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* EFFICIENT METHODS FOR 'SOLVIN.G CERTAIN
BILINEAR PROGRAMMING PROBLEMS

LE DUNG MUU AND BUI THE TAM

Abstract., We specialize the algorithm in [7] for solving certain nonconvex
programming problems which contain.indefinite quadratic and:linear comple- -
" mentarity problems as spec1a1 cases. We show that indefinite quadratic prob]ems
with a few negative édigen values and rank k bilinear program with k is'small can
be solved efficiently by this algorithm. The method is also applied for solving
linear complementanty problems without a.ny assumption on the structure of the
- mvolved matrices. -

1. Introduction
. Due to the inherent difficulty of global optimization and the fact that general
methods are efficient only for problems with a moderate numbers of variables,
it is important to develope particular algorithms and to apply general methods

for concrete problems taking into account their specific structures.

Iri this paper we consider the following global optimization problem (P)

mm{f(:c) = Zf,(m)g,(a:) + h(:.:) z€ X} - (P)

where X is a polyhedron in R given by a system of equalltles and/ or inequa-
lities, f;, ¢ (i =1,...,k) are-amne and h convex functions on X.

Several problems such as indefinite quadratic problems, bilinear programs,
linear complementarity problems can be converted into the form of Problem
(P). This problem with k = 1 and h = 0 is often called a multiplicative
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program [5,8,9,12] which recently has been incree;éiﬁgly.interested. For this
case some efficient algorithms [5,8,9,12] are developed for obtaining a globally
optimal solution. For solving rank two and rank three bilinear programming
problems, which are special cases of Problems (P) with k = 2 and £k = 3
respectively, recently Yajima and Konno [13] proposed a'pa.rametr.ic. method
* using one parameter for k¥ = 2 and two parameters for k = 3. Asit is reported in
their paper [13] this method is quite efficient for k = 2. For k > 3 their method,

to our opinion, does not work efﬁaently, since it requu'es solving para,metnc '
linear programs with (k — 1) parameters in b{oth_the objective function and the
constraiﬁfs. | - - . o 7 -

In this paper we show that Problem (P), due to its épeciﬁc_ struture, could
be efficiently solved by a method in [7] if k is small, say, less than 5. For linear
complementarity problems a preliminary computational experiment shows that
the method is efficient when k is much greater. The reason is that for com-
plementarity problems one can check whether a given point is a solution or

not.

2. Examples for the Problem

Below we give two examples whlch can be converted into the form of Problem
(P).
2.1. INDEFINITE QUADRATIC PROGRAMMING PROBLEM.

It is well known that an indefinite quadratlc form dTz + z7 Cz, by usmg

only linear ‘transformations, can be transforrned into the form

g’z +‘z)\i$?{ |

where k is the rank and )\; are eigenvalues of the matrix C.
Let

eIy a= {01 <1<k A > 0} »

L= {i:1Li< kA <0}
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and take, for example,

fi(z) = 3, gi(z) = Nizy” (1 €I.) and h(z) = g7z + E X;z2.
_ i€l
Then we see that an indefinite qﬁa.dratic' problem with linear constraints can
be transformed into the form (P). From [10] we know that a linear constrained
indefinite quadratic problem, even with one negative eigenvalue, is NP-hard. -
It is well known that a bilinear programming problem [1,4] can be formulated
as a quadratic program. A rank % bilinear programming problem in its canonical

form, which has been considered in [13], is given by

' k
min{f(u,v) = cTu+djv+ chu dTv}

1=1
subject to -
Aju by, Ao <by, u20,v20

which is of the form (P) with z = (u,v), fi(z) = c¢Fu, -gi(z) = d¥v and -
h(z) = cTu+ dTv. ' :
2.2. LINEAR COMPLEMENTARITY PROBLEM.

