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A REMARK ON THE BERNSTEIN-NIKOLSKII INEQUALITY *

HA HUY BANG

Abstract. Certain criteria for a function from an arbitrary Orlicz space having
its spectrum contained in parallelepiped A, = {5 |‘,J[ Loj, j=1,...,n} are
established in this note. '

1. Introduction

It is well-known that while trigonometric polynomials are good means of
approximation'for periodic functions, entire functions of exponential type may
serve as a mean of app‘rdxima.tion for nonperiodic functions, given on n-dimen-
sional space. Let 1 < p < oo and ¢ = (61,...,0,), 03 >0, j =1,...,n
Denote by M, ;,p the space of all entire functions of exponential type ¢ which as
functions of a real = belong to L,(R™). The Bernstein-Nikolskii inequality, which
is very important in imbedding theory, approximation theory and applications,
reads as follows ([3], p.114): Let f(z) € M, ,. Then D"f(’b) € L,(R") and

1D f|ly < || 1l e

for any a = (a1,...,an) € Z}, where D =.(Dy,...,Dy), D; = a::,v J =
1,...,n,D% = D{*... D%, 6% = o' ---o". It it natural to ask whether
there is 2 function f(z) ¢ M., for which these inequalities (1) hold? Using
the bounded average functions of f{z) we will show by a very simple proof in
this note (for a more general case) that the answer is negative. In other words,

the Bernstein-Nikolskii inequality wholly characterizes the space M. We
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emphasize that this technique is often helpful for us. to study certain connections
between properties of a function and its spectrum. '
. 2. Results

Let (I’(t) [0, +00) — [0,+00] be an a,rbltra.ry Young function [2,4], i.e.
®(0) = O ®(t) > 0, (t) #0 and &(t) is convex. Denote by Lq,(R") the space
of all functions f(:c) measurable on R™ such that

1Flls =inf(r >0 [ 8(f@)I/Ndo <1} <0

T

Then Ls(R?) with respect to the Luxemburg norm || - ||& is a Banach space.
Ls(R™) is, called Orlicz space. _ : , ,
‘Recall that |||l = |||l when1 < p < oo a.nd <I>(t) = t7; and ||-||le = ||- “oo

when &(t) =0for0 <t <1 and ®(t) = oo for ¢ > 1. Orlicz spaces often arise
in the study of nonhnea.r problems.

Denote by M, e the space of all entire functmns of cxponentra.l type o which
as functions of a real z € R" belonrr to Le(R™). It is easy to check that
Mss C &', where §' is the dual space of the Schwartz space § of rapidly
decreasing infinitely dlfferentm.ble functions. And, as we shall show later that
if f € Mo, then f € Lm(ﬂn) therefore, it follows from the Paley-Wiener-
Schwartz theorem that

M,,q, ={f€ Lq:-(R“) suppFf C Aa}

where F f f is the founer transform of the functlon I and Ay = {5 € R“ :
I{_,—]S 05,0 =1, Nt And M, s, as a subspace of Ls(R™), is a Banach space.

Now. we study some properties of the space Mesa.

LeMMA 1. Let f € Malq,.Then f(z) is bounded on R™.

Proo¥F. Without loss of generality we may assirme that

| ] ;, (|f(2)])de < oo. @
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Let 9 € Cs*(R™) and 4 = 1 in some nelghbourhood of suppf. Then (see for
example, [1])

f(z) = / Fy)ble — v)dy.

Further, let Mi, M, be positive numbers such that &(||+||ee/M;) and Illeo <
. Then the Young inequality and @(At) <AB(t)forall0 <A<, t2>0
yleld

F@)/ MM, < / (|5 (y))dy + / B (= — v)|/MyMy)dy
< [ sy + Flblleo/342) [ 1601/ <,

where

(1) = ig}g{ts - @(s)}

is the complementary to ®(¢) function.

The proof is complete.
REMARK 1. Let 1 < p < oo. It was proved in [3] that

lim f(m) =0

J&]—o0

for all f € M, ,. Now we consider this property for M, 5. Clearly, this
conclusion is false if ®(A) = 0 for some A > 0 because, in this caée, My s

contains all constant functions.
LEMMA 2. Let @(t) > 0 fort > 0. Then
l llim flz)=20

for all f € M, .

PROOF. Assume the contrary that there are a function f € M, %, a constant

¢ > 0 and a sequence |z™| — oo such that

1f@™) 2 2, m=1,2,... G
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Without loss of generality we may assume that (2) holds and |27*] —+ co,m —

0o. Since n g
@) = fa™) = [ gt

and by Lemma 1 and the Bernstein-Nikolskii inequality, we get
f@) = (&™) < a1l flloler — 27| (4

forallz € R® and m > 1.
Putting r = ¢/03 || flleos We get from (3)-(4)
If(z)|=¢c for |zi—3z™|<r andm>1. (5)
On the other hand, vsrithout lpss of generality we may assume that
Pt 2P >r, m> 1

Then, from (2) and (5) we obtain

o> [ sz Y [ s(see

—zm|<r

> Z @(r)mesB(m ,T) = Z WT"@(T) = 00,

) m--l

Whefe B(z™,r) is the ball of radius r centered at ™, which is impossible.
“We obtain the following result:

THEOREM 1. Let f(z) € §'. In order that f(:c) € Ma:,q,‘, it is necessary and
- sufficient that there exists a constant C = C(f) such that

1D% flle < Co®,- a20. - (6)
ProoOF. Necessity. Let f(z) € M, s. It follows from Lemma 1 that f(z) is

bounded on R™. Then, in the same way as in {3] we easily get the Bernstein-

Nikolskii inequality for the Luxemburg norm:

|1D%flls < o%[|flle, a«>0.
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Therefore, we have (6).
It should be mentioned that the Bernstein-Nikolskii inequality was proved
in [3] for general norms || . [|; but only, loosely speaking, for bounded on’ R™

functions of exponential type. So, our contribution here is only Lemma, 1.

