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A SUBCLASSIFICATION OF UNIMODAL DISTRIBUTIONS

NGUYEN. VAN. THU

Abstract. We introduce and study classes Py, > 0, of a-times unimodal
distributions. Various characterizations of these distribittions are obtained and
- relations between. them and fractional calculus are established.

1. Introduction

A real Variable.tr.v.) 61‘ its distribution function F {shortly, distribution) or
its density f.is called unimodal aebout a if F' is convex on (—oc,a) and concave
on (a,00). ' '

‘A famous theorem of Khintchine [3] (see also Shepp [9]) asserts that F
15 unimodal about 0 if and only if it is a distribution of a product of two
independent r.v.'s one of which is uniform on the interval (0,1).

- Let X and Y he in.:(llepenf,lc-ut.r.v.’s with distributions G and F, respectively:’
We dené_te by G o F' the distribution of the product XY. Then F is unimodal
about 0 if and only if F'= U oG, U being the uniform distribution on (0,1) and’
G a distribution. The-latter equation can be written in the following 1ntegral
form SR R S
F(x) :/‘; G(x/t)dt, TER. - (1.1)

“Let P'be the éléss: of all (1i§i:ribufi<nls on the rcal hne R'équipped with the
weak convergence =. We denote by ’Pl thc class of all dlstrlbuhons on R which
are ummodal about 0. F01 W= 2, 3. lct P, be thc subclass of ‘P consisting
of dlstrlbutlon‘; F=UoG for whlch G E T‘n_l Every dlStI‘Iblltlon in P, will

be called - tmcs wmmodal about g..
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The simplest example of distributions in P, is the distribution U® = U o

o U (n times). More generally, every distribution in P, is of the form

which, by virtue of (1.1), is equivalent to the following formula

F(z) = /G’.r/u)( Iogu)” 'du, zeR. | (1.3)

-1
The above formula suggests the following interpolation of ciasses 73 For every

positive number « let P, denote the class of all distributions F' on R such that

for some distribution G
1 1 - ' S - .
F(z :————/Gmu —logu)*'du, z€R. 1.4
(‘),.I‘(a)o_(m/)‘ ogu) du, TER. (1.4)

It should be noted that_fox: every distribution G and for every a > 0 the right-
hand side of (1.4} is finite and defines-a distribution.

As in the integer case, the distributions in Py will be called a-times unimodal
about (. Note that the class of a-times unimodal distributions introduced above
differs from the class of a-unimodal distributions introduced earlier by Olshen
and- Savage [5] (see. also Dharmadhikari and Joag-dev [1], p.72). To see this
the reader is referred to Example 5.3 ‘and should compare Theorem 2.2 of this
patp,er and Theorem 3.5 in Dharmadhikari and Joag-dev [1}, p.74. -

- The main.purpose of this paper .is to discuss representation -prbbletns-of
multiply unimodal distributions. In a subsequent paper we will study infinitely
divisible distributions in P,.

The paper 1s orgamzed as follows. In §2 we prove a generahzatmn of Khlnt-
chine- Shepp representatlon of ummodal dlstrlbutlons The general propertles
of the class Pa i is stud1ed in §3 In §4 we prove a representatlon of - tlmes‘
ummodal d1str1but1ons by fra,ctlona,l 1ntegrals In §5 an a,nalogue of Olshen
Savage representatlon is obtalned which glves a clea,r a,spect of extentlon of
the concept to multidimensional spaces. Fmally, in §6 we present a result of
Yamazato about the convolution of elements of Py and glve some examples of_:'

1nﬁn1te1y d1v1s1ble dlstrlbutlons in Pg.
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2. Generalized. Khintchine-Shepp Representatlon

The formula ( 1 ‘7) is a generaluatlon of Khmtchme-Shepp s representatmn
to n-times unimodal distributions (n=1,2 . ) We will repla,ce n by a pos1t1ve
number a extending the representation to the fractional case.

