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SOLVING A CLASS OF OPTIMAL CONTROL PROBLEMS
WHICH ARE LINEAR IN THE CONTROL VARIABLE
BY THE METHOD OF ORIENTING CURVES

NGUYEN DINH AND HOANG XUAN PHU!

Abstract. In this paper we prove that the Method of Orienting Curves given
in [16] can be applied for solving a class of linear optimal control problems with
state constraints '

1. Introduction

The Method of Orienting Curves (MOC).was introduced for the first time
in [11] (1987), and then in [2] and [16].

In [11] a class of simple problems with one state and one control variable
was considered. There, the state equation is of the form & = u while the
cost funtional is strongly convex to the control variable and independent of the
state variable. In spite of these restrictions, the method, was sucessfully used
for solving some practical problems, for example, the naﬁgation problemn of
Zermelo with state constraints [12], Steiner’s problem of finding inpolygons of
a given convex polygon with minimal circumference {13]. In [2] the MOC was
developed for solving a class of regular problems in which the state equationr
1s & = fi{t,2) + f2(t, 2)u, and the function L in the cost functional is strictly
convex to the control variable and has the general form L(t, &, u).

The general scheme of the Method of Orienting Curves was given in [16],
where optimal control problems with state constraints, one state and several
control variables were solved whenever the five hypotheses stated in it are ful-

filled. Concretely, the method allows constructing the optimal trajectory as
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a path which consists of parts of orienting curves, boundary arcs, and a final
curve. “

This paper will deal with a class of optimal control problems with one state
and one control variable (with state contraints) in which the performance index
and the state equation are linear in the control variable. Such a class was
considered by several authors (under, different hypotheses) and different solving
methods were introduced (see, e.g., [4], [7], [8], [9]). Here, we shall use the
idea of Method of Region Analysis developed in [8] and [9] to check if the five
hypotheses stated in [16] hold. If this is the case, then optimal processes will be
constructed by means of Method of Orienting Curves. The results obtained in
this paper can be used for solving different practical problems, €.g., inventory
problems, optimal control of a hydroelectric power plant, .

We shall study the problem of determining the control function which mi-
nimizes the cost functional

T
7= /0 Lo u(@)dt,  DEE0) = La(t) + La(hE, (D)

under the constraints

2(t) = (b, 2(8),ud), F(t,6,0) = () + falt,E),
By < u(t) < By

ar(t) < a(t) < an(t), | |

2(0) = 5o, &(T) = 27 (1.2)

‘Here z and u are state and control functions, while ¢ and v are state and -
control variables, respectively. We shall suppose that the functions Ly(.,§) and
F1(.,€) are continuous, a1(.), a;(.) are piecewise continuously differentiable,
and Li(t.,.), fu(t,.), La(.s-), f2(.,.) ate continuously differentiable. Besides, we

assume

B < By falt,£) >0, and ai(t) < alf) (1.3)

for (t,£) € G* where G°7 is the extended state region , which is any open sef in
IR? containing the state region G := {(t,£) |t € [0,T], aa(?) £ 2(t) < as(t)}.
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Moreover, the following will be assumed
F(t,ait), Br) # éi(t), a. e. in [0,7), k=1,2, and i = 1,2. (1.4)

In Section 2 the Method of Orienting Curves is introduced and illustrated
by an example. Section 3 is left for the verification of the conditions stated in

Section 2 for some concrete classes of problems.

2. Method of Orienting Curves

2.1. Orienting and Final Curves

Recall that an optimal process (2*(.),u*(.)) of Problem (1.1)~(1.4) is said
to be normal if it satisfies Pontryagin’s maximum principle (see [16, Theorem
2.1]) for A¢g > 0. For such a process we can set Ag = 1.

For our further investigation we giv.e a local version of Pontryagin’s maxi-

mum principle without state constraints which can be written as follows:

p(z):(i': :L'(Z)Zy, E
pit) = —p(t)fre(t, (1) + fag(t, @(@))u(t)] + Lag(t, 2(2)) + Lag(t, x(8))u(?),
2(t) = fu(t,z(t)) + fo(t, =(2))u(t), '

u(t) € arg max H(t, z(t),v,p(t),1), a. e., : (2.1)
ve[Fy,52]

where (z,y) € G and ¢ € R.

The set of all solutions of the system (2.1) for some certain parameters z,y, g
will be denoted by S, , ,.