Let f,g : R® — RF be two given affine mappings. The linear complemen-
tarity problem [6], denoted by (LP), is the problem of finding * € R" such
that '

z 20, f(x) 20, g(z) 20, (f(z),9(z)) =0. (LP)

Let f(z) = (fi(z),..., fi(z)), g(z) = (g1(z),...,g%(z)). Then solving this
complementarity problem is reduced to solving the foIlowing-prpblem, denoted
by (CP) _ |
E ,
- min)_ fi(z)gi(z) - (Cp)
i=1

subject to - o :
20, fi(z) 20, gi(2) 20, ¢t =1,...,k)
which is aga,iﬁ of the form of Problem ( P). Note that Problem (LP) is solvalable

if and only if the optimal value of (CP) equals zero. It is clear that if T is a
feasible point of (C'P) and Zf___l fi(Z)g:(ZT) = 0 then 7 is a solution of (LP). In

—
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what follows we shall refer to this program as a rank linear complementarity

problem. .

3. Descrlptlon of the Algorlthm

- This section. we refine upon the decomposition branch and bound algonthm
proposed in [7] for solving Problem (P). We show that for this problem one can
perform ‘the recta.ngular bisection in a k-dimensional space avoiding the vertex
searchmg which is the main computational burden in the method proposed in
[7]. The algorithm that we are going to describe is a form of the Prototype
Branch and Bound Scheme given in [3,4] but here for the convergence an
infinite sequence of nested rectangles does not necessarily tend to a singleton.
A preliminary numerical experiment on a personal computer shows that the
method is quite efficient for k¥ < 3 and resonnably efficient with k is small, say,
less than 5. To rank k linear complementarity problems the method could be
used efficiently with much larger k. : : . -

Assume that X is bounded and that for each 1 the sign of fils uncha.nged
in X, 1e,f,(:v)>00rf,(a:)<0forevery:c€X ‘ :

~ We shall argree, as usually, that 0(+oo) = 0. Denote by f, the optuna.l value
_of Problem (P). The algomthm then can be descrlbed as follows _

ALGORITHM 1.

“Choose a tolerance € > 0. -

_ Imtmhzatwn For each 1= 1 k calcula,te .

§= mm{g,(w) z € X}, f, = max{g,(w) z € X}.
Let -
: Ro:={y=(y1,...,ys) € R* :f_. <y <& =10}
Define B(R,) as a lower bound of f over X with respect to Ro, i.6-

B(Ra) < m_m{Z f:(m)g:(w) + h(z) % € X, g(m) € Ro}.

k=1
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Set Ro = {Ro}, B = B(Ro), ao an upper bound for f« (we see that «q is
obtained as B(Ry) is calculated), and z° € X such that f(2°) = ap. Takei =0
and go to iteration i. |

Lieration ¢ (i =0,...,) _

a) If a; — B; < ea;, terminate: z' is an e solution of {P).

b) If a; — 8; > ea;, then select R; € R; such that

Bi=P(R;) =min{B(R): R e Ri}.

Bisect R; into two rectangles R! and R?. Compute B(R}) and B(R?). As these

numbers are computed we obtain new feasible points of Problem (P). Let zi+1

be the best feasible point among z* and the newly generated feasible points.
Set @iy = f(z**1) and

RL:= (R:\{R:}) U {R}, R?},

R,‘+1 = Ri\{R € R: : ,B(R) > 0:,-.,_1}.
Let .
Bit1 :=min{B(R) : R € R;1,}.

Encrease 7 by 1 and go to iteration .

To complete the description of this algorithm one has to give rules for
computing lower bound S(R) and for bisecting a rectangle into two subrectang-
les. The convergence and efficiency of the algorithm crucially depend on these
bounding and branching operations. The bounding and branching operations
that we are going to describe are essentially the same as those in [7], but here
taking into account the specific structure of Problem (P) the vertex searching
required in [7} is avoided.