~ We start with some facts about the uniform distribution U on (0,1). We

associate with every r.v. X or its distribution F the following diagonal matrix
W defined by

-W"-’-(t)._: (woo(t). wlo(t)).’ t.E,R’. ey

where wi(t) = B|X|"sgn*X, k=12
The matrix Wp is called the characteristic transform of X. For the basic
‘properties of characteristic transform see Zolotarev [1 1]. In particular, we have

the following relation _
, WFoG =WrWg (2.2)
Moreover, F, = F if andﬁ ohly if, W};-n (t) uniformly. cdﬁverges to Wp(t) |

We say that a distribution F is o-infinitely divisible 1f for ‘every n=1 2 .
there exists F), such that F' = F,

2.1.. PROPOSITION. The uniform distribution U on (0,1) is o-infinitely divisible.
Let U* be its power under the operatjon o of order o > 0 The denmty fo of
U® is given by ' | _

falz) = a )( loge)*™!, 0<z<l. 7 (23)

Proor. Let F, be the dlstrlbutlon with dens1ty fc,, From (2 1) and (2 3) it

follows that ' (it + 1) . 0 ' '
Wy(t) = ( z N ) ' (2.4)

[ (zt+1)‘,‘ |
(zt—i—l) 0
()_( 0 (%t+1)‘ ) ' 25)

(t € R), which implies that for everyn = 1,2...,U = ) L€ U is o-infinitely
divisible (cf. Zolotarev [12]) and that

U*=F,, a>0. 0 - (2.6)
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2.2. THEOREM. A distribution F' of R is a-times unimodal about zero if and
only if there exists independent r.v.’s Y and Z such that U® is the distribution
of Z and F is the distribution of YZ. In other words, F belongs to P, if and
only if for some G from P B _

F=U"0G. ) (2.7)

ProoF. It follows from (1.4) and Proposition 2.1. [ -
COROLLARY. If F € P, and H € Pg then F o H € Pyyp.

2.4. COROLLARY. Every a-times unimodal distribution F (« > 0) is absolutely
continuous on R\ {0} and its density F' is given by

()_{ r(a)f (—logz/y)*~™ 'G(dy)ly, >0

(2.8)
iy Joao(—log 2/y)*~ 1G(dy)/y',_ z<0 '

where G € P.
2.5. COR_OLLARY. Suppose f is an «-times unimodal (about 0). density. If
o > 1, then f is non-increasing on (0,00) and non decreasing on (—o0,0). If
« > 1, then 0 is a discontinuity point of f anf
f0H)=00 if1—G(0+) >0
L - (2.9)
f(-0)=00 ifG(0-)>0

2.6. COROLLARY, If f is a continuous or bounded density on R, then it can
not be a-times unimoda] about zero for every o > 1.

Proor oF COROLLARY 2.3. It follows from (2 7) O

PROOF OF COROLLARY 2 4. ltisa consequence of formulas (1. 4) and (2. () E]

PRrROOF OF COROLLARY 2.5. The first statement follows from (2.8). Suppose
that # > 0 and o > 1. Then (2.8) implies that

s [t @-loma )Gy (10)

flz) =
Note that for -ev-ery y the integrand of (2.10) is a nén__—_in%:re_aéing :'fﬁnction of 2.
Therefore it tends to co as z tends to 0 and z > 0, which shows that f(0+) =
whenever 1 > G(0+). Similarly, we have f(0—) = co whenever G(0—) > 0. O

PROOF OF COROLLARY 2.6. It follows directly from Corollary 2.5. O
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2.7. EXAMPLE. The standard normal distribution N{0, 1) is- unimodal but not

a-times unimodal about 0 for & > 1 beca,uc;e its density is continuous on R.

2.8. EXAMPLE. By Sato and Ya.mazato s results [11] and by Corollary 2.6 it
follows that all nondegenerate distributions in L-are absolutely continuous on
R and ﬁnimoda,l. Moreover, if the density f is contimious on R (for example,
if its Gaussian component is not trivial), t.he-n for every @ > 1 f is not a-times
unimodal. 5
2.9. REMARK. ‘Independently, Example .(2 8) was proved b_;)} Yamazato for the
case o > 1 (prlvate commumcatlon) who apphed the results to prove Exa,mple
2.7. Earlier, Zolotarev (prwate commumcatmn) showed that’ N (0 1) is not

2:times unimodal.
The following theorem is a generalization of Theofem 8 in Zolotarev [12].
2.9. THEOREM. A distribution F is a-times unimodal about 0 if and only if

the matrix (1 +)*Wg(t) is a characteristic transform.

