef as
E? = min[PC™(CRrY), EP7Y),

PROPERTY. The function El is decreasing and monotonic in p and has 0 as a

lower bound.

PROOF. Since all path costs are positive, the function EY selects only between
positive values, and at each time a lower value than the prvious one. As there

are no negative values, the possible lowest value is zero.
PROPERTY. The function Ef converges to PCpin(r,1).

PROOF. It is true thank to the fixed point theorem. If the minimum path cost

_ is computed, then this value corr‘esponds to the lower bound.
LEMMA. VVJth pos1t1ve costs, ifa pa,th contams a c1rcu1t ni is not mlmmal

PROOF. It is obvious because the path obta.med with avo1da.nce of the circuit

is of lower cost (Bellman’s principle).

24 G. FLORIN, R. GOMEZ and 1. LAVALLEE

LEMMA: The shortest path from a site r to all sites z. is obtained in a finite

aumber of scans.

PROOF. Any path with more than n edges is avoided because it contains a
circuit, and it can’t become a shortest path; on the other hand the number of

vertlces is finite.

CONSEQUENCE After the last visit of the recurswe wave,. the shortest path is

computed.

7.3. Definition of the function' G

Since G is the parameter value function and every .rsit_e.__needs, to know, the

path cost and the callers set we deﬁne
G(DL VP k) {pcost callers lz.st, + z} if {I‘(z) - callers_lzst } 7’- {@},

where 1 is the 1dent1ﬁer 51te S o
7.4. Code 'generation

From the G deﬁmtlon, and the prev1ous subsectmns, we can generate the

followmg lines of code:

par 1in (I‘(z) - callers.hst) do - Generated in the previous subsectlon
. _pcost=pcost+cost(id_site,i); :

o RPC(pcost callers list) on i;

enddo .

8. Fourth step: Proof of the recursive backtrack

.The recursive backtrack is the step where one gathers-the global information
concerning the shortest path tree. The recursive calls compute' a semi global
information in ea.ch vertex. These -are the shortest path cost from the root to
the current sﬂ:e, ‘and its father in this shortest path. The recursive backtrack
allows to collect the information: created after the corresponding recursive call
by the other visited sites to the current site. Thus a site knows its sons in the
shortest path tree. It could be possxble to collect the global information from

each vertex to the root, but we prefer to collect site local informations because

A DISTRIBUTED RECURSIVE ALGORITEM' 25

global informations collected from the root are not necessarily 1nterestmg and
it can take an important amount of information in each. message.

So our problem is to compute i each vertex the value of the shortest path
from the root, the identifier of the predecessor in the shortest pa.th and also the
list of sons in the shortest paths tree. Thls is the major difference with classical
distributed algorithms for” shortest path of nion 0r1e11ted gra.phs . In this case
we are talking about paths rather than chams 5 '
Every site i uses the follomng 1pformat10ns:
® its fether in the shortest!- path; tree,
¢ the minimum cost of the path from 7 to 1it.

For a site ¢, the missing infor- ma.tlon is the set of its sons in the shortest

pa.th tree. This mformatmn is obta,med as 1t 1s shown in the next subsection.
8. 1 Computat:on of the 1dent1ﬂers of the sons srte

| At-the end of the “descendmg” each site kngws its- father in. the shortest
path tree, father?; which can be different from its fa.ther in the executlon tree
father;.
Let z; bea’ s1te and y;,, y,z, ,y,k - ,y,n its'sons in‘the executron tree, (see
'Flgure 5) Then R ' R

fathery, = fathery, == fathery, = ... zrfdthery‘.n =z,

and we ca.n estabhsh the followmg rule
RULE: T U N e R T R T
if father? = t}ien-”son';é;'; = union(yi, sons?,), -

where sonsy, are the sons of the site z; in the shortest path treé, and inion-is
the set ﬁmctmn definedin 6.5. - . - R T e

This means that if the father s 1dent1ﬁer in the shortest path tree of the site
Yk is equal to the identifier s, Yk is its son in the shortest path tree.

The opposite case, (father;‘k# z;) o_ce{J.rs _Wi1en tothe site z; arrivés a

better cost from another node. This makes that z; changes its father identifier,

26) G. FLORIN, R. GOMEZ and 1. LAVALLEE

Figure 5: A site ‘\:with-'-'i'f:s sons,

(in the shortest path) to the one that corresponds to the arrived 1mprovement
this father will be different to the first one. :

8._2. Deﬁmtlon of the functlon H

. The function H computes and sends the result of the wave backtracking to
all vertices of the execution tree. At the beginning of the section we mentioned

the infor-mation required by each vertex, then the function H is given by:
H(DL!, V P, Hsons) = {id_site, father}, sons], pcost}.

We have to remember that father;-" is the father of the site z in the shortest

i)ath tree, and not necessarily the father in the execution tree.
8.3. Code generation

The calculus of site sons 1dent1ﬁer in the shortest path tree is spemﬁed by

the next code:

while i in (nelghbour callers_hst) do '
 if father(i) = ego then. -
S sons(i) = concat(sons(i), ego)
endif;
enddo

A DISTRIBUTED RECURSIVE ALGORITHM 27

9. Fifth step: The local value coherence

The local value coherence, in the shortest path problem,- rﬁust_be tréa,ted in
the backtracking. During the recursive backtrack, a vertex must know which
are its sons; however, it’s difficult to know if a neighbour is the son of a vertex,.
becausé it can become son of another vertex. Then the collect of the information
about the sons of a vertex is difficult.

