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ON THE ROCKAFELLAR DERIVATIVE
OF MARGINAL FUNCTIONS AND APPLICATIONS

DO VAN LUU

Abstract. In this paper, some evaluations of the directional Rockafellar deriva-
tive of a function defined by @p(a) = inf {f(z, y) ly € F(z)} via the directional
Clarke and Rockafellar derivative of f are shown. These evaluations are applled.
to find necessary optimality conditions for generalized optimal control probleins
governed by hemivariational inequalities.

1. Introduc_tion

Let us consider the following function -

er(@) =inf (fe) |y F@), (1Y

where f is a function defined on X x Y, F'is a set-valued map from a Banach
space X into a finite dimensional space Y. |

The directional derivatives of yr under different assumptions have been
already studied in many works, see c.g. [1], (3], [5]~[7], (9], [11)-{14]. In [12]
Pschenichnyi has investigated the case where f is a continuous convex function
and the graph of I is a convex closed set. For the convex case see also Hogan [9].
For the differentiable case, we refer the reader to Beresnev and Pschenichnyi (1],
Dem’yanov {5], Délﬁ’}-’&noxr and Malozemov [6]. In [7] Hiriart and Urruty has
shown various evaluations of Clarke’s generalized gradients of ¢ in the case
in which ¢ is locally Lipschitz. These results were generalized by Minchenko
[11] for the case of reflexive Banach spaces, aud by Thibault [14] in terms of
Kruger-Mordukhovich’s subdifferentials.

In the present paper we treat some cases when @ 1s not locally Lipschitz.

The paper is structured as follows, Section 2 is devoted to evaluating the
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Rockafellar derivative of ¢ via the Clarke derivative of f. Section 3 treats the
case of f being directionally Lipschitz. Finally, in Section 4, an application to
find necessary optimality conditions for generalized optimal control problems

governed by hemivariational inequalities is given. - -

2. An evaluation of the Rockafellar derivative of v,

For convemence of the reader let us recall some notlons of nonsmooth anal-
ysis (see e. g [4])
DEFIN_ITI_ON_Z.l.V Let ¢ be Lipschitz near zo € X. The directional Clarke
derivative of ¢ at zo with respect to d, denoted by @%(zq; d), is defined by

% (z0; d} = lim sup ple + Aci) — ¢() - (2.1)

=T

:AL0.

DEFINITION 2.2. Let ¢ be an extended-real-valued function'on X. The direc-

tional Rockafellar derivative of @ at o w1th respect to d denoted by @ (zo; d),

is deﬁned by
RN o cp(a:—i—)\w)-»a ‘ .
oo )= g T oyt EEEEE 22
CoAle :

Here, (2, 0a) Ly o means that (z,a) € epip , T — %o and o = @(zg) ; B
stands for the open unit ball. .~

. When ¢ is lower semicontinuous at zo; the limit (2.2) is'of the form - :

e d) =l i s et T )
AL0 _

where z |, zo means that 2 — ¢ and p(z) — wl(zo)- -
. We recall [4] that when ¢ is finite at. zo, the set of subgradients of ¢ at g
is deﬁned by B o

eln) = (7 € X | (D € Nalana)), (24)

where Nepio(2o,¢(zo)) is the normal cone to epip at (310,:(,9(.’19'0)').7 _
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Note that when o1(zg;0) > —oo, (2.4) can be expressed by
Fp(z) ={e* € X* | <2*,d> < ¢(z0;d), Vd € X). (2.5)

Throughout this paper we shall deal with functions defined by (1.1) where
f is an extended-real-valued function on X x Y. To evaluate the Rockafellar

derivative of ¢ p via the Clarke derivative of f, we set

Mp(z)={y E F(z) | ‘PF(”C) flz, )},

and denote by F the graph of F.