Let (z*(.),u*(.)) be a normal optimal process of Problem (1.1)-(1.4). A
subinterval I C [0,T] will be called a contact interval of z*(.) with a;(.), 1 =
Lor 2, if £*(t) = a;(t) for all ¢ € I, and every interval I' with I' D I and
I'"\ I # 0 contains at least one ¢t € I' \ I with *(t) # a;(#). It is possible that
some contact intervals have only one point.

From now on, $* stands for the set of all triple (z*(.),u*(.), p*(.)) where
(z*(.),u*(.)) is a normal optimal process of Problem (1.1)~(1.4), and p*(.) is

the corresponding solution of the adjoint equation in Pontryagin’s maximum
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principle. Moreover, z*(.) has only finitely many contact intervals with a;(.), i
=1, 2.
Denote by B; and Bg the lower or upper boundary of the state region G,

i.e.,-

B'—gra,—{(t §)lt€[0 T, € -—a,(t)}, 1=1,2.

The sets

B =B U {(0 E) l 011(0) <é< :Cn} U {(T 5) I Oll(T) <€ ;‘CT},.
=B U{(0,§) | 20 <€ = a2(0)} U {(T,8) | o7 < € S ea(T)}
will be called the estended lower and exztended upper boundary of G, respec-

tlvely It is possible that G is unbounded, i.e., @ or az can be equal to infinite.

Let (z,y) be an arbitrary point of G.

DEFINI,TION 2.1. If for some ¢ € R there exists (z(.),u(.),p(.)) € S,,,y g such
that
o(T) = zr and (t,2(t)) € G for all t € [z, T1,

then z(.) is said to be a final function and its graph is called a final curve
through (z,y)-

DEFINITION 2.2. If for some ¢ € IR there is a triple\(:v(.),u(.),p(.)) € S:iug
such that there exist p and v with
0<z<v<psT,
(t;z(t)) e Glort € ENR
(v,2(v)) € Bifori=1or2,
(o) € B fori#i (2.2

then z(.) is said to be an orienting function and its graph is called an orienting

curve through the initial point (2,y) € G.

In this case, (p, z(p)) 18 the terminal point of this orienting curve, if, addi-
tionally to (2.2), the following holds:

for all § > 0, there exists t € (p,p + &) with (t,x(t)) ¢ G- (2.3)
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(v,z(v)) is called the transfer point of this curve if additionally to (2.2)-(2.3)
| (t,2(t)) ¢ B; for all t € (v, p).

DEFINITION 2.3. Let ¢ € R and (z(.),u(.),p{.)) € S.y,4- Suppose i € {1,2},

and

z € (21,22} C [0, T}, 21 < 2o, 7
(25, 2(zk)) € BEE U{(0,20), (Ty27)}, k= 1,2,
(to(t) € G, t€[x,2) | | (2.4)

then z(.) is said to be a barrier function through (z;y).

If, additionally to (2.4),
(Z,y) € BJ& J 7é i?
ie., ¥y = z(z) = a(z), then (2, a;(z)}) is called a narrow pass point .
We refer to [16] for more details and the reasons why such a function is
called a barrier function as well as (2, a;(z)) a narrow pass point. We are now
in a position to recall the algorithm which tells us how an optimal process

{(z*(.),u*(.)) of a control problem belonging to the class (1.1)~(1.4) can be

constructed by means of the Method of Orienting Curves.

2.2. Algorithm

Step 1. Begin in (0, 7). Set [ =0,tp =0, and z*(fy) = zo-

Step 2. Consider (¢, 2*(¢;)).

— If there is a final curve through (#;, z*(%1)), go to Step 5.

— If there is an ofienting curve through (#;, 2*(%1)), go to Step 3.

— If neither of the above cases appears, then it is guaranteed that (under the
assumption S* # B) o*(¢) = a;,(#;), &t = 1 or 2, and there exists t; > ¢; such
that (2, a;,(2)) is a narrow pass point for all z € [t;,#}]. Then go to Step 4.

Step 3. Let z(.) be an orienting function through (#;,2*(#:)) with (fi41,
z(ti+1)) as its transfer point. Then we have z*(t) = z(t) for all t € [tr, t141]-
Set I:=1+1 and go to Step 2. '

Step 4. Determine #;;; with:
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— (2,;,(#)) is & narrow pass point for all z € [t;, t41],

— Either t;41 = T or there exists an orienting curve or a final curve through
(tr41, @i (B )): | ' :

Then z*(¢) = a;,(t) for all t € [t;,1;41]. Set I:=141 and go to Step 2.