Sufficiency. Without loss of generality we may assume that B(t) is left

continuous. Actually, iﬁ the contrary case, there exists a poimt 29 > 0 such that

Jlim ®(t) < B(to) < o5, and B(t) = oo for ¢ > tp.
—ig—

We put | ' -
L (p(t), ) t ?é tﬂ kX
¥(t) =
) hmt_,to__ @(t), t = tu
- Then (%) is a left continuous Young function and |[ ][¢. = |- |l#. Therefore,

we can replace ®(¢) by ¥(¢).
Assume that (6) holds. It is easily seen that f(z) € C®(R"). Actually, let
g(z) € Le(R™). Since ®(¢) # 0, we get

2(v/(llglle +¢)) > 0
for some numbers v, ¢ > 0. Further, it follows from the definition of @(t) that
a®(t) < ®(at)

for all ¢ > 1 and t € [0, 00). Therefore,

s(v/llalle +) [~ (lg(@)l/v)de

lo(=)|>y

<[ ae(@)/ligllo +eda
: lg(=)[2
< [ as(@)/(lalle + )z < 1.

Hence, g(z) € I, Joc(R™). Therefore, by (6) we get D f(z) € Ly j0c(R™) for all

@ > 0. Thus, f(z) € C°(R™) by virtue of the Sobolev imbedding theorem.
Further, we remark that it is difficult to imply directly from (6) that f(z)

(and all D* f(z)) is bounded. Next we construct the approximative bounded
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functions of the function f (:c) Let r > 0, we put

1

mesB(O - B(Or)f(wft)d* N O

fr( )

Then by Jensen s mequallty we get

D= @) 1 D%J,(2)] --
‘I’(nmfn ) < 557 Lo, XD 7T % s B

for € > 0 and a > 0. Therefore, taking account of the left continuity of ®(t)
and (6), we have
sup |D°’fr(:1:)| < A |ID% flle < < Chro®,a 20, (8)
zERT
where A, = sup{t: &(f) <1 /mes B (0, r)} Therefo;'e, the Taylor series

Z é!-D"‘fT(O).z"‘-

laf=0

converges for any point z € C" and represents fr(z) in R™. Hence, ‘taking

account of (8), we have
1f(2)] < CArexp (Y ojlzil), 2 € C™
j=1

Therefore, f-(2) is an entire function of exponential type ¢. Hence, it follows
from the Paley-Wiener-Schwartz theorem that -

- suppFf CAyy >0 - (9).

On the other hand, it obv:ously follows from (7) that f» converges weakly
to f in §' and therefore, ¥ f,. also converges wea.kly to F° f in &'. Consequently,
it follows readily from (9) that suppFf C Ag ‘The proof is complete.

To check f(z) € Mo,s, the following result is more convenient:

THEOREM 2. A functmn f(z) belongs to M., & ifand only if

hmsup(a °‘||D°‘fl|q,)1/|°‘l<1 g '(10)

la|~+oo
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PROOF. The “if” part follows readily from Theorem 1. Further, twe Suppose
that xnequmhty (10) holds.  Given € >'0. There exists'a constant C. such that

Dl < . (1 o, 20,
Therefore, taking account of Theorem 1, we get

suppFf C A14qe-

Thus,

Suppr C m A(l-l-e)c:_r - Aa’-
>0 ' '

REMARK 3. Theorem 2 gives us ability to estimate more roughly than Theorem

1. For example, if we have
HD%flle < Claj*e®, « > 0.

Then (10) is valid although (6} does not hold. Further, we notice that the root
1/|a] in (10) cannot be replaced by any 1/|a(t(a), where 0 < t{er), Hmya|—oo Ha)

= 0o. Actually, let f(z) = e*2°®. Then f(z) € May 0. At the same time,

Q| —r o0

Jim (071D flleo )1/1““(“)—]11111 2t/He) = 1,

REMARK 4. Let s € R™. Denote by A(s) = (81,51 +27) X -+ X (8n, 8n + 27)

and

[Fl6.a(e) = inf{A > 0: /A . &(|f(2)]/N)dz < 1).

Further, denote by M} & the space of all entire functions of exponential type ¢
such that

1fllle = sup [1£llaacs) < oo
sER™T

Then Theorems 1-2 still hold when we replace My,e by M} 5 and || - |[e by
- lle-

REMARK 5. Lemma 1 holds, but Lemma 2 does not hold for M ;.
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REMARK 6. R. O'Neil and W. Luxemburg require +the left continuity in the
definition of a Young function [2,4]. Tt has already been shown that doing with
I - ||, we may always assume that ®(t) is left continuous. Therefore, results

obtained in [2,4] still hold when we drop this restriction.
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