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NECESSARY OPTIMALITY CONDITIONS FOR
OPTIMAL CONTROL PROBLEMS GOVERNED
BY HEMIVARIATIONAL INEQUALITIES

DO VAN LUU

Abstract. In the present paper an optimal control problem governed by hemi-
variational inequalities together with its modified one is investigated and several

. necessary conditions for optimality are established. An illustrative example is
also given.

1. Introduction

Let ¢ and J be functionals defined on Y and ¥ x W, respectively, where Y
and W are finite—dimensional Euclidean spaces such that W C Y™*. Let Q2 be
a closed subset of W, A a continuous linear map from Y into ¥*. We shall be

concerned with the following optimal control problem :

minimize  J(y,u), ‘ |
(P) subject to  u € Ay + dp(y) , (1.1)
- w € Q , 7 (1.2)
where 8 is the generalized gradient of F.H. Clarke. .

In order to study a lot of mechanical laws P.D. Panagiotopoulos has in-
troduced [6] the nonconvex superpotentials based on the concept of Clarke’s
generalized gradient. The nonconvex superpotential leads to hemivariational
inequalities and to corresponding nonconvex, nonsmooth optimization problems
such as aforementioned Problem (P). It should be noted that the constraint
(1.1) can be expressed as a hemivariational inequality which is nonmonotone.
Namely, since the Clarke derivative of @ at y with respect to vy can be ex-
pressedh-in the form ¢°(y; v) = max {< (,» > | { € dp(y)}, it folows that (1.1)

1s equivalent to the following

< u— Ay,v > < max {< C,o>|¢€do(y)) (WweY),
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which may be rewritten as follows
max {<{—u+A4y,v>[(€dp(y)} 20 (WweY).

For the problem governed by a strongly monotone variational inequality it
is worth to mention some necessary conditions for optimality of Shuzhong Shi
in [8]. The existence of solutions of (P) is studied in [2] by Haslinger and Pana-
giotopoulos by means of a regularlza.tion—approxiﬁlation method. The investi-
gation of optimality conditions for (P) and its modifications is a complicated
problem which remained open until 1989. In 1990 J.V. Outrata [5] found out
some necessary conditions for the case J being differentiable in both variables

and ¢ being of a special form.

The aim of this paper is to find necessary optimality conditions for (P) for
the general case in which J is nondifferentiable. The paper is organized as
follows. In Section 2 we give a necessary optimality condition for the reduced
problem (without the constraint (1.2)). Section 3 deals with the whole pfoblem.
Section 4 is devoted to the discussion of the lower semicontinuous case and
Section 5 gives some necessary conditions for a modified problem. Finally, an

illustrative example is derived in Section 6.

2. A necessary optimality condition for the reduced problem of (P)

Let f be alower semicontinuous function from ¥ to R, where B = RU{tco}.
For yo € Y, the sets of subgradients 8f(yo) and 8 f(yo) are defined as follows

y* € 6f(y0) — (y*: _1) € Nepi_f(yﬂ:f(yﬂ)) 3

y* €8 f(w) <= (4", 0) € Negis(vo, f(m0)) ,

which are called the Clarke set of subgradients and the set of singular subgradi-.
ents of f at yg, respectively (see {7]). Here, Nepif(yo, f(yo)) is the normal cone
to epif at (yo, f(yo)). |

It is worth noticing that if f is finite at Yo, then

Of(yo) ={y" €Y* [VdeY , <y* d> < fl(yo:d)} ,
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where fT(yo;d) is the Rockafellar derivative of f at yo with respect to d defined
by '

fyo;d)=inf {pe R|(d,p) € T;pif(yoaf(yo)_)}a(inf 0=+c0), (21)

Tepif(yo, f(y0)) is the tangent cone to epif at (yo, f(y0))- By Theorem 5.d [3],
if 3f(yo) # @, then

Fyos ) = f (303 ).
We first consider the reduced problem of (P) :
minimize J(y,u) ,
(P1) < s.t.
u € Ay + Op(y) ,
where J, A, ¢ are as in (P).