THEOREM 2.1. Let ¢ be lower semicontintious at o € X. Assume that Mg
possesses a selection § which is bounded in a neighbourhood of xy. Suppose, in
addition, that f is finite at (z¢,¥o) and Lipschitz near (g, %) for all §, € ¥y,

where Yy is the set of all accumulation points of §(z) as ¢ — zo. Then,

@L(zo; R) < sup f(x J)(zo,yo,h k) (V(h,k)e n_ Tr(zo, %0))s (2.6)

Fo€EY Jo€Y o

where Tr(zo, o) stands for the Clarke tangent cone to F at (zo,%).

PROOF. Take any (2,k) € N_ Tr(zo,%0).and any € > 0. Since ¢p is lower
yoe)
semicontinuous at zp, F can be expressed by (2.3). ‘Ne set

. oo+ w) — er(2)
o5y h) = inf
PRlaim =tm e ol
Alo

¥

and choose sequences z,, :l‘pp o, An l U:sa.tisfying

. o PF(Ea + Aw) —pp(za) '
(zg;h) = 1 f . 2.7
@(za; k) A e, ™ (2.7)
For the bounded selection i, denote §, = j(z,). Then it can be extracted

a subsequence §,. — o € Y. For sunphaty of notation we write {7, } instead

of {yx.}. Thus,

dimy,=gp and  @p(za) = f(2n,Gn) (28)

n—oco
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Due to Theorem 2.4.5 of (4], for {{zx,7n)} and {A,} above there exists a

sequence. {{hn, kn )} converging to (h k) such that
(wn,yn) + )\n(hm kn) € F
which implies tha;t,
©F(Tn + Anhn) < F(@n + Ankny T + Anka). (2.9

Since f is Lipschitz near (2o, fio), it follows from (2.8), (2.9) that
Or(Ty + Anhn) —or(En) = er(za + Auha) = f(20,¥a)
= @r(Tn + Anha) = f(Zn + Anha, Fa + Anka)+
4 f(Zn + Anbn, n 4 Ankn) — F(Tn + Anh, Fn + Ank)+
+ F(n 4 Aahy G+ Ank) = @)
< fln + Aohy Gn+ Auk) = F(@n,n) + Anch,

1

gl — 0 as n — oo, whence,

whero £

@F(mn + A"h,ﬂ) - 5917'(3::1‘) < f(mn + Anha gn + /\n;") - f(‘rn-a gn)

1.(2
X, < . +¢e,. (2.10)

Moreover, for all n sufficiently large we have

inf @F(.’Sh + /\"w) - (PF('-T""'). <99F(ln +'>\n hn) - 9917(-1'11)
wER+eB . ) ’\n . —= )\n \

which together with (2.7) and (210) implies that

0% (:.!:O,h) <. sup, f(I o {(%os o) + lnn el
#0€EY o

Therefore,

hmg‘oF(woy h’) < S'llp f(a: y)(:BU yU)
ynEYU

which. completes the'proof. o _

When Mp possesses a selection § which is continuous at zy € X, the set
Y, of all accumulation pomts of #(z) as * — z¢ shrinks to a singleton {yo},
where Yo = Ilin; y(z). As an umnedlate consequence ‘of Theorem 2.1 we have

the following
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COROLLARY 2.1. Let @ be lower semicontinuous at 2o € X. Assume that M
possesses a selection § which is continuous at zg. Suppose, furthermore, that f

is finite at (zg,%yy) and Lipschitz near (zg,yy). Then, for all (h, k) € Tr(zg,y0),

¢ h(zoh) < Fle (0, y03 b, k).

REMARK 2.1. Theorem 2.1 includes as a special case Theorem 7 of [7] in which

wF is assumed to be locally Lipschitz.

We close this section with a sufficient condition for the existence of a

bounded selection of the set-valued map Mp.

PROPOSITION 2.1. Let X be a finite dimensional space, the set-valued map F
possess compact values and the map y — f(z,y) be lower semicontinuous on
Y. Assume that F' is upper semicontinuous in a neighbourhood of xy. Then

the map My possesses a selection which is bounded in a neighbourhood of zy.