3.1. BOUNDING OPERATION. . |

Let R= {y = (¥1,-. ., k) ER* 1 q; <y, < b, t=1,...,k} be a nonempty

subrectangle of Ry. For each i =1,...,k let

(ﬁ'R {a,- if f,(m)ZO
YTl # fi@) <o

(Note that by our assumptidn the sign of f; is unchanged on X )

(3.1)
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" Define B(R) as the optimal value of the following convex program, denoted
by-(RP), - '

k o o
n (Z §Efi(x) + h(:c)) , L (RP)
1=1 :
subject to ' : ‘ >
CCEX, gi(-’r):yi,'aisyiSb;‘ (2= 1,.;.,k). ’
As usually we let S(R) = +o0 if this program has nonfeasible points.

LEMMA 3.1. Let
R={(y1,.-y) €Ro:af Sy b (G=1,...,k)}

where af and b;-? (1 =1,. k) are given.
Then

L
B(R) < a(R) = min{) _ fi(z)gi(z) + h(z) : = € X, g(z) € R}.

i=1
PROOF. Since the feasible domain of (RP) is compact, this problem has an
optimal solution whenever its feasible set is ﬁonempty.
For each j = 1,...,k let y; = gj(z) and y = (yl,.._.',yk). Then

' ko . .
~a(R) -:{Ei;}{zfj(w)yj +hz):zeX, gi(z)=v;, yER} .
1 j:l .

z?ﬁﬁ{E Cfi@yj+h(z) e X, g(z) =z, y,2€ R} -
.y N - .

- =minlgg( o e + M) e € X, o) =2, 2 € 1)

—mm{z m1n f,(m)y, + h(a:)} z E X, g(:c) =z,z€R}

=1 J Sy <
—mln{z §7 f,(a:) ze€ X g(a:) —z,z€ R} ,B(R)

If the feasible set of (RP)lis empty,' then B(R) = a(R) = +oo. - 0l

o
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Lemma 3.1 allows us to calculate the lower bound B(R) by solviﬁg convex
program (RP) which is linear if A is affine. Let (z®,4®) be an optimal solution
of (RP) Since the feasible set of Problem (RP) is contained in X, zf
a feasible pomt of Problern (P) If 5R = g,(:cR) for every §, then it is clear
that B(R) = oz(R) In thls case the rectangle R may be deleted from further
consideration. 7

3.2 BRANCHING OPERATION

Assume that we are in 1terat10n i. As we have remarked if 6R' = g(a:R')
then

B(R;) = G(Rs) = Zfs(mR‘)gi(:BR‘) + h(z'4).

This and the fact that (R;) is a lower bound of fe 1mply that z ': is a global
optlmal solution of (P). Thus if §% #£ g(z®) then it is nature to bisect the
rectangle R; into subrectangles in a way such that as the algorlthm proceeds
the distant between 6% and g(2%) tends to zero. Such a subd1v1s10n can be
described briefly as follows. ' | :

- Assume that we want to bisect a rectangle R C R¥ into two' subrectangles
Let u,v € R, u # v. Select an index jp € {1,. k} such that |

0= )il = g lu— vyl

Define -
Rl - {y € R yJH < (uJR + 'UJR)/Q}a
Rz ={y€R:y; > (wjn + vm)/Z}

It is clear that RI,RQ are nonempty subrectangles of R. This branching ope-
ration has the following property which was proved in [7]. For the convenience

we shall call u,v the dnnsmn (or b1sect10n) points of R.

LEMMA 3.2. Let {R } be an infinite sequence of nested rectang]es generated
in the above branching operation. Let u? and v? be the djwsmn points of Ry.

Then

lim (u? — vq) =0

g—o0
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~ provided this limit exists.
‘REMARK 3.1..° -
It is easy to give'arll example for which an infinite sequence of nested'reétang;
les generated by the above bisection does not tend to a single point. Thus this

‘branching operation is, in general, not necessanly exhaustive [4,11]. However it -

is sufficient to guarantee the convergence as the following theorem shows.

THEOREM 3.1. Assume that the bounding and bra.nchmg operations described
‘above are used in Algorithm 1, then we have

(a) If the algorithm terminates at iteration i, then

7@ )—f* < ef(a).