Step 5. Let z(.) be a final function through (¢;,z*(¢)). Then z*(¢) = x(¢)
for all £ € [t;,T]. STOP.

By the previous algorithm, the optimal state function z*(.) (and hence,
(z*(-),u*(.),p*(.))) can be determined completely. It is worth mentioning that
the assertions in all steps hold for every z*(.). This implies that $* has at most
one elemeﬁt, i.e., Problem (1.1)-(1.4) possesses at most one normal process
which has finitely many contact intervals with the boundary of the state region
G. Finally, if all three cases mentioned in Step 2 do not appear, then §* = (.

In order to illustrate the way how the previous algorithm operates, we give
an example. For the sake of simplicity, we omit here the conditions under which
the Method of Orienting Curves can be applied. It will be considered in the

next section.

2.8 Erample

Consider L
/ 2(t)u(t)dt —s min, (2.5)°
]

(t) = W(e) + u(t),
—4<u() <0,

0 < z(t) <10,

z(0) =5, =z(14)=9, (2.6)

where b(t) = ~0.05¢% + 0.8¢ + 1.

We use the algorithm stated above to contruct optimal process (z*(.),u*(.)) '
of Problem (2.5)—(2.6).
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Begin in (0,5). There is an orienting curve described by (z1(.), u1(.), p1(.)) €

S0,5,10- The orienting function is

~& 4% 40482 +¢ 45, for t € [0,t],
z1(t) = (2.7)

— -t 40412 — 3t + ¢, for t € [t;1,14]

where ¢; ~ 15.384,#; =~ 2.596. Its transfer point is (¢;,10) and its terminal
point is (14, p1), p1 = 6.051. Hence,

S =nl),  tebnl (28)

For all z € (t1,13), where ¢» = 4.0, (z,10) is a narrow pass point, the
corresponding barrier function z(.) is given by (z(.), u(.),p(.)) € S:10,10. For
example, if z = 3, then _

— st +0.4t% +£43.85, t€[0,3],
z(t) =
—ast® +0.41% — 3t + 15.85, t € [3,14].
Hence, _
z*(t) = 10, for all ¢ € [t;,12]. (2.9)

Through (#2, 10), there is an orienting function z,(.) with (z5(.), u2(.),p2(.))
€ S4,.10,10, and

1
z9(t) = _6—0t3 + 0.4t — 3t + ¢4, (2.10)

where ¢ &~ 16.667. Its transfer point and terminal point are (_tg., 10) and (14, p2),
where t3 = 10 and py & 7.334, respectively. Therefore,

2*(t) = zo(t) for all t € [t2,t3]. (2.11)

Analogously as above, for all z € (t3, 4), where ¢4 ~ 13.282, (z,10) is a nar-
row pass point corresponding to the barrier function 2(.) with (z(.), u(.), p(.)) €
52’10,10. Hence,

iC*(t) =10fort € (tg,t4). (212)

- There is final function z3(.) through (t4,10) with (=3(.),ua(.),ps(.))

€ S¢,,10,10, and

1 : _
r3(t) = —&ts +0.4¢2 — 3t +c3, t € [ty,10], (2.13)
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where ca =~ 18.333. Hence,
z*(t) = xa(t), for all t € [y, 14]. | (2.14)
Thus, the optimal state function is determined completely by (2.7)- (2.14)

(see Figure 1). The optimal control function u*(.) is given by

u*(t) = &*(t) - b(t), for all t € [0,14].

~ Figure 1.
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8.4. Conditions for Application of the Method of Orienting Curves
We have just stated the main idea of the Method of Orienting Curves as

well as the way how the method works. But when can the method be applied

or under _What conditions does the method work? As it was proved in [16] (see

also [17]), one can use the algorithm of MOC to determine a normal optimal

process of Problem (1.1)—(1.4) provided that the four following hypotheses are

satisfied:

(H1)

(H3)

(H4)

Let (21(.), ur(), pr(.)) € Szy,qu» and let (f,z4(t)) € G* for all t €
(2,21 C[0,T), k = 1, 2. If 1(2") = z2(2'), then z1(t) = z2(?) for all
telz2]. ‘

Let (z*(.),u*(.),p*(.)) € S* and 2*(t) = a;(t) for all t € [t1,%2] C
[0,7],1 = 1 or 2. Suppose that z € [t1,%2] and ¢ = p*(z) or ¢ =
p*(z + 0). Then there exist (2(.), u(),p()) € S;,2%(z),q and t] and &)
with #; <#] < z < t) < t; such that |

(t,2(t)) € G for all t € [t}, 23],
and, for k = 1, 2,

th =11 or x(th) = a;(t}) for j # 1.