PROOF. It follows from (2.4), (2.6) and (2.7). OO

3. The monotoncity, convexity and continuity of Classes P,
We begin with proving the following theorem:. .

3.1. THEOREM. _
| (1) Pola > 0) is closed under Weak convergence and convex combinations.
(i) Ifa > B,
Pa L Pg. - IR G B )

( 111) 60 13 the only d1str1but10n belongmg to aﬂ classes ’P Here we write bo
for- the degenerate d1str1but10n at a.
(iv) For any 8 > 0,

U =
°’>ﬁ7)a P’G

Where the bar denotes the cIosure m weak topo]ogy and for B = 0 we write

Pﬂ -—~'Po

PROOF (1) The convexity. of 7’0 is.clear. Further, we have § € 77& Let: {F }

be a sequence in P, converging to a distribution F' other than é;. By Theorem
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2.2-there exists a sequ_ence-{Gn} C P such that for every n.’
F = U°‘ o G,,,, | ) (3.2)

Takmg the character:stlc transform of both sxdes of (3 2) we get.'

W, = Wye(t)Wa, (2).
Therefore, the sequence G, is convergent to a limit G. Thus we have F' = U%o &
wh1ch shows that F is an element of P, and consequently, the set Py 1s closed
in weak “topology., , . _
(11) Suppose a > ﬁ and F' = U" ) G € P Then F = U‘B 0 (U" ’3 oG) whlch
imphes that P, is a subset of Ps. It remains to prove that the inclusion cannot.
be replaced by an equahty S
In fact we shall prove that Uﬁ E PPN Pe, Suppose tha.t for some G from
P we have ' ' ' ' .
Uf=Utec. | RENEY)
Taking the characteristic transform of both sides of (3.3) we get the fogmul-a
I = Wya-s(t)Wal(t), . o (34)
I being the unit matrix. Consequently,

U*F oG =8 T 38)

which contradicts the fact that the left-hand side of (3.5) is absolutely conti-
nuous on R\ {0} (cf. Corollary 2.4).- - |
(111) It is clear that 50 belongs to a,ll cla,sses Pa. Suppose that there exists
another d1str1but10n F with the same propcrty Then for every n= 1 2 therc
is G, such that - S |
F=U"0Gn L (38)
Let X,Y and Z be 1ndependent r.v.’s Wlth dlstrlbutlons F U and G,. res—A
pectlvely Passmg to the absolute value and changing the probablhty space 1f

necessary, one may assume, without loss of generality, that X is positive: with

probability one. Then Z,’s share the same property. Let f, g,k denote the
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characteristic functions of log X, log ¥, and log Z,, respectively. From (3.6) we

get the relation
()= g"(Dhalt), teP - (3.7)

Lét':f\f «(f) be the I(hii_ltclline functional defined on characteristi_é functions f by
No(f) = —Re /0 “log ftya
Chdosing a > 0 such that N, (f) < oo wé get l'the é'q;mtion
Nu(£) = nNo(g) + No(hy)
which implies tha;t_ Cln e - TS
M) SN, =12 @)

Comnsequently, N,(g)= 0 which contradicts the fact that

N.(g)= —;-/ log(1 + tQI)(lt >0.
0

~.(iv) follows from Theorem 2.2 and from the relation

BmUB o U0 G = UP o &

a-—0

where 8 > 0and G e P. O

- .. 4. Representation by ‘Fraéti_onal Integrals - .
"“Given a function H on R \{O} we define two auxiliary functions H 4 and
: o Hy(t)  =e'H(eTh) - SR
H_(t) =e'H(—-¢'), teR REAANA

It is evident that H, and H_ determine H uniquely.
Let F' be a distribution from P,. Then for some distribution G the formula

(1__.4)71191d$. By a simple change of variables in (1.4) we get:

Gy r=0
Flz) =< ) fzoo(logu/x)“‘lG(u)%. z >0 : (4.2)

oy Joologu/z)* T G(u)E <0
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—1

Putting = = sgn ze™" and u = ¢7? and taking into account ‘the formulas (4.1)

and (4.2) we have

Fi(t) =y [ (=) IG (v)dy (4.3)
L) =gl it =) G (v)dv,t € R -
which are integrals of fractional order o of G4 and G_. That means
Fi(t) = D°Fu(t), te€R | . (45)

The reader is referred to Post (1930) and Letnikov (1968) for an account of-
fractional calculus. N ' -

We summarize the above results in the following theorem

4.1. THEOREM. For every a-times distribution F or R there exists an unique
distribution G such that F anf F_ are integrals of order o of G} and G_.,
respectively. Conversely, for every distribution G on R the formula (4.4) defines

an a-times distribution.

