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 ON THE EXPLICIT REPRESENTATION
OF GLOBAL SOLUTIONS OF THE CAUCHY PROBLEM
-.;: FOR HAMILTON-JACOBI EQUATIONS! . -

TRAN DUC VAN, NGUYEN HOANG AND NGUYEN DUY THAI SON

mvl.Inﬁl‘_O.dl;“l(l_:‘t.i:OI‘l )

“* This note is devoted to the' explicit représentation of global Lipschitz
solutions' of the Ca.uchy problem for Hamﬂton J a.cobl equa,tmns of’ the form -

LWt BV =0, e, @ 1
with initial conditions
b 7 u(O m)—a(m) :cean' IR (12)

As it is known, the exp11c1t formulas of global solutxons of Problem (1 1)-
(1.2) are constructed in the case where either H (t ) or cr( ) is convex, (see
[4], [6]). Here we try to release the convexity condition related to H and o
in establishing these formulas. Next, we prove that if the initial datum o(.)
is convex, then a global Lipschitz solution of (1.1)-(1.2) can be deterrninedl)y

_cha.racteristics Then we check that-this solution is also. a viscosity solution
in the case where o(: ) needs not be globally L1psch1tz contimious. The result

1mproves Theorem 3.1 in Bardi and Evans [1]

‘We use the followmg notations. Let Q= (0, T) X IR", [l || and { .} be the
Euchdea.n norm and the scalar product in R" respectwely Denote by L1p (Q)

the set of all locally Llpschltz contmuous funct1ons u deﬁned on Q a.nd set
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DEFINITION 1.1. A function u(t,z) in Lip([0, T) x R™) is called a global
~ Lipschitz solution of Problem (1.1)-(1.2) if u(t,z) satisfies (1.1) almost every-
where in  and u(0,z) = o(z) for all z € R".

2. The minimum of a family of global Lipschitz solutions.
Firstly we prove the follc')wing: theorem.

THEOREM 2.1. Let (¢4(7))aer be a family of functions indexed by an a.rbltra.ly
set I such that the equation (1. 1) with ‘initial datum o4 (z) has a global Lipschitz
solution. uq(t, ). Assume. that for every (tg,:vg) 0,T) x R™ there exist an
opern_ n_ejghbqurhpod::V(tq,,@0) and-a.finite set.J C I such that ;Iéi;ua(t,fc)z
1;16i§rlua(t,a:) for all (,z) € V(%o ,‘..:::0).‘ Th'e;.n the fenctiop u(t,z) = ixéi}ua(t,m) is
a global Lipschitz solution of (1.1)-(1.2) with o(z) = éréf}aa(m)

PROOF. Given any (fg,zo). € §, by assumption, there exist a finite set J C I,
a ne:ghbomhood V = V(tg,:ro) a,nd a posﬂuve numbel K such that for all
(t 'r:)EV (t’ ')EVwchave ' . ’ -

lut(t ') —uit,x)| < fl(lf ~t I + e —= ll) reJ,

R CF T O R

Aesume_rq(t,:z:) < 5u(t’ ’) Take 2y € J such that u(t 1,) = (t,:r,) .Then |
ta) —ult, ) S wil(t o) = iy (1 7) < I\(|t—t [+|]1:—”c'|[)

ThlS Inedns that u(t a:) G Llp((O T) X ]R") B\' thc hypotheses we El.IbO see that
u(t, T)ec([o T)xIR")’ | o | |
Consider now the open covcnng, (V(t 1:))(; :,-)EQ of Q By Lmd(.lof ’s property,
there exists a countable subcovermg (V,,)ne N Vn = V( s ’Ln) of Q. For every
n € IN we llaye u(t ;L) = 1161}n THER 1) \uth all (t 1,) € Vn, whexe J isa ﬁmte

subbet of I
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Let N, C V,, with mes(N,) = 0 such that all the functions u; (i € Jy) are
differentiable and satisfy (1.1) at any point of V,, \ N,. Put N = OL? Nn, then
mes(N) = 0. By virtue of Rademacher’s Theorem, we > may assuie that u(t, x)
is differentiable at every (t,z) € 2\ N.

Given (t,z) € V, \ N, there exists ig € J,, such that u(t,z) = u;, (¢, z). For

every (¢',z') close enough to (#,z) we have
| u(t',z') — u(t z) < ug(t, 2" — wg, (8, z). (2.1)
'Both u and u;, are differentiable at (£, x). Therefore (2. 1) 1mp11es that
a—:‘(t, z) = a”’f’ Zite)  and  Vu(t,z) = vmu,-o(t,m).'

