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CONVEX-CONCAVE PROGRAMMING AS A
DECOMPOSITION APPROACH TO GLOBAL OPTIMIZATION

LE DUNG MUU

Abstract. We show that many problems of global optimization can be con-
verted into convex-concave programs which can be solved by a decomposition
procedure combining branch-and-bound techniques with cutting plane methods,
The algorithms use adaptive rectangular and simplicial subdivisions which are
“not necessarily exhaustive but sufficient to guarantee convergence,
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1. Introduction

Numerical experiences indicate that except certain special cases, the most
global optmuzatlon problems of realistic sizes cannot yet be solved (see e.g. [4,
15 16]) Fortunately, in many practical problems the number of “nonconvex
v&rzables 18 relatlvely sma].l as compared to the total number of variables of the
problem This suggests applying decomposition techmques for solving global
optnnlzatlon problems. In fact some decomposition methods have been success-
fully used for soli‘ing a lot of global optimization problems. Rosen and Pardalos
[16] solved large-scale linear constrained concave quadratic minimization prob-
lems by using the eigenstructure of the quadratic form to reduce the objective
function to a separable quadratic form. Tuy [21 22] used Bender’s decompos;—
tion approach for minimizing a concave and a d.c. function. Tuy’s method was
further investigated by Thach [1 7] and Thieu [19] for solving concave minimiza-
tion problems over networks. Horst and Tuy [4] developed another decomposi-
tion algorithm for minimizing the sum of a linear and a concave function with
linear constraints. Muu and Qettli [8, 9] proposed methods for solving indefi-

nite quadratic problems over convex set and for minimizing a convex-concave
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function with convex constraints. These methods are specialized in [11] to ob-
tain efficient élgorithms for solving certain nonconvex optimization problems
dealing with the product of two affine fractional functions. A fairly general
decomposition scheme for-solving a broad class Qf-glob_al_optimizeytion problems

can be found in [10]}.

The purpose of this paper is to show that a lot of problems of global opti-
mization can be viewed in form of convex-concave prbgralnming problems. Then
we propose a decomposition approach by using a combination of branch- and-
bound and cutting plane methods for solving a, broad class of convex- concave
global optimization problems. For branching operation we use a separafion
function which takes into account 1ter1t10n ‘points and/or objective, function
as well as constraints. These subdwwmns are, in general, not necessanly ex-
haustive but sufficient to guarantee the convergence. They take place in the
"concave space” only, and thercfore it allows us to decompose the problem
into convex subpmgmms and concave minimization problems whose number
of variables is often much less than that of the original ploblem The cuttmg,
plane, as usually, is used for appmmmatmg convex constramts by hnear 0119‘3
but here it is performed pare allel with th(, brcmdnng and l)ounthng, operatmns.
The method is dcscnbed by a similar way as the one in our earher p'lpm [10]
The main dlffex ence lies 1n the rules for determmmg the bl anchmg operatlons

and therefore new methods for solvmg convex-concwe p1og,1 aunnmg problems

are developed

~ The paper is org,amzed as follows. In the next section we state the convex- =
concave problem to be considered and collect some global optimization problems.
which can be converted inyd convex-concave programming problems.. The third
section is devoted to the description of a unified branch-and-bound and cutting
plane algorithm and its convergence.  In the last section we shall give some

branching operations among which a new. simplicial bisection is presented.
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2. Convex-concave mathematical programming problems

In what follows we consider the following global optimization problem to

which we shall refer as a convex-concave problem

min{f(z,y): (2,9) € 5, g;(2,4) <0, j = 1,...,} (CC)

where f and each g; are real continuous functions defined on R® x R™ and §

is a closed convex set given by. .
- 8= {(z,y) € R* x R™ : (z,y) < 0}.

We assume additionally that f and each gj are convex-concave functions on
some convex set So containing S. Problem (CC) where the convex-concave

constraints g;{x,y) < 0 aré missing is considered in our earlier paper [9].

The convex-concave programming problen.:l (CC) contains a broad class of
mathematical programming problems as special cases, examples being jointly
constrained bilinear programs [1, 8], certain d.c. programming problems [4, 22].
Furthermore many nonconvex optimization problems can be converted into a
convex-concave problem of the form (CC). Here we mention some important

examples.