4.2. REMARK. From the above theorem it follows that if F' is e-times unimodal
then Fy and F_ are a-times differentiable and (4.5) holds.

5. An analogue of Olshen-Savage’s Representation

As mentioned in §1, Olshen and Savage [5] introduced and studied an im-
portant concept of a-unimodality. Their results extend, enrich and illuminate
Khintchine’s original results on unimodality. . Following Olshen and Savage [5]
we say that a r.v. X is a-unimodal about 0 if for every bounded, nonnegative, -
Borel measurable function ¢ on R, the quantity ¢*E [g(tX )] is non-decreasing
int € (0,00). | T

The following theorem was proved in Olshen and’ Savage [5], (see also Dhat-
madhikari and Joag-dev [1], Theorem 3.5,p.74).

5.1. THEOREM. A r.v. X ‘is a-unimodal if and only if X is "dj_"s;tribufted'as' :
W'/ Z where W is uniform on (0,1) and Z is independent of W.

- Givenar.v. X and a boﬁnded, Borel measurable function g we put

H(X, g,z) = e"Eg(c*X), z€R. (5.1)
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Further, if F'is a function bounded on (—co,d},a € R, its right-handed diffe-

rence of fractional order & > 0 is defined by

A f(e) = i::(—l)"' (z) flz — kt),

(t >0,z € R), where

(z) B { i-(a—1)...(a—k—1)/k! :(1)2

A function f of R is called a-non-decreasing if for every € R and for every
it >0,
A7 f(z) > 0. {5.2) -

Note that for « = 1 the above concept is reduced to that of nondecreasing
functions. The following theorem stands for an analogue of Olshen-Savage’s

representation (cf, Theorem 5.1 and the definition of a-unimodality).

5.2. THEOREM. A r.v. X is a-times unimodal about 0 if and onlv if the
function H(X, g,2) defined by (5.1) is «-nondecreasing in x for every bounded,

nonnegative, Borel measurable function ¢

PRrRoOF. We borrow some ideas from the proof of Theorem 1 and 2 in Olshen
and Savage [3].

Suppose first that X is a-times unimodal about 0. By Theorem 2.2, the
re exists independent r.v.’s ¥ and Z such that ¥ is a-uniform on (0,1) and

XE2YZ Let g be as in the theorem. Then we have

H(YZ,g,7) =

£ pl ' |
4
- Eg(e*yZ)(—log y)*1d
P(a)fo 9(e*yZ)(~logy)*dy
1 N —1Y ¥
= x —y) f)
Ta) f_m(’f y)* e gle” Z)dy
which implies that '
H(‘YJQ,IE):I“H(Z,‘(],.’E), zeR. (53)

Consequently, H(X, g, ) is a-nondecreasing.
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Conversely, let S be the class of all functions f.on R with continuous and
bounded derivatives f(*) &k = 1,2...,[a] 4+ 1. Here [a] denotes the integer part

of a. By Dominated Convergence Theorem

FL gL
TFEfe2) = B4 (D)

for every k =1, 2,. |ae] + 1 and every f from S and every r.v.Z. Consequently,
D*Ef(e "Z) EDO‘f(e$Z)

Suppose that' X is a r.v. such that for every bounded, nonnegative; Borel
measurable function g the function H(X,g,z) is a-nondecreasing in x. Let L

be ‘a linear functional on S defined ._by L

L(f) D“H(X ¥ )| fes. (54

=(}’V
It is clear that L is nonnegatwe and normahzed by the condition L{1).= 1. By

virtue of the Riesz representatmn theorem 1t follows that there ex1sts an umque
probablhty dlstrlbutmn G such that ' '

L(f / f(m G(dw) fes. (89

Appl'ymg (54) and (5.5) to the functlon Flet x) where ¢ is fixed number, we get
the formula | _ '
f f(e a:)G(da:) =e ‘D*H (X £,t). N X )
Let Y and Z be r.v.’s with the same property as in proof of the “only part”
By (5.3) and (5. 6) we get
CDUH(YZ ft) = H(Z,F,t)

H'e/ G(dz)

= D*H(X, f,1)

The above equalities together Wlth the fa.ct tha.t

H(YZ,f,-— ) H(X f) ) 0



SUBCLASSIFICATION OF UNIMODAL DISTRIBUTIONS 247

imply the equation
Ef(YZ)= Ef(X), fES.

