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A VERSION AT INFINITY OF
THE KUIPER-KUO THEOREM

HA HUY VU]

Abstract. We prove that if P(:c) isa tame ‘polynomial of several variables and
if @(2) is a polynomial of degree lower than one plus the Lojasiewicz number at
infinity of P(z}, then the Milnor fibrations at infinity of P(z).and P(z)+Q(z) are
equivalent. This fact can be considered as a version at infinity of the Kuiper-Kuo
theorem. We also relate the Lojasiewicz number at lnﬁnlty to the phenomenon_
of singularities at mﬁmty

1.

- .Let us consider the topology at infinity.of polynomials of several complex
.va,ria‘bles. By a.na,logy, with ithe, finite determinacy properties of the local case,
one can expect the existence of polynomials, whose topology. at infinity does

not depend on their monomials of low degrees.

In this note we show that the tame polynoz:mals ([1]) have a such determinacy
property. For them we can define a'natural equlva,lent relation at infinity and
prove that their equivalent classes do not depend on their monomials of degrees
lower than one plus thelr Lojasiewicz’s numbers at mﬁmty ‘This fact can be
considered as a version at 1nﬁn1ty of the Ku1per—Kuo theorem ([5 6]) In addltlon
. to this result, we also give a.relation connecting the Lo‘]a,smwmz number at
infinity to the phenomenon of singularities at infinity. Namely, we prove that if
a polynormal has crltlcal va.lues correspondmg to the smguld.ntms a.t mﬁmty,

'then 1ts LOJ&SIGWICZ 8 number at mﬁmty must bc, lower tha,n -1.
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2. Lojasiewicz’s number at infinity-

Let P(z) € Clz] be a polynomial of n complex variables. For r > 0 we
define T T
()= AlgradP(@)l]. -

Let

Ing(r)
LeolP)= Tty e

We call thls number Loo(P) the Lo_]aSLewmz s number a.t mﬁmty of P

PROPOSITION 2.1. The Lo;as:ewwz ‘number at mﬁmty 15 ratwnal

Proo¥. Let

A= {z € C"; |lgradP(z)l| = IlgmdP(y)H}

Then A 1s an unbounded ééfni-algébra.ic set: By"é, version at infinity of Curve
Selection Lemmia, there éxists a real meromorphic curve z(7);7 € (0, €] such
that z(7) € 4,lim,0 |z(r)|| = co! Let ||gradP(:c(7'))|| = ‘rkﬂ('r) and Ha:(’r)]l =
T"X('r) with 8(0) % 0 and X(0) # 0: Then P

- In(r*6(r))
L°°(P) , r—» 2o 1n(1'q('t’(f))

or L (P) = k /q.
Let us conmder P(m) as a ma.p from C"’ to C Then there ex1sts a ﬁmte set
A(P) C C' such that the map N 7' |
. P:CM - P“I(A(P)) —C = A(P)

is a 1oca.11y tr1v1a.1 ﬁbrat:on ([10, 11]) The sma,llest such set A(P) con51sts of:
(i) critical values of P (11) critical va.lues correspondmg to the smgulantles at
infinity of P.

DEFINITION 2.2. The value to is reqular at infinity, if there are$§ >0,R>0
P:P_l(Dg)—BR;}DE - -
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is a trivial fibration. If the value 1y is not regular at infinity, then it is called &

eritical value corresponding to the singularities of P.

THEOREM 2.3. If P(x) has critical values corresponding to the singularitics at

infinity, then its Lojasiewicz’s number at infinity must be lower than -1. _

REMARK 2.4. In [3,4] one showed that if n = 2, then the converse of Theorem
2.3 is also true.

LEMMA 2.5. Let t, € C. Suppose that Lo (P) > 1. Then there exist & > 0
and Rqg > 0 such that for any t € Dj,, the hypersurface PL(t) will transversally
intersect any sphere Sr with R > Ry.

PROOI‘ By the contrary assume that there exist /\k € C z*¥ € C™ such that
|[z*|] = oo, P(z*) — t5 as k — oo, and

gradP(z*) = X z*
For § > 0 let

V ={z € C"|P(z) < §,3) € C such that gradP(z) = Az}.

Then V is a semi-algebraic set, which is obvious unbounded. Let z(7) be a

meromorphic curve, (1) € V,7 € (0, ¢] and [{z(r)|| = co as 7 — 0. We have .