1. Affine multiplicativc programmang problem [7, 11]

where D is a compact convex set in R", and £1,¢; are affine functions on D.
It is easy to see that the product of two affine functions, in general, is neither
convex nor concave. Thus the above problem is a multiextremal optimization

problem By setting y = £;(z) Problem (AM) can be rewritten as
min{yly(z): z € D, y = {1(x)}

‘which is a convex-concave program of the form (CC). Note that in this case y

is one-dimensional variable.
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| 2. Indefinite quadratic programming problems [8, 16]
min{f(z):=c’z + -;-zTQz 1z € DY h (1Q)
where D is a closed convex set in.R"., and. @ ie an (nXn)— symﬁletric indeﬁnite
matrix. | | '

It is well known that by using only linear transformations one can partition

the quadratic form f into f(z} = fi(x) + fo(y) with
fl(it) = Z(Ci.ﬁb‘i + —;—)\,mf) ()\i >0,i1=1,.., k),
1 .
faly) = Z(Ciyi + 5hiv?) Ki<0 =kl n)

Thus the above indefinite quadratic programming preblem 18 eqtéivalent to

Ilnin{f:(w)rJr f2(y) : (z,y) € S}

where S is a closed convex set. This problem is a.gaiﬁ of a form of (CC). We
know from [14] that Problem (IQ) even Wlth one negatlve eigenvalue is NP- ha.rd
Tt is clear that in the latter case y is one- d1mens1ona1 variable. -

3. Minimizition of o linear function over the efficient set [2, 13]

Let C be a (p X n)-matrix and D be a nonempty polytope in R". Then the

multiple objective linear programming problem, given by
Vmin{Cz:z€ D} (ML)
can be viewed as the problem of ﬁndmg all efﬁc1ent points of Cz over D

We recall that a point 20 is said to be an efﬁc1ent solution of (ML) when
z% € D, and whenever Cxz < C’:r:0 for some z € D, then_Ca: = C:c‘o. By Xg we
shall denote the set of all efficient points of (ML).

The problem of optirﬁization of a linear function over the efficient set of
Problem (ML) is then given by

min{d’z : z € Xg). “ | (LE)
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Since the efficient set X is, in general, nonconvex, Problem (LE) can be clas-
sified as a global optimization problem. From [2} we know that one can find
a simplex A C RP such that a point z° € Xp if and only if there exists a
parameter A’ € A satisfying A\°Cz® < A°Cz for all z € X. Thus Problem (LE)

is equivalent to
min{d’z:z € X,A € A,ACz < AC2z,Vz € X}.
By setting ¢(A, ) := ACz — Eéi)l;i)\C’z this problem can b¢ rewritten as
min{dT:c tz € X, A€ A g(A ) <0}
which, since the function ¢ is convex in A and linear in z, is of the form (CC).

4. Rank two bilinear programming problems [25]

We know from {23] that the bilinear programming problem

min{c"z +dTy +27Qy:z € X,y € Y}, (BL)

where @ is a rank two (n X m)-matrix, and X, Y are polytopes in R®, R™

respectively, can be converted into the form
min{a®z + b7y + pTaply + q?zg'{y :z € A,y € B}

where A and B again are polytopes. Setting ¢ = pTz and n = ¢y the above

problem leads to
min{a"z + "y + Eply +nelz v € A,plz =€,y € B,qly = 5}.

It is clear that for each fixed ¢ and 7 this problem is a linear program. Denote

by t(£,n) the optimal value of this program, then

t(ﬁﬂi) = t:r(gan) + ty(fa??),

where
t(6,n) ;= min{az +nqfz:z € A, pTz =¢)

and

ty(€,m) = min{bTy + &ply : y € B, ¢l y =n}.
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Let
fmin = min{piz: T € A},
Emax = max{p'f:é 1z € A},
Nmin = min{g; y : ¥ € B}
and ,
Nmax = max{g; y 1y € B}.