(b) If the aIgonthm is mﬁmte, then f; / fo @ \, f,. ast — oo, and every
Jumt pomt of the sequence {a: H) soIves (P)

ProOF. We observe that, since X is compact, the convex prograrn (RP) has
an optimal solution for every rectangle R C R, whenever its feasible domain is
nonempty. Hence B(R) > —oo for every R & Ry, and therefore the bra.nchmg
operation is well defined. '

(a) If the algorithm terminates at iteration ¢, then a; — PBi < ea;. Since
B; < f. we have a; — fu = Ff=') = fe < ea; = e_f(:c')

(b) If the algorithm is infinite, then there exists an infinite sequence {Rg}
of nested rectangles, i.e., Rq+1 C Ry for every q. Since the division points
ul = §Rs v = g(zf) belong to Rg, we may assume, taking subsequences if
necessary, that u* = = limuf, v* = lim 49 exist. By viture of Lemma 3.2 we have
u* =" .

On. the other ha.nd

0<0‘q ﬁq<ZfJ(mR )gJ(ER')“‘h(qu) Zuqu(l'Rq) h(a: ,)

' J=1 ) 3—1

=Y " ) —uf) F(a™) = Z(U uDhER).

j=1



BILINEAR PROGRAMMING PROBLEMS - 105

Hence, letting ¢ — co we obtain lim (a;—8,;) = 0. This and monotonicity of the
g—oo
sequences {;}, {fi} imply lim o; = lim B;. By the definitions 8; < fu <
i -7 oo i— 00 .
for every i, we ha.ve limo; = lim f8; = f,. Note that a; = f (=) for every 1, and

therefore every limit point of the sequence. {z'} solves Problem (P).

4. The Case of Linear Complementarity Problem

In this section we apply Algorithm 1 for solving linear complementarity
problem (LP) stated in Sectlon 1. As mentioned solving (LP) is reduced to

solving the problem .
k .
min » ° fi(z)g:(z),
i=1

subject to N

Since our task now is to find only a feasible point 7 satisfying Zf=1 fi(z)gi(z) =
0, rather than an optimal solution of this problem, we may take zero as both
upper and lower bounds. Thus a rectangle R is deleted if the optimal value of
the relaxed problem (RP) is greater than zero, and therefore only rectangles for
which B(R) = 0 are still of interest. Algorithm 1 for this case reads as follows
Algorlthm 2

Initialization. For each j = 1,..., k take

_Q:J. 1= mil-l{gj(:c)._ z > 0, f,(:c) > 0, g.(a:) > 0 i= 1 .k}
' 'Ej =5 maX{gj(a:) > 0, f,(;c) > 0, g,(m) >0, 1= 1,. k}_ '

Let Ro := {y = (%1,-..,yx) € R* : f <y,<§1,] sk} Set 1 =
0, R := {Ro} and go to iteration i.

Heration i (i = 0,...,) o _ .

 For each rectangle R = {y “.-=.(y1,_...,yk) el Sy <R j=1,...,k} ¢
{R;} solve the linear pr'égram'(RL) given by

E
min Z a?fj(a:),
=1
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subject to
£20, fa(m) >0, gg(m) = yJ, af <y s bR, i=1,...,k

Let (:cR, yR) denote the obtamed solution of this program . :

a) If z® satisfies E , fi(2)g;(x} = 0, then terminate: a:R is a solution of
the complementarity problem (LP). _ . '

b) Otherwise, delete from R; all rectangles R for which ﬁ(R) > 0. Let R}
be the set of the remammng rectangles.

'b1) If {R!} = 9, then (LP) has no solution.

b2) If {R:} # @, then choose a rectangle R € ’R’ such that

> —RVR’R'
a0 — a1 2 e l® — o] VR e

Using y® and of as division points and bisect the rectangle R; into the two

rectangles R, R,g by the above descr1bed rectangular blsectmn Form

'aﬂtlwwﬂnumm&ﬁ

Increa.se i by 1 and go to 1terat1on i

The val1d1ty of thrs algorlthm is clea,r from the followmg remarks

REMARKS

4.1. If for some rectangle R we have that y® = a® and that z® is not a
solution of (LP), then ﬁ(R) > 0, and there R is deleted.