Let w, q be arbitrary real numbers, Then, for almost all ¢ and for all
x with (¢,z) € G*%, there exists at most one v* such that

H(t,z,v*, ¢, 1) = max H(t,z,v,q,1),
( q ) o€ 1B2] (t, g, 1)

flt,2,v") = w.

(H5) Leti=1, 2. For almost all £ € [0,7), if g1 # ¢2 and

v* € argmax H(t, a;(t),v,q1,1) N argmax H(t, o;(t), v, 92, 1)

vE[51,82] vE[#1,82]

then f(t,a:(t),v*) # a;(t).
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REMARK 3.1. In fact, it was proved in [16] that the MOC can be applied for
any class of problems which satisfy five hypotheses (H1)-(H5). In a recent paper
(see [17]), however, we proved that (H2) follows from (H1) and (H4).

3. Verification of (H1), (H3)-(H5) for some concrete problem classes
We now check if the four hypotheses (H1), (H3)~(H5) hold for some problems
of the class (1.1)~(1.4). For this aim, we observe first that (H4) follows from
(1.3) and Lemma 3.3 in [16] while (H5) is a direct consequence of (1.4) and the
fact that the function H is linear in the control variable. We need the following
functions for the verification of (H1) and (H3).
Let h(.,.) be the function from G** to IR which is defined by

OB, €) o= Ly — 218
2 f2
where all the functions on the rightlside depend on (%, ¢). Next, we abbreviate
L{t, 2(t), u(t)) by L(t, z,u), f(t,z(t),u(t)) by f(t,z,u) and soon.

For (a(.),u(.),p(.)) € S. 4.4 and (z*(.),u*(.),p*(.)) € §*, denote by ¢(.) and
#*(.) the functions defined by |

- i2[(L2~'5f2 - L2f25)f1 + Los fo —~ szzt] | (3.1)
2 I(£,€)

(1) == Hy(t,z,u,p, 1) = p(t) fa(t, z) — La{t, x), (3.2)

¢*(t) := Hy(t, 2%, w*, p*, 1) = p*(t) fa(t, 2*) — La(t,z*), (3.3)
respectively.

Obviously, ¢(.) is continuous on the interval in which it is defined. Moreover,

because p*(.) is continuous on the left on [0, 7] (see [5]), $*(.) is continuous on
the left on this interval. Define

G+ 1= {(1,€) € G| h(t,€) > 0},

G- = {(t,£) € G*2| h(t,£) < 0},

G**0 := {(1,€) € G| h(t, ) = 0}.
3.1. Problem (1.1)~(1.4) of the First Type

A problem of Class (1.1)~(1.4) is called of the first type if G C G*+ or
G C GE.’B_. . - . . .
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TuEOREM 3.1. For Problem (1.1)~(1.4) of the first type, the hypotheses (H1)
and (H3) are satisfied.

In order to prove Theorem 3.1, we need the following lemmas.

LEMMA 3.1. Suppose that ¢ € R, (z,y) € G, and (z(.),u(..),p(.)) € Szy.e-
Suppose further that [z,2'] C [0,T] and (t, z(t)) € G°* for all t € [2,2']. Then

(1) = fa(t, z) exp(—/ fe(m,z,u)dr)] c; —I—/ h(r,z) exp(/r fe(e,z,u)de)dr},
(3.4)

u(t) = p1 a. e in {t € [z,2] | §(£) <0},
u(t) = B2 a. e. in {t € [z,2] | 4(t) > 0},

where ¢, := H,(z,2(2),u(z),p(2), 1}/ folz, 2(2)).
LEMMA 3.2. Suppose that {z1,22] C [0,T] and (z(.),u(.),2(.)) € Sz,y,0-
(i) IF(t,z(t)) € G=*+ for all t € [21,22] then there exists z € [21, 23] such
that ¢(t) < 0 for t € (21,2) and ¢(t) > 0 for t € (2,22).
(i) If (t,2(t)) € G**~ for allt € [21,22] then there exists z € [21, z2] such
that ¢(t) > 0 for all t € (21,2) and $(t) < 0 for all t € (z, 22).