Then from the linear programming it follows that the function tx. (&,7) is convex-

concave and t,(£,n) is concave-convex on the rectangle

R:= [Emirﬁ&max] X [nmin,nmax]-
5. A problem of optimal design of & water distribution network [3]

Con31der a water distribution network which 1s mathematically represented
by a connected directed graph G with n nodes, t arcs (or links) and m in-
dependent loops. Suppose that there is only one source node. Let g and p;
respectively denote the flow and headloss of link z. An important problem in the

optimal design of water distribution networks is to minimize the cost function

F(p,q) =Y aig;”°p7 oo

under the following constraints:

- Demand on water discharge
S g Y g =t (k=1n)i
i€1(k}) FEO(K)

- Loop balance:

Z P = 0 (l =.1,...,m);

ieL(l)

- Hydraulic head requirement at each node:

. Z'pi < hO - hkmin (k = 1: ...,TL); )
ier(k} ’
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- Physical limit of network:
< Pimin _<_ Di S Pimax

0 < Gimin £ G < Gimax 2=1,...,1),

where I(k) and O(k) are respectively the sets of the links connected toward and
out of the node & and L(!) denotes the number of the links in the loop I, and

(k) stands for a path connecting the source node with the node %.

We note that the well known Hazen-William equation is already substituted
into the objective function F. Frcm the physical conditions it follows that
1< —B/fa <25, 0< A3/a < 1and a; > 0 for every ;. Thus the objective
function is convex in p and concave in g while the constraints are linear. It is
worth to note that the “concave variables” ¢ can be expressed via flow change
along the orientation of the loops. Namely, let y; denote the flow change along

the loop {, and let § be a feasible flow. Then from {3] we have
gi = qi + Zﬁijyj,
j=1

where £;; = 1 if link ¢ lies on loop j and the flow direction coincides with the
orientation of loop 7 in link #; £;; = —1 if link ¢ lies on loop j and the direction
is opposite to the orientation of loop j in link 7, and £;; = 0 otherwise. Thus the
problem can be carried out by resorting to new variables yy, ..., ym instead of
1, .-, ¢, which may significantly reduce the number of the "concave variables”

since 1n practice m is usually much less than {.

3. A unified branch-and-bound and cuttihg plane method

In the sequel we shall restrict ourselves to the cases when the variable y is not
- absent in Problem (CC) We assume that we have fixed two compact polyhedra
X CR” and Y C R™ such that X x Y contains the feasible set of (CC). This
can be done by standard methods of convex programming if S, in addition, is
compact (very often in practical problems) (see e.g. [4]). Let f, denote the

optimal value of (CC) (as usually, we alwavs adopt the convention that the
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{9
minimum of a function over an empty set is equal +oc0), and let g :=
| " " ge
Given two polyhedra BC Y and T 2.5 we deﬁne Problem C(B,T) as
- min{f(z,y):z € X,y € B,g(z,y) <0,(z,y) eT}. . (C(B,T))
and the rela.xed Problem R(B T) as
mm{f(:c,y) T € X,y € B,g(n:,y) < 0 (:c u) € T u € B} (R(B,T))

By B(B,T) we denote the optimal valie of R(B,T). Due to our compactness
assumption, whenever §(B,T) < oo then R(B;T') has an optimal solution which
we denote by (#87,y2T,45T) or sometimes by (2, y?,u?). By ar_; weshall
denote the least upper bound for f. known at the beginning of iteration k. ; .

ALGORITHM. o

Initialization. With the two gnren convex polyhedra Bo =Y and T 2 S
solve Problem R{B,T). : ‘

If 8(By,Ty) = oo, terminate; Problem (CC) has no fea.s1ble pomt

It 8(Bo,Tp) < oo, let (z5,y B, ,uB%) be the obtalned optimal solutaon of
R(By,Ty). Let oy = 00 and Ty = {By}.

Tteration k (k=0,1...). At the beginning of iteration k we have a collection’
T';. of convex polyhedral subsets B C Bp such ‘that one solution of (CC) is
contained in X x U{B : B € ['+}, and we have a.*pc;lyhédron Ty 2 8. For each”
B € Ty we know an optimal solution (z%,y?,u? 1) of R(B, Tk) Furthermore,
Op—1 = f* i.s at hand.

~ Let o be the currently known smallest upper bound for f,.= a,nd 1f oy, < 00,
let (¢ konky be the best feamble point known so far so that f (§ k. nk) = O Let

Ag = ={Be¢ Pk ﬂ(B T} < ak}
Select B} € Ak such that

ﬂk = ﬂ(stTk) = mm{ﬂ(B,Tk) : B S Ak}
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1) If B > ay, terminate; f, = oy and, if o < 06, then (€%, 7%) is an optimal
solution of (CC). Otherwise, if @z = o0, then (CC) has no féasible point.