4.2. In the algorlthm a rectangle is ehrmna.ted from further consideration
only if ﬁ(R) > 0. Thus if at some iteration ¢ the case bl) occurs, i.e., R =0,
then S(R) > 0 for every encountered rectangle wh1ch implies that (LP) has no
solution. ' ‘

4.3. This algorithm does not require any'assurnntlon on the structure of the
involved functions f and g, except the one which ensures that £, ; < +oo for
every j. Note that the linear prograrn (RL) is always solvable, since its llnear_
objective function is bounded from below by zero.

4.4. The algorithm could be applied when f; is a concave function for each
i =1,...,k. In this case (RL) is an ordina_rj.convex program, since aﬁ-{ > 0 for
every R C Ry.
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5. Preliininary Computational Experiments

In order to obtain a preliminary evaluation of the performance of the propo-
sed algorithms we have written and tested a C computer code that implements
the algorithms. To test the code we use it to solve twenty radomly generated
problems on an ARC 286 personal computer.

Tables 1 and 2 contain respectively the computational results for ra,nk k

bilinear problems of the form

min Z(Fi,:r) (G, z)

subject to
Az <b, 220,

and for rank % lincar complementarity problems of the form
z€R', 220, Cz+c®>0, Da+d* >0, (Cz+c° Dr+d) =0

where all of entrics of the matricies 4, C, D and the vectors b, °, d° F, G¢
(¢ =1,...,k) of the test problems were radomly drawn from the integers in the
intervals [- 10, 10). The ordinary simplex method was used for computing lower
bounds. '

In Tables 1 and 2 we use the following headings:

- N: the number of variables,

- M: the number of constra.in;s ( without z > 0),

- KK: the rank,

-ITE: the number of iterations,

-MNR: the number of the rectangles stored in the memory,

-TIME: the CPU time (in second). 7
For bilinear problems we take the tolerance e = 1072, for complementarity
problems ¢ = 1076,

The results in these tables show that Algorithm 1 could be used for solving .-
rank k bilinear programming problem up to & = 5 on an ARC 286 personal
computer, while Algorithm 2 is efficient for rank % linear complementarity -

problems with k is larger. The reason is that for complementarity problems
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one can check whether a given point is solution or not. We hope that on a fast

L.D. MUU and B.T. TAM

computer the proposed algonthms could be used efﬁmently for larger k.

'In the both tables it appears that the ;unmng time is much more sensitive

to grow in the rank than to grow in the number’ of constramts or vanables The

required memory however increases very slowly as the program runs,

large percentage of the generated rectangles i

ration.

Prob. M

10

tOOO%]GﬁCﬂ»#W_MI—'

10

S
o = O
[ J S

10

10.
10

10

Table 1 (for rank k bilinear problems)

N

15
20
20
30
50
10
10
20

10 -

20
10

K

oot U B B 00, W W W W W

ITE

64
142
334

124
132 -

241

54
108
344

439 .

1000
518

18 ehmmated from further consxde-

MNR TIME (second):

16
99
89
44

.32 .
65-

13
- .68

105
219 -

229
247

3.23
9.91
24

- -27.08
©3L2 .

86.92
11.47
65.85

-118 -

~121
140.6

1710
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Table 2 ( for rank k linear compleménta.rity problems)

Prob. M N K ITE ~MNR TIME (second)

1 5 15 3 4 3 0.96
2 10 50 3 12 9 6.2
3 8 10 4 3 6 1.6
4 15 20 5 4 12
5 6 20 10 4 6
6 10 50 ~-10 4 12.1
7 10 50 50 12 9 19.7

'8 20 50 30 9 6 23.1
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