Denote by F the set-valued map y — Op(y) and F its graph. Since the

map F is upper semicontinuous, the set F is closed.
A first-order necessary optimality condition for (Py) can be stated as follows

THEOREM 2.1. Let (yg,up) be a local solution of (Py). Suppose that J and ¢
are locally Lipschitz in Y x W and Y, respectively. Assume, in addition, that
J is regular at (yg,uq). Then

9 (y0, uos B) + Jo(yo, ue; AR) + Jo(yo, uo; k) = 0 (2.2)

for all (h, k) € Kx(yo,uo — Ayo)), where Kr(yo,uo — Ay) stands for the con-
tingent cone to F at (yq,uo — Ay ).

PROOF: Putting v = u — Ay , z = y one can see that (P) is of the following

form .

. Ji(z,v) —inf |
(F1)
v € 9p(2)
where, Ji(z,v) = J(y,v + 42) = J(y,u).
Observe that if (i, uo) is a local solution of (P;), then (zg,v0) is a local

solution of (P)), where 20 = yo , vo = ug — Ayo. It is easily seen that if J is
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regular at (yo,%o), then Ji is also regular at (zg,bg). Note that (P;) can be

written in the form

. Ji(z,v) — inf ,
(Pr)

_. : (z,v) € F.

We can see that all hypotheses of Theorem 6 in [3] are fulfilled. By this theorem

we get

J1 (20, v0; b, k) > 0 (V(h, k) € Kx(z,v5)). (2.3)
Sinice Jq is regular at (2.'0,?)0), it follows that
J? (Zg,’l‘)g, h, k) Ty (yo, w03 h) + JO (v, uo; Ah + k)
which together with (2'.3) implies
T3 00,40 ) + 7200, 05 A1) + T80, 01 K) 2 0 (W(h ) € (g0 — )

. as was to be shown.

3. A necessary optimality condition for (P)

To establish necessary condition for (P) we replace the map F in Section 2
by the map F : y — 8p(y) N Q. Denote by F; the graph of the map Fy. It is
easily seen that .

.7:1 Z-fﬂ(y XQ)

DEFINITION 3.1 [1]. Let @ C R™ and y; € (. Then a vector d € R™ is said to
be hypertangent to Q at y, if there exists a number ¢ > 0 such that y+tw € Q
forally € (yo+eB)NQ , wed+eB, i€ (0,¢), where B stands for the open
unit ball,

We recall {1] that the set Q is said to be regular at y, if -

Kqlyo) = TQ(‘yo) :
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THEOREM 3.1. Suppose that (yo,uo) is a local solution of (P) and all hypothe-

ses of Theorem 2.1 are fulfilled. Assume, furthermore that
(i) Kr(yo,uo — Ayo) N (Y x int Kalyo,uo — Ayo)) # 0,
(ii) the set Q is regular at ug — Ayo.

Then,
To(yo,uo; h) + Ty(yo,wo; AR) + Ty (yo, o k) 2 0 (3.1)

(V(h, k) € Kr(yo,uo — Ayo) N (Y x Kg(yg — Ayo))-
PROOF: Since the set £ is regular at ug — Ayg, we have
I&’Q(UO - Ay()) = TQ('U.(] - Ayg) .

Observing that Q is closed, by virtue of Corollary 1 of Theorem 2.5.8 [1] one
gets '
int To(ue — Aye} = Ho(uo — Ayo)

where Hq(ug — Ayg) is the set of all hypertangents to §2 at wg — Ayg. Hence
Ho(ue — Ayo) = int Kq(uo — Ayo) . (3.2)

For any d € Kx(yo,uo — Ayg) N{Y x int Kq(ug — Ayo)) there exist sequences
M L0, dy = (dP,d) — (dD),d?) = d such that

(yUJuU - AyO) + )‘ndn eF . (33)

Moreover, by (3.2) we get d € Y x Ho(ug — Ayp). Hence, there is a natural

number ng such that for all n > ng,
(uo — Ayo) + And® € .
From this and (3.3) it follows that for every n > ng,
(yo,uo — Ayo) + Andn € FO(Y x Q)
which means that d € K Fr(y,xq)- Lhus,

Kr(yo,uo — Ayo) N (Y x int Ka(ug — Ayo)) C Krnyxa)(¥osuo — Ayo) (3:4)
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Since K7 ,Ka , Krn(yxa) are closed under the assumptions of the theorem, it
follows from (3.4) that

K (yo, w0 — Ayo) N (¥ x Kq(uo — Ayo)) C Krayxa) (o, ue — Aye)  (3.5)
- Applying Theorem 2.1 we obtain (3.1) for all (k, k) € Kraiy=a)(yo, uo — AYo)-
By virtue of (3.5) the conclusion follows

Theorem 3.1 is a generalization of a necéssary optimality condition of {5].