Consequently, X and YZ are identically dlstrxbuted which implies that X is

a-times unimodal. [J

The following simple example can be used to distinguish the two concepts

of & unimodality and a-times unimodality.

5.3. EXAMPLE. Let ¥ be a r.v. uniformly distributed on (0,1) and X =
Y%,ﬁ > 0. By Lemma 1 in Dharmadhikeri and Joag-dev [1] p.73, X is B3-
unimodal. It is trivial to see that if § > 1, then density of X is increasing on
(0,1) which, by Corollary 2.5, implies thét X is not 8-times unimodal.

Now let 0 < & < 1 and Z be a r.v. distributed as UU/®. By Theorem 3.1,
Z is not unimodal and therefore it is not a-unimodal. Note that Z is a-times

unimodal.

6. Multiple Unimodality of Infinitely Divisible Distributions

We start with the following proposition which was essentially given by Ya-

mazato (private communication).

6.1. PROPOSITION. Suppose a > 1. There exists symmetric ee-times unimodal
‘dJStnbut.‘Jons ¢ and v such that the convolution p * v is not a- tjmes unimnodal
(about 0) '

PROOF. Suppose tha.t for every pair of symmetrn - tlme% ummodal (about 0)

distributions u and v, pkvis syn_nnet_rm and a-times unimodal. _
Let v be a sym'metr‘ic a-times unimodal distribution and ¢ > 0. Since

the mixture of symmetric a-tirmes unimodal dlstrlbutlons 1s symmetric a-times

unimodal the dlstnbutmn ,u deﬁned by

c oQ T *n
/n!

cp=ett ) tetu”

is a-times unimbdal.
Put
Kndz O0<|z|<1/n
Grla,r) =

0 lz[ > 1/n
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where K = 3( fo —logy)* 1y*dy)~"! and

vu(da) = [ (~10gy)*™ Gulde/u)iy.

Then ¢, 'v, is a symmetric a-times unimodal distribution, where ¢, — v,(R).

Let ptn be an infinitely divisible distribution with the characteristic function
Rt itz
i1,(t) = ex et — 1 — ———)u,(dz).
) =eap [ (€1 21— ()

then p,, is symmetric a-times unimodal. Qur further aim is to show that Jin
converges to N(0,1).

Accordingly, let us consider the positive part of v,(dz). We have

 n(Eeo) = [(Clogn TGNy =0 (61

Given € > 0 choose n such that ne > 1. Then we have

€ 1 €
‘ / =/ (—IOgy)“‘l-/ Gn(drﬂ/y-)dyzl.r-
" Jo o : 0 4

- By (6.1).and (6.2) we infer that pu, converges to the standard normal dis-
tribution which implies that N(0,1) is a-times unimodal. - This contradicts
Example 2 7 O

In a prlvate commumca,tlon Yarnazato asked whether or not there exists
an 1nﬁn1tely divisible a~times unimodal distribution. In what follows we: will
answer Yamazato’s questlon by giving some examples Wlnch show that the class

of mﬁmte}y lelSlblC a-times unlmodal d1st11but1on is rn,h enough

6.2. E}\AMPLES Suppose arv. X has the followmg distribution: -

(1) Fis symmetrlc with log éonvex chara,cterlstlt. function on the positive
half-line (cf Keilson and Steutel [2 ]) o _ -

(ii) F is the distribution of [Y|™", ¥ being -symmetric stable with exponent
p<2andr> 2—2_% (cf. Shandhag,Pestana and Sreehari [8]).

(iii) F' is the distribution of ¥", ¥ being a Gamma r.v. with index ¢ > 0
and r > max(1, p) (cf. Shandhag and Sreeheri [7]). -
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Then, if X and Z are independent, the product X Z is infinitely divisible.
Moreover, if Z is a-times unimodal, then X Z is a-times unimodal and infinitely

divisible.
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