2) If Br < o, then select By € Ay such that

dn (W) 2 dp (™), 1

where
dp(u) = [[y® — u]] (2)
dp(u) = max{f(.rB,u) - f(l'Bs yB)am?x gj(stu)}' (3)

([[]] stands for a norm in R™).

2a) If dp, (uB*) <0, then set Tpyy = Apyy = Ay and go to 3). (Note that
in this case (.’EB’:,’U,B;) does not belong to S because otherwise B > ay, and

therefore the algorithm already terminates before turning to the case 2a).

2b) ¥ dp, (uP*) > 0, then select an affine function £; such that || v/ €]| < ¢

and
tdgk(uB*’) < min{ﬁk(uB’“),—ﬂk(yB’“)}, _ (™)

where c¢,t > 0 are independent of k.

Set‘

By == {y € By : ix(y) <0}, Bf ={ye€ Bx:l(y) = 0}.
(By (*) y™ € B, u® € Bf). Let
Tiy1:= A\ {Br} U {By, Bf}.
3) Set
Tk it (2Bx,uBi)e S
Ter1 =4 {(z,u) € Ty: o(z Bk ubi)

+ti1(z — B )+ to(u — uB:) <0}, otherwise

where (t1,t2) is a subdifferential of ¢ at (2B, u5x).
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For each B € Tyt solve R(B,Tky1) (if Tiqr = Ti we solve R(B; , Tr1)
and R(B}:', Ti+1) only since for the other B € T'yyy the program R(B,Ti41)
has been solved.

Increase k by 1 and go to iteration k
This completes the description of the algorithin.

COMMENTS.

1. The just described algorithm can be considered as a new version of
the one developed in [10]. The main difference lies in the use of the distance
function d. The algorithm is a combination of branch-and-bound and cutting
plane methods. It is clear that § € Tpyy © Tk for all k. Hence if T = 5,
then the algorithm hecomes a pure branch—a.n&—bound prbéedﬁfe; if instead
dp, (uP*) < 0 (case 2a) for all k, then the algorithm becomes a pure cutting

plane method.

2. A crucial operation in the above algorithm is the solution of the relaxed

problem R(B,T:). This question will be discussed at the end of this section.
CONVERGENCE OF THE METHOD. .

For simplicity we shall denote by (z*, y*, u*) and (z**, y**, u**) the obtained
solutions of Problem R(Bg,T:) and R(Bj,T}) respectively. Also we shall write
di for dp, and d,; for dB;. The < .,. > stands for the inner product corre-

sponding to the Euclidian norm || - ||

It is clea.r from the construction of Ty that S C Ty, C Ty for.every k. This
implies fr < fr41 < J« for all k. Hence 8. := lim B¢ exists and 8. < f,. If
the algorithm terminates at iteération k, i.e. B > ag, then from aj > fe it
follows that ay = B¢ = f.. If the algorithm does not terminate, then we have

the following convergence result:
THEOREM. () B /" f., and {(z**,u**)}5° has a limit point which solves (CC).

" (b) If (z**,u**) is feasible for infinitely many k, then o \, f*., and every
limit point of the sequence {(¢¥,7%)} solves (CC).
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PROOF. (a} If Bk = oo for some k, then the algorithm terminates at iteration
k and f, = oo (Problem (CC) has no feasible points). Thus if the algorithm

does not terminate, then 8¢ < oo for all k. Since
Bi = min{8(B,Ti) : B € Ag} = B(B}, T),

Problem R(B}, Tk} has an optimal solution («**, y**, u**). Note that (z**,y**)
€ T}, for every k. This and the rule for constructing T} imply that any limit

point of the sequence {(z*F,u**}} belongs to S. We distingunish two cases.

Case I: Case 2b occurs only finitely often. In this case we may disregard
the finitely many iterations of case 2b, and therefore we may assume that case

2a occurs for all k. From case 2a and (1) it follows that
dur(1**) < di(u*) <0 VE.
This and the definition of dy; by (2) or (3) imply
F@u) < Bry g(a™Fut) <0V,
from which we obtain in the limit
fa*u*) < B < fu, g(z¥,u*) <0

for any limit point (z*,u*} of {{(z**,u**)}§°. Observing that (z*,u*) € S we

see that (z*,u*) is an optimal solution of (CC) and therefore 8, = f..