SdP(z(T)) - da:(T
= )\(T) < &(r )

It follows that o
1_dP(e(r) , 1 dPla(r)) _ dlls(r)P

| A7) dr 5\(1') dr - dr
We get | e
2 dPG(r) | dis(rl
IA(T)| dr - dT ’
i 2P0e(r)  liradP )| ()P "

2[lz()ll dr
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Let P(z(7)) = to + @iT* + terms of hzghe’r degrees, and let” ||z('r)H = Tq +

terms of higher degrees. Since e S - ‘
NgradP(a(r)ll 2 edlla(il=="

for some ¢; > 0, we get from (1)

8 S q(Loo(P) +1)-

Since ¢ < 0 and Deo(P) > —1, this implies s < 0, which is impossible if 6 is
Sma-].]. enough- Thus Lemma, 2.5 1s Proved_

PROOF OF THEOREM 2.3. We shall show that if Leo(P) =2 —1, then every
value tg is regular at infinity. Let §; and Ry be as in-Lemma 9.5. Then we can

construct in P™*(Ds,) — Br, two smooth vector fields U(z) and V(:L‘) such that
< gra.dP(:c) U(:L‘) >=1,

<‘:T:,U(‘a:) >= 0_,'
and ” |
< gradP(z),V(z) > = V-1,
<5 V(a)> =0
Let W(7) be a solution’ of d—"g}’l-f : U(W('r)) Then -iﬂ_"‘%“iiﬁ = 0.  Thus,
[|W ()] = const and in particular, W(7) can be continued for any 7. Moreover,
dPW(n) 1, which means that the imaginary part of P(W (7)) does not depend

on 7. Similarly, if Z(‘?‘) is a solution of dzm = V(Z(T)), then Z(7) can be
continued for any 7 and the real part of P(Z ('r)) does not depend on 7.

Let Wo(7) be @ solutmn of
dW(T)'

m =U(W(r)),
= W(O):"a},'" |
a.fxd Zy(7) be that of
| 2O _y iz,

dr
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Z(0) =b.
We define the map
o e P_l(to) ‘->'<-"Dau BRo — P~ I(Dao) BR.,, '- o
R .. t)HZb(t)(Imt) B
where b(t) = W, -(Ret). "Then this ma.p b defines a tr1v1a.hza.t1on of the fibration
P P~(D)~ B, —»D&, -

Hence Theorem 2.3.1s proved. -

3. Main Theorem

Let V = P‘ - C C" a.nd let R be a suﬂ'imently large number We consider
the M1lnor ma.p at mﬁmty

$:5 -V — S,
o Plz)
=R

Generally, thls map does not deﬁne a locally tr1v1al fibration. Nevertheless as
it was shown in [8], the Milnor fibration at 1nﬁmty exists in certain cases.

For a polynomial P(z), we put
M(P)={z € C*"|3) € C,gradP(z) ="Az}. - . .n .

We say that a polynomial P(z) is -semitame: if. for every sequence {z*} C
M(P) such that limg—es ||2¥]| = co and limg.eo gradP(z*) = 0, we have
lmgoo P(z*) ¢ C — {0} [8]. . | o R

THEOREM 3.1( [8]). EPis s-em_ité.rrle,- then for R sufﬁcientl;y.large,. the Mﬂﬁoﬁ

map at inﬁm'ty is the projection map of a smooth fiber bundle.

We say that a polynomial P(z) is tame if there exist R > 0 § > 0 such that
|lgradP(z)|| > 6 for ||z|| > R, [1].- L



8. . . HAHUYVUL. -

Evidently, if P(z) is tame, then it is semitame. Thus, by Theorem 3.1 1its
Milnor’s fibration at infinity exists.

DEFINITION 3.2. Let P(z) and F(z) be tame polynomials We say that they

are cquivalent at mﬁmty if their Milnor’s ﬁbratmns are equzvalent

1t is easy to see that a polynomial P (a:) is tame if and only if its Lojasiewicz’s

pumber at infinity is nonnegative

MAIN 'HIEOREM Let P(x) be a tame polynomzal of n complex variables and
let Loo(P) be its Lojasiewicz’s aqumber at infinity. - Then- ‘for any ' polynomial

Q(x) of degree degQ(x)< Loo(P)—}-l the polynomlal P(x) and P(x)+Q(x) are
equivalent at infinity.

~ The 'I‘ﬂ‘bOf of this theorem can be earried out by Milnor’s technique as it was
shown in [8,9). R UL

We need the following lemmas. . -~

LEMMA 3.3[8, THEOREM 11]. Let P(_x) be a semitame polynomial and D C C
be a closed disc centered at 0 such tha.t D contams all cntwal values of P(x)
Then for R sufﬁmenﬂy Iarge, the ﬁbraf;;on ' ' '

@(P) Sp— P”I(D) o s1
is a fberbundle equivalent to the fiberbundle . -
N P-—.l(aD.) — 0D:
LEMMA 3.4. Let P(x) be a tame polynom1a1 and. sippose that deg Qx)<
Lo(P) + 1. Then Loo(P) Loo(P+ Q) In part:cular the polynomml
P(x)—f—Q(x) is tame ‘ . R
PROOF Stra.lghtforward

Let us con51der the fa.mﬂy F, (m) = P(:c) + sQ(z),5 € [0,1): Let 4, be a set |
of critical values of Fy(z).
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LEMMA 3.5. Let P(x) be a tame polynomial and let degQ(x)< Loo(P)+ 1.
Th_en e;dg@_s_ ak_clqg_e_e__r._'_li_disr{: D chtered -.a_t_-O:su_ch__tha.t 4, _C_ .D-,fo_r_ a,::r_y'_s-,ei[(), 1}.