Here z may be equal to z; or z3, i.e., (21,2) or (2, z3) may be empty. More-
over, if z; < z < 2 then ¢(z) = 0. '
Lemma 3.1 is a consequence of (2.1) and Theorem 2 in [8]. Lemma 3.2 can

be proved by the same way as in the proof of Theorem 3 in [8].

REMARK 3.2. Note that for any triple (z(.), u(.), p(.)) which satisfies the system -

p(z) = ¢, =(2) =, :
B(t) = —p(t)[f1e(t, 2()) + fae(ts 2(ENu(®)] + Lne(t, 2(2)) + Lag(t, o(1))u(t),
#(t) = flt, 2(1)) + falt, z(t))u(t),

we can define a function ¢(.) as in (3.2). Moreover, upon.computation similar to

the proof of Theorem 2 in {8], the function ¢(.) correspénding to (:t:(), u(.), p(.))

mentioned above also possesses the representation (3.4).
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LEMMA 3.3. Let (z*(.),u*(.),p*(.)) € S*, [t1,t2) C [0, T). Suppose that
z*(t) = a;(2), i=1, 0or 2, for all t € [t;,14], {3.5)

then
$*(t) = 0 for all t € (t1,1]

PROOF: Because of {3.5), it follows from (1.4) that

u*(t) € (B1,52), a.e. in [t1,ta].

Hence,
¢*(t) = H,(t,z*(1),w*(t),p*(t),1) = 0, ae. in [t,1s)]. (3.6)

The conclusion of the lemma follows from (3.6) and the fact that ¢*(.) is con-

tinuous on the left on (¢1,12] B

PROOF OF THEOREM 3.1: _ ,
We consider only the case G C G*+. The proof for the case G C G**-
is similar. Without loss of generality (pay attention to the continuity of the

function A(.,.)), we assume G** = G**+.

a) (H1) holds for Problem (1.1)-(1.4) provided that G C G**+.

Suppose that (2;(.),ui(.)},pi(.)) € Sey,q» 1 = 1, 2. Suppose further that
(t,mi(t)) € G¢* for t € [z,2'] C [0,7], and z1(z') = 22(2"). We have to prove
that
” 21(t) = zo(2) for all ¢ € [z, 2']. (3.7)

 Assume (3.7) is false. Then, without loss of generality, there exist #;,%; €

[21, z2] which satisfy

z1(t1) = z2{t1), z1(f2) = 22(t2),
21(t) < 7a(2) for t € (ti,t2). ©(3.8)

By Lemma 3.2 there exist {1,(2 € [f1,12] such that

$1(t) < 0 for t € (t1,(1), and $5(t) > 0 for ¢ € ((1,t2),
$2(t) < 0 for t € (t1,(z), and ¢a(t) > 0 for t € ({2, 12), (3.9)
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where #;(.) is the function defined by (3.2) corresponding to (z:(.), u:(.), p:(.)),
i = 1, 2, respectively. It is sufficient to consider the case {1 > (2 ‘(the other
cases can be treated similarly). _ _ '
If ¢» = t1, then (1.2)-(1.3), (3.9), together with Lemma 3.1, and Theorem
1.1 in [6] yield
21(2) < z(t) for all t > ¢4

(whenever the graphs of z;(.) and z3(.) still remain in G**) which contradicts
(3.8). |
If (3 > t1, then by (1.2), (3.9), and Lemma 3.1, we get 21(t) = x2(t) for all
t € [t1, z2] which contradicts (3.9). Consequently, (H1) holds.

b) (H3) holds for Problem (1.1)~(1.4) provided G C G*%+.