Case 2: Case 2b occurs infinitely many times. In this case there exists a
decreasing subsequence of {B;}5°. Thus, by extracting a subsequence if nec-
essary we may assume that By, C B for all k or Bryy C B;" for all & In
the first case we have u**! € B which means Op(ub*1) < 0 for all k. We then

obtain from (*) that
tdi(u®) < O (u¥) < O (u®) = (vt < ojuf — W > 0.

Likewise, if Bxy, C By for all k, we use y*t1 ¢ B;L-'_+1 to obtain, by a similar
way, ‘
td(u®) < elly* —y* [ - 0.
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Hence always di(¢*) — 0. We consider two possibilities.

o) dar(u** > 0 for infinitely ma,ny times. Then by takmg aga.m a sub-
sequence if necessary we may assume that dur(u*®) > 0 for all & anhd that
(z**,u**) — (2*,u*). From (1) we get dop(u*?) < < di(u*). This and dk(uk) -0
imply d*k(u*" ) — 0 which together with each of (2) and (3) leads to

(a: u*)<ﬂ,<f*, g(m u )<0
This and (z*,u*) € S show that (z*,u*) solves (CC), and therefore f. = fu.

B) dyr(u**) > 0 for only finite k. In this case we may assume that dyp(u**) <
0 for all k. From (3) it follows that ' ‘

Fa*,u) < By, gl uh) <0,
Letting k — oo and remember that (z*,u*) € § we obtain the result.

(b) Assume now that (z*F, u*k ) is feasible for infinitely many k. From part
(a) we see that {(z**,4**)}$° has a limit point (z*,u*) that solves (CC). Let
(€*,77*) be any limit point of {({ kR, Wlthout loss of generality we may as-
sume that (z%,u*) — (z*, u*) and that (£* k) - ({*,n ). From the definition
of ay and (€%,1%) and the feasibility of (z* k u*®) it follows that

LSak~ﬂ§n)<ﬂf**m

which together with f(:c""c u*“) — f(?: u*), and the 1110110t0111c'1ty of the se-

quence {a;} imply the result. The theorem is proved.

REMARK. If the convex-concave constraints g;(z,y) < 0, j =1,...,£ are missing
and Tp = S, then (z**,u**) is feasible for every k. In fact, in th)s case the

feasible region is S, and Problem R(B,S) then reads
min{f(z,y):z€ X, ue B, y € B, (z,u) € 5}.

As mentioned above the solution of the relaxed problem R(B,Ty) is crucial
for implementing the élgorithm. Here we give some special cases where Problem

R(B,T}) can be solved implementably.
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1. Assume that the convex-concave constraints g;{z,y) <0, j =1,...,4, are

missing. Then Problem R(B,T};) becomes
min{f(z,y):z € X, y € B, (z,u) € T, u € B}.

Since the minimum of a concave function over a convex set is attained at an

extremal point, we have
B(B,Ti) = min{min{f(z,v"): 2 € X, u € B, (z,u) € T}}},
i

where v' are vertices of B. Hence Problem R(B,T}) is reduced to convex
programs, one for each v*. Note that if f(z,y) = fi(z) + f2(y) (D.C. function),
then the number of these convex programs just equals one. We observe that in
the above algorithm even B is generated from some predecessor B' by adding
an affine function, the calculation of the vertices of B, which could be done by
some available methods [6, 18], is very costly, since the number of the vertices
glows very quickly as the dimension of y-space gets Iarger However, for the
simplicial bisection the number of the vertices of B is m + 1. Furthermore
the vertex searching can be avoided if f(z,y) for each fixed z, in addition, is

separable, i.e.,
f(z,y) Zfz(w ¥i),

and B is a rectangle given by
B:{y G_Rn' ;aiiyi Sb! ?:=.1,_"’m}_

In this case we have

m

B(B,T}) = mm{me{f,(x a,) fi(z, b; )} T € X}

© o=l
Note that the objective function of the problem of optimal design of a water

distribution network described in Section 2 is separable.

2. Assume now that f(z,y) = f(z) and that £ = 1, ¢1(z,9) = ¢(z,7)

(example 4 in Section 2). Then from the concavity of g(z,.) we get

min{g(z,y) : y € B} =min g(z,v')
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and therefore

B(B,Ty) =min{f(z): z € X, min g(z,v") <0, u € B, (z,u) € Tk}
Hence for each ¢ it féquireé minimizing the cbrivex"funk.:ti)dn'f over a convex set.
This is simplified further if g(z, y) = g1(z) +g2(y) (this case g(x, y) < 0 appears

as a reverse convex constraint). Then
B(B,Ti)=min{f(z):z € X, g1(2) + £ <0, u € B, (z,u) € Ty}

with £ := min g,(v') = min{g,(vy): y € B}.