PROOF. It is enough to show that the set of a.ll critical pomts of polynormals.
Fy(z),s € [0,1], is bounded. Let m(s) be a cr1t1ca1 point of F (.7:) In a

neighbourhood of infinity we have -
HgradP(z(s))]| > c”a,(s)l,l.Lo;,(P),.; -

and : : S D
llgradQ((s)Il < Flla(s)l|% P,

for somme ¢ > O Smce gradF (:c(s)) =0,

ngadP(:r(s))“ = SllgmdQ(:ﬂ(-S))ll < llgmdQ(w(S))ll
"This is impossible if z(s) is unbounded.. Thus Lemma 3.5 is proved.

LEMMA 3.6. Let D be a ‘cIosed-disc‘ as-in-Lemma.3.5. Then for every R
sufficiently large and for,,qyer;j € = Cs € [0, 1], the hypersurface F;(c)

intersects Sp transversally. |

PROOI‘ By contradmtmn, suppose that there exists 2% € O™ sk E [0, 1], )\L €

C, such that ||2*|| - o0 as k — oo and
gradFsk( k) —-Ak:c u | - (2)

The set consisting of all (sk, ") for whlch (2) holds is an unbounded semi-
algebraic set in [0;1] x C™. Thus, by'a vérsion at infinity of Curve Selection

Lemimna, there exists a meromorphic curve (s(7), (7)), 7 € (o, €], such that
gradFy(e(n)) = Nn)a(r),
and ||z(7)]] = coas T — 0 We have

dFyn(z(r)) d:c(T) ‘ ds(’r)

2 _—A()<(),‘ 22 Qa(r)).
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We can then show .

(dFs(ry(a(1)) | grddFs(f“)('m(T)“) d“m(-r)l]2 ds(-,—) S
e e Ehs T R~ [EC) NE

Smce degQ(m) < LOO(P) +1; by Lemma 3.4

Loo(Fs) = Lw(P)
Then there exists ¢ > 0 such that .. |
IlgmdFs(r)(w(T)ll > dffx(r) =P

Continuing (3) we get

S L s lds(T)IIQ( @
Let : B |
i)l = arf+o(r?);
ls(r)} = s+ br™ 4 o(r™)y 0L
(e =t +ert +o(r?):

. Since Fi(r)(z(7)) € D and s(7) € [0,1], we have to € D g > 0 m > 0 Smce
|lz(r)l| — .00 as T — 0,p < 0. Since dch(z) < Les(P) + 1, IQ(:B(T)] €
O(lli(T)llL”(P)“)

From (4) it follows that

siy b

1< P(L (P)+1)

Thls mequahty is, 1mposmb1e because q > 0 p < 0 LOO(P) > 0. In th1s way,

Lemma 3.6 is proved. -

LEMMA 3.7. Let D and Fy(z) be as in Lemmas 3.5 and 3.6. Then, for R
sufficiently large, the fibrations ' '

Fi: Ff 1(6D)nBR—>6D

R, R -
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where i = 0 or 1, are equivalent.

ProoF. This follows from Lemmas 3.5 and 3.6 by using standard Milnor’s
technique [7] (see [9] or [8]).

Now, Main Theorem follows from Theorem 3.1 and Lemma 3.7. In fact, let
% be the isomorphism of fibration (M,-),_i = 0,1, and let ¥;,7 = 0,1, be the

isomorphisms of fibrations
| F:F7Y8D) - 0D,
= Fi(z),
and | -
®;: Sp— F'(0) — S,

Fi(=)
(EHEIN

with ¢+ = 0,1. Then ¢ = P10 o Py 1 will be the isomorphism of the Milnor
fibrations at infinity of Fy) = P and F} = P+Q. Thus, Main Theorem is proved.

®,(z) =

REMARK 3.8. In (8} it was shown that if a polynomial is convenient and
nondegenerated With respect to its Newton’s diagram at infinity, then its

Milnor’s fibration at infinity is equivalent to the Milnor fibration at infinity of
its principal part. Since one can show that if a polynomial P(x) is convenient
and nondegefated with respect to its Newton’s diagram at infinity, then: it is
tame. Moreover, one can show that in this case one has the following inequality

for the Lojasiewicz number at infinity
Loo(P) < min degQ(z) - 1,
where ()(z) runs over all the monomials of the principal part of P(z). Thus, in

this case, the mentioned result of [8] is stronger than our Main Theorem.

REMARK 3.9. One would like to know if the converse of Main Theorem is
true. Namely, if P(z) is a tame polynomial and if P(z) and P(z) + Q(z) are
equivalent at infinity for any polynomial Q(z) of degrees < r, then does it
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follows that r < Loo(P) + 1'7 This could be considered as a version at infinity

of the Bochnak-Lojasiewicz theorem [2].
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