PROOF. Since F' possesses compact values and the map y — flz,y) is lower
semicontinuous, for every r € X there is an element g(z) € F(z) such that
ep(z) = f(z,§(z)), which means that #(z) € Mg(z). Since F is upper
semicontinuous in a neighbourhood of zy, there exists a compact neighbourhood
N(zo) of z¢ such that xe.f\,L"J(zo)F(m) is compact (see e.g. [2]). Hence y(:) is
bounded in N (zy). '

3. The case of f being d.irectionally Lipschitz
We recall some notions from [4] which will be needed in this section.

DEFINITION 3.1. Let ¢ be an extended-real-valued function on X. The function
w 1s said to be directionally Lipschitz at zq with respect to d if |¢(2o)| < +00
and. ' .
0¥ (zo;d) = lim sup plz+ :\\w) —% < +oco. (3.1)
) (z,a) Ly 70, w— d : ‘
ALO | |
Denoting by D,(zg) the.se-t of all vectors d such that ¢ is directionally
Lipschitz at zy with respect to d, we remark that if D, (z¢) # 0, then
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o (mosd) = ¢¥(woid) (V€ Dy(20)):
DEFINITION. 3.2. Let Q C X and z¢ € X. Then a vector d € X is said to be
hypertangent to Q at zo, if there is a number & > 0 such that z +iw € Q for all
a:E(:r:o-}—eB)ﬂQ, w € d+eB, t € (0, a)

Let Fy '\, Fy be set- valued maps from X into Y and Fi,F2 the1r gra,phs Te-
spectively. We define the map F' = F1 N F; by the formula

1In this section we shall investigate the marginal function defined by (1.1)
and (3.2), i.e.
) pr(z) = inf {f(z,y) |y € Fi(z) N F3(2)}-

A reason for our mterest in this function is a natural connectmn with opti-
mization problems which will be studied in Section 4.

In accordance with the notations of the previous section My is defined by

Mp(z) = {y € Fi(@) N Fa(s) | wr(a) = fz,0)}-

Tt is easily seen that

F=F1 N Fa,

where F is the graph of the map F' defined by (3. 2)
Under the directionally L1psch1tz assumptmn an evaluation of the Rocka-

fellar derivative of ¢ can be stated as follows. -

THEOREM 3. 1. Aésume that M F possesses a selectjon y Wh1ch is bounded in
a nelghbourbood of zp € X and fis dlrectzonaﬂy Lipschitz at (o, o) (V7o €

Yo) with respect to all (h, k) € n_Tr(zo,To), where Y, is the set of all
: : . §e€Y o

accumulation pbinté ofg(:c) asT — Ig. Suppose in additjon that Yy C Mp(zo)
and the following hypotheses are fulfilled :

(i) Tr, (mo,yo) N int Try(z0,%0) # B (Y50 € ?o) N

(i) There e;usts at Ieast one hypertangent to F, at (:cg,yg) (Vo e ?0).

Then, for all (h, kye N_ {ij1 (zo,70) N Tﬁ(iﬂo,yu)}
Je€EY s
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(PF(mﬂih) < sup f(,—, )(:cg,yg,h k) (33)
' : HoEY o
PROOF. Take any (h,k) € N_ Tx(xo,%o) and any ¢ > 0. We set
yDEYo
Cl 1Y T o ezt Aw)—a
¢r(zo; h) = (llf‘}lj:ljo wEIhI}EsB A |
AL0

and choose sequences (z,, ay) le, @0, An | 0 such that

inf (PF(-Tn +/\nw) — Uy ]

(PF(:EO: h) - nll-»nc::o w€h+eB ' ' /\n (34)
Then, we remark that
(PF(J"R) < Apy T — To, On — (PF(xl]) (3-5)

For the bounded selection g, denote ¥, = i(zn)- Arguiﬁg as in the prdof of

Theorem 2.1 we have

lim gn = o (370 € —}?0) 'and . (mn) f(a:myn) _ (3'6)

Note that we have written here {f,} instead of its subsequence
It follows from (3.5) and (3.6) that ((zn,¥n), an) € epi f. Hence, observing
that o € MF(:rg) we get