Suppose that (z*(.),v*(.),p*(.)) € §* and z*(t) = a;(t) for all £ € {t1,12] C
[0,T],i=1, or 2. Suppose further that z € [t1, 2] and ¢ = p*(z) or ¢ = p*(2+40).
We have to prove that there exist (2(.),u(.),p(.)) € Sz,xr-(z)‘q and 11, with
t; <t) <z <ty <ty such that

(t,z(t)) € G for all ¢ € [t],15],
and for k = 1, 2, t}, ="t or 2(t}) = a;(t}), 7 # 1 (3.10)
The proof is trivial if ¢, = ¢;. For the case t; 7& to, ohserve ﬁrlst that
Lemma 3.3 gives ¢*(¢) = 0 for all t € (t1,¢2]). Then, together with the fact that
G C G**+ and 2*(t) = a;(t), t € [t1,%2],1 = 1 or 2, Theorem 4 in [8] implies
that i = 1, Le., z*(t) = ay(f) for all t € [t1, ).
If z € ({1,t2) and ¢ = p*(z + 0) or ¢ = p*(2), then
#(2) = gfa(z,2(2)) — La(2,2(2)) = ¢™(2) = ™(2 + 0) = 0 (3.11)

for any and (2(.),u(.),p(.)) € S 2+ (z),q- 1t follows from Lemma 3.1 and Lemma
3.2 that |

#(t) < 0fort < z, and ¢(t) > 0 for ¢ > z,
u(t) = f fort < z, and u(t) = fp for t > 2

as long as gra remains in G¢*. Clearly,

u(t) = fy < u*(t) for t < z, and u*(¢) < u(t) = B, for ¢ > =.
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Then the existence of 17,15 € [t1,te] with (3.10) follows from (1.2)—(1.3), Theo-
rem 1.5 in [6], and the admisibility of z*(.).

The case z = t1 o z =tz can be treated by the same way. Theorem 31lis
completely proved. §
Therefore, from Theorem 3.1 we can conclude that the Method of Orienting

Curves developed in [16] can be applied for constructing the optimal process of
Problem (1.1)-(1.4) of the first type. It is easy to see that Problem (2.5)2.6)

" considered in the previous section belongs to class (1.1)-(1.4) of the first type

with G C G**-.

REMARK 3.3. In practice, there are different problems of which the mathema-
tical models belong to Class (1.1)—(1.4) of the first type, for example, inventory
problems (see [15]) and problems of production planning (see [1]). In i3} the
result just obtained was used to solve an optimal control problem of a hydro-

electric power plant.

9.9. Problem (1.1)~(1.4) of the second type .
A problem of class (1.1)-(1.4) is called of the second type if there is a con-

tinuously differentiable function n(.) which satisfies

Ft,n(2), B1) < () < F(E0(), B2) (312)
Whénever (t,n(t)_} € G, e [0, T). Moreover,
Gt = {(t7£) € G 16 > n(t)}v _
Ger- = {(t,&) € G |€ <n(B)}
Geo = {(1,€) € G% | € = (D)} (3.13)

REMARK 3.4. There are a lot of practical problems belonging to Class'(1.1)-
(1.4) of the second type (see [10], [14], {15]), and for some of them, the function
7(.) can be defined completely (see [14])-

THEOREM 3.2. For Problem (1.1)—(1.4) of the second type, the hypotheses
(H1) and (H3) are fulfilled.

The following lemmas are useful for the proof of Theorem 3.2.
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" LEMMA 3.4. Suppose that (2,y) € G,¢ € R, and (2(.), u(.),p(.)) € Szy.,.

(1) I(z,y) € G+ U G**° and ¢(z) > 0 then,
u(t) = fz and (t,2(2)) € G**+ fort > z,

whenever grz still remains in G*.

(ii) If(z,y) € G*~ U G** and ¢(z) < 0, then
u(t) = By and (t,z(t)) € G**~ for t > z,
whenever grz still remains in G2,

PrROOF: 1t suffices to prove (i). (ii) can be proved analogously.
We first deal with the case (z,y) € G**+. Assume the contrary that (i) is
not true, then there is 2z’ € [z, T] such that '

z(z') =n(z') and (t,z(t)) € G**+ for all t € [2,2'). (3.14)

Since h(.,.) is continuous, we get z' > 2.

On the other hand, if
fi(t,n(t)) — 7(t)
fz(?ﬂ?(t))

then (3.12) imlies u,(t) < fy = u(t), fort € [z,2'). Due to (1.2)-(1.3) and
Theorem 1.1 in [6], we get

ug(t) = , telo,T], (3.15)

n(t) < z(t), telz72]

Especially, n(z') < 2(2') which contradicts (3.14).