It follows that u(¥,z) satisfies (1.1) in ¥, \ M. Because n is arbitrarily chosen
and U (Ve \N) =Q\ N, it follows that u(t,:c) satisfies the equation (1.1) ae.
in Q.n—l

On the other hand, u(0,z) = ;Iéf}ua(o,z) = Izpéi}la,;(m). Thus :u(t,a:) is a

global Lipschitz solution of Problem (1.1)-(1.2).
In [6] we proved the following result.

Assume that the Jfollowing conditions hold for H(t,q) and the convez function
o(z).”

(AO) : H(t,q) satisfies the Caratheodory condition and for every compact
set C C R" there exists a function go € Luoo(0,T) such that for almost all
t€(0,T)

sup |H(t,q)] < gc( )-
geC

(Al) : For cvery (to,mg) € [0 T) x R", there exist positive constents r and
K such that B .

(2,9) ~ 0*(0) - / H(r,p)dr < max {{z,q) — o*(q) - / H(r,q)dr}

flall <K

whenever (t,z) € [0,T) x R", |t — tol + ||z — 2ol| < v and |jp|| > K; o* being
the conjugate of o.
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- Then ' o
uft,®) = maxc{(e,0) — 0"(0) - ] Hrnod) @2
5 a global szschztz solutzon. of P'roblem (1 1) (1 2) o
"Suppose now that the function a(:z:) can be represented in the form
O'(a:) mfa.o,(:c) -

where (04)aer is a family of convex functions. Applying Theorem 2.1 we
obtain the following results for r'epi'esentation of global Lipschitz solutions with

nonconvex data..

COROLLARY 2.2. Assume (AO) (Al) for H(t,q) and ao,(a,), for any a € I.
Further suppose that the hypotheses of T heorem 2.1 hold for all ua(t z) deﬁned
by

Ua(t, ) ?-Iélﬁg{(mﬂ) B aolq) —/0 H(7,q)dr}.

g
Then the function u(t, ) = mel? uq(t, z) is a global Lipschitz solution of Problem
(1.1)-(1.2) with o(z) = iréfIaa(a:).'

COROLLARY 2.3. Assume (AQ). Suppose that oi(z),...,or(z) are convex and
globally Lipschitz continuous. Then '

: : t
ft(t_,m_) o fin ;nﬁs,{(%, q) - ;(Q) fu H(madr}

isa globai Lipschitz solution of Problem (1.1)-(1.2) where o(z) = _ {mm " oi(z).

EXAMPLE 2.1. We consider the Cauchy problem
ue+u —1=0, (t2)€(0,T) xR,

u(0,z) = e_lxl = min{e®,e”%}, z € R'.
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Then u(t,z) = filiﬂ% ;161%}{‘1{3:9 — hi(g) —t|g® — 1{} with
glng—q - g>0, -
hi(g)=14 0 ¢=0,
| 400 q < 0,
and ‘ -
—¢In(—q) +¢ g <0,
2(g) =4 0 g=0,
+oo q> 0,_ _

is a global Lipschitz solutiomn.

EXAMPLE 2.2. Let H(t,q) bé a céntinuous function on [0,7") x R™ and a; €
R™ b € R', i=1,...,k Puto(z) = min{(a;,z) + b;, i = 1,...,k}. Then
the problem (1.1)-(1.2) has a global Lipschitz solution of the form

. t
t = 1 3 T » &7 JAT .
u(he) = min {{a) + b / H(r,a:)dr)

3. Construction of global Lipschitz solutions

via characteristics.

In this section we will show that the formula, (2.2) can be obtained by means
of characteristics if the given data ¢ and H belong to class C2. For sake of
* simplicity, we use the notations Hy(t,p) = V,H(t,p), V.,o=0"

Consider the characteristic differential equations of Problem (1.1)-(1.2) (see

[2]),
t=Hp; b= (Hp,p)— H; p=0,
with initial conditions |
M =y; v0)=0(y); p0)=c(y), yeR"

Then ,
z=z(t,y) =y + /(; HP(T,VOJ(y))dT, (3.1)
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v = ot y) = o(y) + / (Hy (7,0 (1)), 0" ()} — ] H(r,o'(y))dr.  (3.2)

Combining (3.1) with (3.2), we can rewrite v(t,y) = (%, 2(t, y), y), where

Plt,,) = o)+ @ =10’ ) — [ Hno@hdr. (33

We put now

a(t,z) = sup o(t,2,y).
yEIR.“

In the case where the function o is convex we can use the Legendre transfor-
mation on ¢ to rewrite
, ,
() = sup {{5,0'0)) — 0"(0'(w) ~ [ H(ro'@)dr).  (34)
yER!l X - 0 .