((xn: gn)a an) lf (3"0, ﬁﬂ)

In view of Theorem 2 4.5 [4], there exists a + sequence (hn, k } — (h k) such
that

(@nyGn) + An(hn, bn) € F
wherﬁce; } R R
C r(@at Maha) = F(@n + Anfay T+ Ankn) <O
Consequently, |
(,OF(:L'n + ,\ h ) — Q= (pp(::cn + A hn) flzn + Anhp, Tn+ Ankn)+
+ f(@n + Aok, Y + Ankn) — om
S f(za + Anhn, §o + Anks) — @
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which implies that

(PF(I:n +)‘nhn) — Qg < f(mn + /\nh‘na .gn + )\nkn) - Oy
An - An

(37)
Moreover, for all n sﬁfﬁcient'ly- large

inf (PF(ETI_*- /\'nw) - C,Mn g SOF(x'n + A7"'h'n') —a ,
wEh+eB An Aa

which together with (3.4) and (3.7} implies that
PF (mo,h)‘( sup f( )(mﬂayﬂsh k).
o yoEYo
.Therefore,
ohlan ) =gz ) < mp (50 T ) (3:8)
: . §o€Ye .

Making use of Theorem 2.9.5 [4] we get

£ (@0 dos b k) = £ (20, o3 B k) (FGo € Yo, ¥(h,E) € O Tr(z0,50))-
JoEY o
Substituting (3.9) in (3.8) yields that

th(:co,h)< sup- f(x )(mg,yg,h ) (V(h k)e n T}-(xg,yo)) (3 10)
FoEY o Fo€Y o

Taking into account Corollary 2 of Theorem 2.9.8 [4] we get
Tr(z0,50) D T, (20, 50) N Try(20, %) (Voo € Yo) (3.11)

Hence, a combination of (3.10) and (3.11) yi'elds' the conclusion of the theo-
rem.

REMARK 3.1. After the proof of Theorem‘ 3.1 we find out that if in its statement
we drop assumptions (i) and (11) then the mequahty (3.3) is fulfilled for all

(hk)e n_ Tflnj-'z(ﬂ?o,yo)
‘yoEYu

REMARK 3.2. If My is upper semmontmuous at zp, then Y, C M F(:cg) In the
case where M F possesses a continuous selection, by Theorem 3. 1 and Remark

3.1 we get the following
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COROLLARY 3.1.’ Assume that M F possesses a selection § which is continuous

at zo € X and f is directionally Lipschitz at (z,, Yo) with respect to all (h, k) e

Tr(z0,90), where yo = lim §(z) = j(2,). Then, for all (h, k) € TrinF(Zo, %0},
X—zxq .

99}3‘(3:0; h) < f(T_.,,,y)(an to; h, k)

REMARK 3.3. When X is finite-dimensional, assumption (ii) in Theorem 3.1
can be dropped. Indeed, since F, is a closed subset of the finite-dimensional
space X X Y, by virtue of Corollary 1 of Theorem 2.5.8 of [4], it follows that
for all §; € Y,

int T, (20, §0) = Hr,(x0,%),

where Hr,(zo,7o) is the set of all hypertangents to F, at (zo,To)-

In view of assumption (i), condition (ii) of Theorem 3.1 is fulfilled.

4. Applications

In this section we shall be concerned with the following problem
J(z,u) — inf ,
(P) subject to
u € F(z),
ue .

This is a generalization of optimal control problems governed by hemivaria-
tional inequalities studied in [8] by Haslinger and Panagiotopoulos. Here, z € X
is the state variable, u € Y is the control variable, J is an extended-real-valued
function on X x ¥, F is a set-valued map from X into Y, § is a closed subset
of Y. -
It should be noted here that in [8] the authors have only investigated the
existence of solutions for the Lipschitz case. Here we consider the case where f
is directionally Lipschitz.