4. The lower semicontinuous case

More and more techmcal and physical problems have been recently formu-
lated in the form of variational and hemivariational inequalities. Such inquali-
ties often lead to nonsmooth optimization problems whose objective functions

may be discontinuous.

In this section we shall deal with the case of J being lower semicontinuous,

not necessarily locally Lipschitz. _
Denote by F the graph of the map Fy : y — Ay + Je(y).

THEOREM 4.1. Let (yo,u0) be a local solution of (P1). Suppose that J 1s lower
sem1cont1nuous inY x W and finite at (yo,%o). Assume further that either the
problem (P;) is calm at (yo,uq) in the sense that there is no (yx, uz) — (¥, %o)
with (yx,ur) € Fo such that '

J(yk; 'U."k) - J(yO'J 'u‘D)
distt}-2(yk, uk)

— 00,

where dist stands for the function of distance, or there is no nonzero z €
Nfz(yﬂvuﬂ) with -z € BOOJ(?J{),’M{}). Then,

Nz, (yo,u0) N [~0T(yo,u0)] # 0 - (4.1)

PRrOOF: The problem (P;) can be rewritten in the form

{ J(y,u) — inf ,
(y,u') S -7:2-
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It is easily seen that F; is closed. By Corollary 5.2.1 [7] there exists (y*, u*) €
Nz, {yo, ug) with —(y*, u*) € 8J(yo,uo), which implies (4.1).

REMARK: To find necessary optimality conditions for (P) we replace F; in
Theorem 4.1 by F, N (Y x Q).

From Theorem 4.1 we can see that if J is locally Lipschitzian, then
0% J(yo,uo) = {(0,0)}, which implies (4.1).

5. The modified problem of (P).

We now consider the following problem
J(y,u) — inf ,
(P2) { Bue Ay+0p(y) . (5.1)

u €2, (5.2)
Here J, ¢, A, Y, W, Q) are as in (P) (not necessarily W C Y*), B is a map from
W into Y. )
Since the set Op(y) is closed, the constraint (5.1) is equivalent to the follow-
ing ' .
distz((y, Bu— Ay)) =0 . (5.3)
Hence, we may rewrite (P;) in the form
( Ty,u) — inf
| subject to

h(y,u) =0,

L (yu) €Y xQ,

(P3) 9

where
h(y,u) = distz((y, Bu — Ay))

Denote by @) the feasible set of the problem.
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THEOREM 5.1. Let (yo,uo) be a local solution of (Py). Assume that J and
are locally Lipschitz in Y x W and 'Y, respectively; the map B is continuously
differentiable in a neighbourhood of ug. Suppose, in addition, that (yo,uo) 18 2
regular point for h relative to Y x Q in the sense of Ioffe [4], i.e. there are k > 0
and neighbourhoods V of yo , U of ug such that for all (y,u) c (VxU)N(Y x§),

distg(y, u) < kh(y, u)
Then
(0,0) € dJ (yo,u0) + AT N£(yo, Buo — Ayo) + {0} ¥ Na(uo), (5.4)

where AT is the transpose of

4: (g B'}i)) '

M. (y,u) = J(y,u) + r(h(y,u) + disty xa(y,u)) (5.5)

ProoOF: For r > 0 we set

Since the distance function is Lipschitz and (yo,ug) is @ regular point in the
sense of loffe [4], it follows from the reduction theorem [4] that for sufficiently .

large r, M, attains its local minimum at (yo,%g). Hence
(0,0) € 8J(yo, uo) + r0h(yo, ue) + &(disty xa(yo, wo))- (5.6)

By Proposition 2.4.2 and the chain rule of [1] we have
Oy o) € (G (vo,u0) N5(wo, Buo = Aw),  (57)
where G(y,u) = (y, Bu — Ay). |
It is well-known from the nonsmooth analysis that
r&(disty xa(¥o,u0)) C Ny xa(yo:to) (5.8)

and

Ny xa(¥o,uo) = {0} x Na(uo) (5.9)

Substituting from (5.7)-(5.9) in (5.6) yields (5.4). The proof 1s complete. —
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In the case where (yo,up) is not necessarily regular in the sense of Ioffe we

get the following

THEOREM 5.2. Let (yg,uo) be a local solution of (P2). Suppose that J and
are locally Lipschitz in Y x W and Y, respectively. Assume furthermore that
the map B is continuously differentiable in a neighbourhood of uy. Then there
exist scalars A > 0 and u, not all zero, such that

(0,0) € ADJ(yo, uo) + AT N£(yg, Bug — Ayo) + {0} X Na(u) .