4, Examples for the separation function

Since [[-]] and || - || are two norms in the R™, there must exist two positive
numbers ¢ and C such that c[[ < < C[[u]] for all u € R™.

1. Polyhedml bzsectwn The first exa,mple is deszgned to the functmns
defined by (2). In case 2b we have di(u Ik) > 0. Let r¥ := (uf — yk)/dk(u") and
define | - _ B '
| L(y) i=<r¥y > — <r¥ (yF + uk)/2 > . ,

Then || v &]| < C. Moreover Cr(ur — yk) > c2dk( k) and £ (uf) = —L(y").
Hence (¥) is satisfied with ¢ < ¢2 /2.

2. Simplicial bisection. The second example is .desigﬁéd to a siiﬁiiliciai
bisection. Suppose that Bj.is a fully dimensional simplex in R™. Let u*,y*
be two distinct vertices of Bg, and v* := (u* + y*)/2 the 1_1ﬁdpoint of the
edge determined by u* and y*. Let Hy be the hyperplane}‘tli'rsoﬁgli" the poilits
obtained from the vertex set of BL by replacing y and u* by v®. Denote by h*
the point of H; such that ut hk is the normal vector of Hy. Let wy be the
angle between u* — 1* and u* — y" - Assume that {[u® — y*|] = O(cos ;). Set

dp, (1) := cosi|lyP* —u|®
dild

Li(y) = cos vy < u* —'vk,-y-—. ¥ >
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A simple computation shows that
fk(uk) = idgk (uk) = —Ek(yk).
Hence (*) is satisfied with ¢ < 1. |

It is clear from the definition that £ is the affine function corresponding to

the hyperplane Hy, and therefore the sets
Bf =1{y € By : lly) <0}

and
Bf ={y € Bi:{y) 20}

are the simplices whose vertex sets are obtained from that of By by replacing
y* and u* by v* respectively. If u* and y* are the vertices of the longest edge
of By, then this bisection becomes the one introduced first by Horst in [5] (sece
also [12], {20}). ' |

Note that the edge determined by ©* and y* is not necessarily the longest,
and therefore this simplicial bisection is, in general, not exhaustive (see e.g. [21]

for the definition of exhaustiveness).

3. Subgradiential bzqcctwn This example corresponds to the function dy
defined by (3) and to the case when f and each g; are convex in the second
argument. Let r* € dd(u*Y (the subgradient of dy at u*) such that rf # 0.
Such a vector exists because di(u®) > 0 = di(y*) and d; is convex. Assume

|I*]| < L. Define
Cely) = L™ (< v,y — u'f > +di(u*)/2).
Then |} 7 €] < 1. From r* € 8di(u*) it follows that
k(y )<L (dk( k) - dA u*)/2)

Since die(y*) = 0, Li(y*) < —(2L)""di(u*). This and £(u*) = (2:?5)‘1 dy(u*)
imply (*) with 0 < ¢t < (2L)'.
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4. Rectangular bisection. This last example is designed to the case when dr 1s
defined by the maximal norm. Let ji be an index such that max|(u* — y*); =
[(uf — y*);, | Take de(u¥) == |(u* = ¥*)j,| and define the vect:)r r¥ as
ok (uf —y*)j, i J = Jx

' 0 otherwise.

Since di(u*) > 0 in the case 2b, we have ||r*{] > 0. Let
Ou(y) = [IFFIIY < rFy = (F +uf)/2 >
Then || 7 || = 1 and
N e i (AN AT T —|(u* —y*)5, /2 = —di(u®)/2.
Likewise,
fuu®) = [P < ok, (uk = o)/ > = [(uF — )5 /2 = di(uh)/2.
Hence (*) is satisfied with 0 <#'< 1/2.

Note that with this separation function the set By, for every k, is a rectangle

provided By is so. In fact, in this case

C={yeBr: (=¥ < (u* —yF); () /2)
B = {y € By : (ub —yM)iws 2 (0F — )" + y*)i/2).
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