We now consider the case (z,y) € G°®°. Since ¢(.) is continuous, there exists
€ > 0 such that ¢(t) > 0 for t € [2,z +¢]. Then, (3.12) gives uy(t) < B2 = u(t),

for ¢t € {2, % + €]. The same argument as above leads to
n(t) <z(t), telz,z+¢. (3.16)

Take z" € (z,z+¢€), then (2", 2(2")) € G**+ and ¢(z") > 0. By the previous
proof, we get

u(t) = f and (t,z(t)) € G**+ for t > 2"



130 NGUYEN DINH AND HOANG XUAN PHU

which togefhef with (3.16) prove (i). The proof is complete. Il
The next two Lemmas can be proved analogously.
LEMMA 3.5. Let (z,y) € G,¢; € IR, and let (z;(.),ui(.), pi(.)) € Sz yqir i = 1,
2. If ¢o(2) < 0 < ¢1(2), then
<0 fort < z,

:_BI (f) bt :Ez(f){

>0 fort >z,
as long as gre;, 1 = 1, 2, remain in G*.

LEMMA 3.6. Suppose that ¢ € IR, and (z,y) € G**°. Suppose further that
(£ 0, 2()) € Sugg and §(2) = 0.

If there is € > 0 with (%, 2(t)) € G**+ ((¢,z(t)) € G**~ ), for all t € (2,2 +¢€),
then u(t) = B3 and (t,z(t)) € G**+ (u(t) = B and (¢,2(t)) € G**~, resp.), for

t > z, as long as gre remains in G**.

-PROOF OF THEOREM 3.2:

a) (H1) holds for Problem (1.1)-(1.4) of the second type.

Suppose that (z:(.),ui(.),pi(.)) € Ssy,4:s (z,yr) €G g €eR,i=1,2 and
(t,2i(t)) € G* for t € [z,2'] C [0,T]. Suppose further that #;(2') = z5(2'). We
now verify that

21(t) = za(t) for all ¢ € [2,2'].

Assume the contrary, i.e., this equality does not hold. Then, without loss of

generality, assume that there exist #,,12 € [z, 2’ ] such that

pi(t) = aa(ts), oa() = o (ta), : (3.17)
z1(t) > x2(t), for t € (t1,29). - | (3.18)

We first consider the case (tl; z1(ty)) € G,

If $1(21) = ¢2(t1), then, by Lemma 3.2 and the continuity of ¢(.), and A(.,.),
one can choose € 3 0 such that z,(t) = z,(¢) for ¢ € [t1,%; +¢) which contradicts
(3.18). '
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If ¢o(t1) > é1(t1), then by the continuity of ¢,(.), i=1, 2, we get ¢a(t) >
#1(t), and hence, ua(t) > ui(t), for all ¢ > #; and close to t;. This yields
2a(t) 2 z1(1) for t > t;, which contradicts (3.18). Therefore, ¢2(t1) < ¢1(;).

Using the same argument as above and paying attention to Lemma 3.2, and
Lemma 3.5, we would obtain either x;(¢) = z2(¢) for all t > ¢; and close to 1,
or z1(t} > zo(t) for all t > #;. But these are impossible (see (3.17) and (3.18)).

Let us turn to the case (1, z1(t1)) € G*°.

If further ¢1(t1) = ¢2(f1) = 0, then by (3.18), for all € > 0 with £; + e < t3,
there exist ¢ € {1,2} and ¢, € (¢1,t +¢€) such that either (i) or (ii) below occurs

(i) (te 2i(t)) € Go*+.

(i) (te,xi(te)) € Ge=-.

It suffices to deal with (i). Part (i) can be considered similarly.

Suppose that (i) occurs, then by the continuity of (.}, i = 1,2, there is a
subinterval I C [¢;,%3] with t, € I and such that (f,z,(t)) € G**+,f € I. Let us
set ‘

t =1inf{t € [t1,te] | (L xi(l)) € G+, VI € (¢,1.)}.

It is easy to prove that z;(f) = n(¥) and ¢;(f) > 0 (see Lemma 3.4). Hence,
Lemma 3.4 and Lemma 3.6 imply (t,_ari(t)) € G+ and u;(t) = B2, t > L.

If 2;(2) < 2i(f),j # 1, then from w;(t) < uy(t) = fa for t > ¢ it follows that.
x;(t) < ai(t) for all £ > ¢. This contradicts (3.17).