PROOF: Since the function of distance is Lipschitz and the map B is continu-
ously differentiable in a neighbourhood of u, the function A is locally Lipschitz.
Since (P;) can be rewritten in the form (P}), applying the Lagrange multiplier
rule ([1], Th.6.1.1) yield scalars A > 0 and p, not all zero, such that

(0,0) € A3J(yo, uo) + uR{yo, uo) + Ny xalvo,uo). (5.10)
It is obvious that
Nyxa(yo,uo) = {0} x No(ug). , (5.11)

By Proposition 2.4.2 and the chain rule of [1] we get
Oh(yo, o) C AT (Nx(yo, Bug — Aya). - (5.12).

Hence, a combination of (5.10)-(5.12) yields the conclusion.
6. Example

Let us consider the following functions

(0 , fy < -1,
v+1)* , ifye(-1,0),
y-1" ,ifyelo1),
0 yify>1,

sO(y).= .

Hly,e)=y*—ay, a,yeR.

The graphs of ©(y) and dp(y) are as follows
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Putting f(y,a) = fi(y,a) +¢(y) we get
8y f(y,a) = 2y — a + Op(y)-

Hence , '
| 0 € 8,f(y,a) <> a € 2y + O(y)

We now consider the following pro\b_lem
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J(y,a) = (y +1)° + (a +5)* — inf ,
(D) subject to

a € 2y + Op(y) .
To study Problem (I) we investigate the following auxiliary problem

(y+1)? +(a+5)? —inf,
(I1) subject to

fly,a) =y* —ay + o(y) — inf .

Observe that each solution of (II) is also a solution of (I).
To find solutions of (II) we first solve the following problem
(II1) y® — ay + ¢(y) — inf.

a) 0 < ¢ < 2. The graph of f(y,a) is as follows

Fig. 3 -

local minimum ,

<3|

2|
il

global minimum .
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b)a=2

f(y,a) =<

‘DO VAN LUU

22 + 1
2% —dy +1

L y? — 2y

7

?

y < -1,

y € (1,0},
y €[0,1),
y=>1.

- e — = — e -

In this case, 7=0and ¥ =1 (¥ =1 is the global minimum).

c)a>2

Fig. 4

oy [ o mm ma A - —

Fig. 5
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7 = & is the global minimum.

dya=0
ryz sys_l:

2 +2y+1 y € (-1,0),
2y2 - 2y + 1 E € [0’1)1
[ o ,y=> 1

fly, a_) =

~ Fig. 6

§ = *1 are the global minima.
e) a€[-2,0). Weget 7= %2 andfora e (;@,_2) T=2.
Thus, '

|
Il

222 witha€[-2,9],

{"ﬁ:% with [a| > 2.
It follows from (6.1) that Problem (I) possesses a solition (0, —2).

(6.1)

We can see that the necessary condition

' Jg(yo,c_lo; RY+ T2y, a0; ARY+ T2 (0, a0; k) > 0, (V(h,kj € Kx(yo, 20— Amo)),

(6.2)
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is fulfilled at (yo,ao) = (0, ~2), where F is the graph of the map y — Jp(y).
Namely,

Kr(yo,a0 — Ayo) = Kx(0,-2),

and K #(0,—2) consists of two half-lines Am, An (see Fig.2).

For the point B(1,—1) € An ,h =% ,k =1, and (6.2) becomes

2

1 1
2.0+ 1).5 +2(~2+5)2.5 +2(-2+5).1=13>0.

For the point C(0,—-1), h=0, k¥ =1 and, (6.2) becomes

2.0 +1).0+2.(-2+45).20+2.(—2+5).1=6>0.
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