In accordance with notations of the previous section we denote

wr(z) =inf {J(z,u) | u € F(z) N Q},
Mp(x) ={u € F(5) N9 | px(2) = T(z,u)}.
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A necessary optimality condition for (P) can be stated as follows-

THEOREM 4.1. Let (zo, to) be a local minimum of (P) Assume i:hdt the
following hypotheses are fulfilled - '

(i) Mr posseses a se]ectmn @, which is continuous at zo € X, such that
up = @(zg) = hm u(:r) k |

- (i) J is d1rect10na11y Lipschitz at (zo,uo) with respect to aH (h, k) €
'T;,-:n(Xxg)(mo,ug) where F stands for the graph of the map F';

(i) Tr (o, o) N (X x int To(ue)) # 0. Then,

(0,0) € B(z.u)J (0, 10) + Nx(zo, u0) + {0} x Ng(uo), (4.1)
where 5(,,.,&).] is the set of subgradients of J, defined by (2.5).

PROOF. It is easy to see that.the graph F; of the map F; : z > F(z) N Q is of
the form
Fi=Fn(X xQ)

Since pp() attains a minimum at zo € X, it follows from assumption (i)
that , :
inf pp(z) = inf J(z, @(z)).
zlgx('op(m) eX (2, @(@)).

From this, taking into account Proposition 2.4.1 of [4] one gets

0 € dpr(zo) - (4.2)

In view of assumption (i), the set of all accumnulation points.of #(z) asz — xg
shrinks to a singleton {ug}, where vo = lim @(x). According to Theorem 3.1°
r—zp

and Remark 3.1 we obtain
 Pr(w03R) S T, (30,803 by k) 5 (Y(h, K) € Tra(xey (o, w0) (4.3)
Combining (4.2) and (4.3) yields. that . o
Tl i b ) 2 0, (V(h ) € mem)(ro,uo))' C (49)
which may be rewritten in the form

T, o (@osuoi by k) + 67 a(k, k) 20, (4.5)
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where 63:,9, = b, (X xm)? the indicator function of the convex cone
Tra(xxe)(Zo, uo). -

Observing that J is directionally Lipschitz at (.']:0,'1“1.0) with respect to all
(B, k) € Traxxay(To, uo), in view of Theorem 2.9.5 of [4] we can see that
J(Tx,u)(mg, ug; -} is continuous in Tra(x x0)(Zo, 1o) and ng,u)(xg,m; h,k) < 400
for all (h, k) € Tra(xxa){To, %). Moreover, J(Tx‘u)(:co,ufj;;) is positively homo-

geneous and Trnx xq)(Zo, tp) is closed. Hence,
T (#0,030,0) = 0. (4.6)

Since the function J! To, ;) + 0x o(+) is convex proper, it follows from
(z,u) »

(4.5), (4.6) that . _

(6,0) € a(,,,k)(J(?I,u) + 67 .0)0,0), (4.7)

where J stands for the subdifferential of a convex function.
Applying the Moreau-Rockafellar Theorem 0.3.3 of [10] yields

On i) (I, 0y + 87.0)(0,0) =

a(h,k)(J(Tx,u)(I?o,uo; 0,0)) 4+ F,x)65,0(0,0) (4.8)
From the convex aﬁalysis we have _ |
967 0(0,0) ={(=z",u"): < (=*,u*),(h, k) > <0,
V(h, k) € Traxxa)(zo, uo)} - {4.9)
= Nrnixxay (2o, uo) |
It follows from assumption (iii) and Corollary 1 of Theorem 2.5.8 of [4] that
there exists at least one hypertangent to  at up. By virtue of assumption (iii)

and making use of Corollary 2 of Theorem 2.9.8 and Corollary of Theorem 245
of [4] we get -

Nraxxa)(To,ue) C Nr(zo,uo) + {0} x No(uo) (4.10)

Moreover, in view of (4.6) and taking into account Corollary of Theorem
2.9.1 of [4], E(I,H)J can be expressed by (2.5). Consequently,

O(h, ) Ty y (%0, 1050,0) = Bz iy (o, up) - (4.11)

)
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- Finally, combinining (4.7)—(4.11) we obtain (4.1).

(12}

[13]

[14]

The proof is complete.
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