If 2 ;(f) > z;(f), then by the same argument as above we get (£, x;(t)) € G**F
and u;(t) = fa, for all t > ¢ where ¥ = inf{t € [t;,1] | (l,z;(1)) € G*"+. Vi €
(¢,%)}. Due to (1.2) we arrive at

z;(t) > wi(t) forall ¢ > £

(as long as gra; and grzy remain in G**) which conflicts with (3.17).
. The case in which (¢;,2;(¢;)) € G°*° and there exists j € {1,2} such that
@;(t1) # 0, can be treated by the same way. '
The proof for the case (#,,x1{t;)) € G**- is similar. Consequently, (H1)
holds.

b) Verification (H3) for Problem (1.1)-(1.4) of the second type.
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Suppose that (2*(.), u*(.),p*(.)) € §*, 2*(¢) = au(t) for ¢ € [t1,1,] C [0, 77,
i =1 or 2. Suppose further that z € [¢,,3] and ¢ = p*(z) or ¢ =p*(2 +0).

We verify (H3) for i = 1. The case i = 2 can be proved analogously.

Observe first that by Lemma 3.3, we obtain ¢*(t) = 0 for all ¢ € (2, 1s).
Then Theorem 4 in [8] gives {(¢,2*(t)) | ¢ € (#1,%2)} C Ge=+ U Ge%o. Hemnce, by

the continuity of k(.,.), we obtain
(t,2™(1)) € G+ U G**° for all ¢ € [t;,1,).

Only two following cases occur
() (= n(2)) € G==+,
(i) (2,01 (2)) € Ge*o
The case (i) will be treated as in b) of the proof of Theorem 3.1. For (ii),

B, for t < z,
u(t) =
/32., fort > 2.

let us set

Denote by (p(.), (x(.)) the unique solution of the system
p(z) =g, z(z)=a(z), | :
Bt) = —p(t) it () + Lag(t, 2(t)) + Lag(t, 2(¢))u(t),
#(1) = Ata(D) + falt,2a()u(d).

Since u*(t) 2 u(t) = B, t € [t1, 2] and u*(t) S u(t) =B, t& [z,12], it follows
that . '
- w(t) 2 Ql(t) = :L‘*(t),t & [tl,tz].

To verify (H3) it is sufficient to show that (2(.);u(.),p(.)) € S;.0y(z),4- For this

aim, let us set

t1 = max{t;,t} where { :=inf{t ¢ [0,2) | (£,2(t)) € G**},
t3 := min{ts,%} where 7 := sup{t € (2,T] | (¢,z(2)) € G**},

and verify that (see Remark 3.2)

#(t) < 0for t € (#,,2), (3.19)
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$(t) > 0 for t € (2,1}). (3.20)

'Recall that ¢(¢) can be represented in the form

o) = faltespl~ [ felraudries + [ hira)exel [ el )ty
: T ) (3.21)
where . = [afa(z2(2)) — La(z, 5( D)/ falz,2(2)) = $(2)/ falz, 2(2)).
If z € (21,22), then because of ¢*(z) = ¢*(2 +0) = 0 and ¢ = p*(z) or
g = p*(z + 0) we get ¢, = 0. Define u,(.) as in (3.15), it follows from (3.12)
that

ug(t) > u(t) = P1, t € (t1,21) and up(t) < u(t) = B2, € (z,12).

By virtue of Lemma 3.4 we obtain

o(t) > 7(t) for t € (41, 85) \ {z},

ie., h(t,z(t)) > 0 for t € (¢],15) \ {z}. |
Hence, (3.21) yields ¢(t) > 0 for t € (z,15) , which is (3.20).

On the other hand, note that we also have

t t r
66) = Falt, ) expl(— [ felrmwinlen + [ Mrayexs( | fell,z,udlas]
| t . Iy h  (323)
where ¢;, = ¢(t;)/ f2(t1,2(t1)). Then (3.22) and the fact that ¢(z) =0 = c;

imply ¢, < 0. The inequality (3.19) follows from (3.22)-(3.23).
The proof for the case z = 1; or z = ¢ is similar. The proof of Theorem 3.2

18 completed.r |

We have just proved that for Problem (1.1)~(1.4) of either the first or the
second type, the hypotheses (H1), (H3)~(H5) are satisfied. Hence, the Method

of Orienting Curves can be applied to construct its optimal process.
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