We can have the problem of overlapping executions on global variables, due
to the change of status from father to son, or the opposite. When a vertex z,
with a previous father y, receives an irnproving visit of the retursive wave, from
a vertex z then it considers that z becomes it's new father and x broadca.sts
the recursive wave to all its nelghbours except z. In this case .y which was
the previous father of x receives a new instance of the wave and if it is not an
improving one, y deletes the status of son for z, and if the new instance 1s an
improving one, it executes the current algorithm. Thus we are also concerned
by overlapping execution of RPC. |

‘The only problem is that the last modification should be the good one. In
order to solve this problem, a more genera,l way is to build a total order on the
transactions on a process. In our case there are two ways in order to assume
this: ‘

e a systematic solution for this problem is to give a sequence number, (a
watch stamp) at each sent message or RPC. 1t i is a systematw way but it is not
n’ecessa.ry here; ‘

e it is possible to use the cost paths values, to induce an order between

modifications. In the following we will use this solution.

10. Algorithms’ spe'ciﬁ'(.:ationr
The code of the recursive wave for the shortest path problem is described in
Figure 6. As for the general desctiption of the recursive wave, we use ADA-like
specification language for'the presentatlon of thls code.
An example of the executmn of this -code is given in Figure 7. In this ﬁgure
attention must be focused to the deﬁmtmn of the tree functions: S, G and H,

and the variation of their values during the execution.

28 G. FLORIN, R. GOMEZ and I. LAVALLEE

type InRec record
callers: integer;
pcost: string;

end record .

type OutRec is record
mpc: integer;
father: string;
sons: string;

end record

procedure short-path (in Wave: InRec out Res: OutRec) is .
i: processor.identifier; = o -

€go; processor_ldent1ﬁer - the xdentlﬁer of the current site

callers list, neighbours: set of processor—ldentlﬁer,

alien: array [1..MAX_NEIGHBOURS] of OutRec

- R: OutRec; .

begin
if Res.mpc <Wave.pcost then
concat {Wave.callers, ego)
Res. mpc—Res pcost
pariin (I'(;) — callers list) do ..
Wave.pcost = Wave.pcost + cost(ego 1)
short-path (Wa,ve R)oni; =~
alien(i)=R; :
enddo;
endif;

while i in (ne1ghbours callers_hst) d
if alien(i).father=ego then '
R.sons=concat(R.sons, ego)
endif;
enddo

end short-path;

Figure 6: Code of the recursive solution to the shortest path problem.

11 Conclusmns

We have mtroduced a basic: method of constructlon for dlstnbuted algo-
rithms. It is based on the distributed recursive wave concep’c As an example
of this method we presented- solution for the shortest path problem, another
examples can be found in [5].

A DISTRIBUTED RECURSIVE ALGORITHM 29

.
b (aon
| $=2,3) ——7 s12.
(10,21 ™~
\&9.{071}) .
s=(4} (S=(4)
! 4 (10,{0,2,4)

(11,{0,1,3}

, 4234
4{0.1.2) | {) (4,2,3,4) | l L _) (3,4,Nil,8)

fory

(0.1,2,4)) (3,4,nil,8)

10

Figure 7: Example of a possible execution of the recursive
wave algorithm, for the shortest path problem.

The algorithms obtained by this method are simple to be read and under- -
stood. ' :) :

We have shown a general scheme for the construction of recursive distribu-
ted algorithms at the same time as we make-the algorithm’s proof. It is clear
that each problem will be treated in a different way; we will find problems for

~ which the first step of the scheme will take more development, and others that
will require more attention in other steps of the proof scheme.,

30 G. FLORIN, R. GOMEZ and I..LAVALLEE .

All this work has been aplicated in one way or other. Many algorithms have
been implemented and tested down the recursive distributed concept (see [9]).

FUTURE WORK: -

The failure semantic of the RPC is a problem that was not mentioned here.
We believe that one can use the exception concept, as in ADA, in order to treat
the problem of faults. At the same way the management of some problems dues
to the semantic of RPC will be studied in a future work.

Another work that must be treated is the optimization of the algonthms
which are described here. We also’ étivisage to apply all these concepts in the
area of parallel programming, that is to say on parallel computers without
shared memory.

* REFERENCES

[i] D. Bersekas, R. Gallager, “Data Networks,” Prentice Hall, 1987, pp. 318-322.

[2] A.D. Birrell and B. J. Nelson, ACM Trans.-on computing systems 1 (1983), 222-328.

3] C.C. Cheén; A distributed algorithm for shortest paths, IEEE Trans. on Computers,
. Sept. (1982), 398-399.

[4 K. M. Chandy, J. Misra, Distributed computatwn on graphs Shorteat path algonthm,

CACM 25 (1982), 833-837. BN
"~ [6] ~ G. Florin and 1. Lavallée, La récursivité, mode de programmatton d:stnbuee, Ra.pport
-".de Recherche No. 1536, INRIA-Rocquencourt, Octobre 1991. A

[6] G. Florin, R. Gémez and I. Lavallée, Recursive distributed programming- schemes, ISADSVV '

. 93, Kawasaki, Japan.

[T} - L. Lamport, R. Shostak and M. Pease, The Byzantme Genemls pmblem, ACM Toplas

 4(1982), 382-401. :
[8] L Lavallée, “Algorithmique parallle dlstnbuee,” Hermes ed Paris, 1990 .

[9] = N. Pizigot, La récursivilé répartie, Mémoire d’Ingénieur of the Cons Nat des Art et
" Metiers (CNAM), 1992, Paris, France.

* CEDRIC, CNAM e
292 RUE St MARTIN .
75130 PARIS CEDEX, FRANCE

#* ACTION PARADIS, INRIA
DOMAINE DE VOLUCEAU, ROCQUENCOURT BP 105
78153 LE CHESNAY CEDEX FRANCE ’ b