We have a comparing result as follows:

PROPOSITION 3.1. Suppose that H is continuous in [0,T) x R", ¢ is convex
~and belongs to the class C'(IR™). Moreover if u(t,z) given by (2.2) is a global
Lipschitz solution of Problem (1.1)-(1.2), then u(t,z) = u(t,z), V(i,z) €
[0,T) x R".

PROOF. It is obvious that @(t,z) < u(t,z) for all (t,%) € [0,T) x R". We
have to show that u(f,z) < a(t, =) for any (t,7) € [0,T) x R". To this end, let
B = {c'(y)]y € R*}. Then by {5, Corollary 26.4.1} we have |

ri(Domo*) C E C Domo™, (3.5)

where 11 (Dom ¢*) is the relative interior of Dom o™,

Suppose that ¢y € Domo* with

Copt
w(t,x) = (2, q0) — o*(q0) — [ H(r, q0)dr.
0 B
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By (3.5) and the density in Dom ¢* of its relative interior, we can take a sequence

2o = ¢'(yn) € E such that z, — go- Then
i
u(t,2) < lim {{z, z) — 0*(2) — / H(r, 20)dr}
n—Cco U
t
< Tim {{z,0"(yn)) — 0*(0"(ya)) — / H(r, o' (y))dr)
n—00 0

< sup {(a,0'(0) = o"(')) ~ [ B(r,0'w)in)

yelR
= (¢, z).

The proof is then complete.

REMARK 3.1. Suppose that the conditions (A0)-(A1) hold. Then the formula
(2.2) always attains maximum at some point ¢ € R™. But the same is not true

for the formula (3.4). We show this by the following example.
Let

i qg>1,
H(g)= 4 ¢—¢lng ¢ € {0,1],
0 g <0,

and o € C! be the function given by

e* x <0,
o(z) =

r+1 x> (.
Then \ :
. glng—gq q € (0,1},
o*(¢) = _
+o0 gé[[)._l],
and.

it 2) = sup{e.e” — 0" (e!) ~ LH(cY)).
y<0

It is easily seen that the value @(1,—2) = sup{—2e¢?} = 0 can not be attained
y<0
in (3.4) at any point y.

From now on we make the following assumption:
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(A2) : Assume that the formula (3.4) always attains mazimum at some point
y €R™ |

This assumption is fulfilled, for example, if Dom o* is.an open set (cf. (3.5))
or ¢ is a co-finite strictly convex function (i.e., 202, o as A — oo, for all

X
z € R), (see [5, Ths. 26.3, 26.5, 26.6]).

THEOREM 3.2. Assume (A0)-(A1)-(A2). Let H and o be of class C* in R™ and
o' = (0g;2;)i,j 152 positive definite matrixz. Then the global Lipschitz solution
u(t,z) in (2.2) can be given as the largest value of p(t, 2, ), the maximum being
taken over all y such that characteristic curves z{.,y) starting from y meet each

other at = at the time-point t.

DPROOF. As it is shown in Proposition 3.1, u(t,z) = i(t,x) for all (t,z) € S
By (3. 3) we have '

Tt 9) = (y)(w-»f Hy(r, ! (5))d).

From (A2), the maximum n (3 4) attains at some y € R", which must be a
stationary point of w(t,%,.), i-e, Vyp(t,z,y) = 0. Because o:”(y) is positive
definite, then

t
o —y— [ Hyro')dr =
Therefore y is a root of the equatlon (3.1). Consequently, the maximum in the
formula (3.4) is not attained if it is taken not over all y but only over those
stationary y. This completes the proof.
4. Connection with the viscosity solutions
In [1] Bardi and Evans proved that the global Lipschitz solution
ult,2) = max {(z,0) - o"(¢) — tH()} (4.1)
gelR

is also a unique viscosity solution of the problem

ur + H(Vu) =0, inf, (4.2)
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u(0,z) = o(z) z €R", (4.3)

where H is continuous and o{z) is convex and globally Lipschitz continuous.
Here we extend slightly this result to the case where o(z) is convex (but needs
not to be globally Lipschitz continuous). For the definition of viscosity solution

we refer the readers to {3].

We need a condition similar to Section 2 (Al)
(A1) : For every (tg,0) € [0, T) x R™, there ezist pasztwe numbers r and
I such that '

{z,p) — J*(P)—tH(P) < ”IflliaéXK{(i .4) ~ 0*(q) —fH(Q)}

whenever (¢, ) € [O,T) X R, |t —to] + [z — zo| <7 and lpll > K.

PROPOSITION 4.1. Let o(z) be a convex function on R™. Assume (A’1). Then

the global Ljpscﬁitz solution u(t,z) = mﬁ}i{(“‘"’ g) — o*(q) —tH{q)} is also a
1S
viscosity solution of Problem (4.2)-(4.3).

PROOF. Let a*(q).be the conjugate function of o(z). We put

on(z) = sup {{z,q) — o*(9)}-
llgl|<n

Then op(z) is a globally Lipschitz continuous function with Lipschitz constan’

n. It is easily seen that

e
a:(q)z{ @ lell<

+oo ||q|| > n.

From Theorem 3.1 in [1}, u,(¢,z) = thagc {{z, ¢} — o*(g) —tH(y)} is the unique

viscosity solution of (4.2) with the initial condition u(O ) = op(z).
We see that {o,.(z)}. (resp. {un(t z)}n) converges uniformly on any
compact of R™ (resp. Q) to o(z) (resp. u(t,z)) because of Dini’s Theorem.

Applying Theorem 1.4 in [3], we deduce that u(t,2} is a viscosity solution of
Problem (4.2)-(4.3).
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REMARK 4.1. Suppose that H is a bounded ‘continuous function on R' and
o(z) = z*/2. Since z?/2 is not globally Lipschitz continuous, we can not
conclude, from Theorem 3.1 [1], that (4.1)is a viscosity solution in this case.

Nq}%erttheltejss, a,ppl_ying Prpppsi_tipné._—l, we, see-that _1;he‘ fu_nction o

u(t, z) =§2§§{<m‘, Q) - /2 —tH(Q)}

is a viscosity solution of the prOBiem (42)-(43)

REMARK 4.2. Global quasi-classical solutions of the Cauchy problem for: first-
order nonlinear pa,rtla,l differential equations were studied in [7 8] Some results

on their explicit 1epresentat10n will be- pubhshed elsewhere.
The authors would like to tha.nk Piof. Ha Tien Ngban for his assistance.
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 EXISTENCE OF GLOBAL MINIMAX SOLUTIONS OF THE
CAUCHY PROBLEM FOR SYSTEMS OF FIRST-ORDER
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS!

TRAN DUC VAN AND NGUYEN DAC LIEM .

The purposé of this paper is to present the existence results of global
minimax solutions for some systems of first-order nonhnear ‘partial differential
equations (PDEs). _ |

Since a classical solution of the nonlinear problem can fail to exist even in
the cases where the data are analytic functions, we need to introduce concepts
of generalized solutions. | ‘ -

In recent years many different methods have been created bleentor‘l S. H.,
Cole V. J. D., Conway E. D., Crandall M. G., Doubnov B., Evans L. C., Fleming
W. H., Glimm J., Hopf E., KruZzkov S. N.; Lax P. D., Lions P. L., Maslov V. P.,
Oleinhik O., Rozdestvenskii B. L., Subbotin A. I, Tsuji M. ... in the study of
globé,l generalized solutions of nonlinear PDEs. Especially, nonclassical theory
of nonlinear PDEs represents a large portion of research in which the concept
of global viscosity solutions introduced by Crandall and Lion {4,5] is used.

‘Another direction in this theory is motivated by differential 'ga.mes: which
leads the notion of global minimax solutions for the first-order nonlinear PDEs.
The case of the Cauchy problem for a 5calar nonlinear PDE of first-order
was studied in great detail by Subbotm A I Subbotma N. N., Adiatulina

.. (see, for example, [1,7,8]). As the terminology “minimax solution” indicates,
solutions of nonlinear PDEs of first-order are closely connected with the.

minimax operations. . -
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