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PROBLEMS OF VECTOR OPTIMIZATION

PHAN QUOC KHANH AND DINH THE LUC

Abstract. The paper discusses results in main problems of vector optimization.
Optimality notions and general existence theorems presented with an emphasis
on proper efficiency. Norm scalarization in normed spaces ordered by general con-
vex cone and other scalar representations are considered. For duality, we propose
a scheme of constructing dual problems in an axiomatic approach, which includes
Lagrangean duality as a special case. Furthermore, both necessary optimality
conditions and sufficient conditions are obtained under relaxed assumptions and
for genera! problems so that the Pontryagin maximum principle for cooperative
differential games can be derived as consequences. Finally, we extend Ekeland’s
variational principle to vector optimization problems in a general setting.

| Anyone attempts' to make decisions in an optimal way. Traditionally,
good decisions making have been based on optimizing a single criterion, i.e.,
a single objective. In various sciences such as sociology, economics, politics,
technology, however, the concern has always been the satisfaction of aspira-
tions, resulting in a theory of multicriteria optimization (or, what is the same,
multiobjective optimization or vector optimization).

Beside specific problems as optimality ndtions and scalarization, in vector
optirhization there arise the same issues as in scalar optimization existence
problems, optimality conditions, duality, stability, and so on.

In this paper we present some results that we have recently developed in

the field of vector optimization.
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1. Optimization notions

In contrast to scalar optimization, where the objective space is R with
the unique natural ordering, in vector optimization there is a variety of fashions -
to order the objective space, depending on the preference attitude of the deci-
sion maker. In most cases, the ordering is defined by a convex cone in a linear
space. However, with an ordering already fixed, there are still various notations
of optimality: weak (or Slater) optimality, (Pareto) optimality, proper optimal-
ity and strong (or ideal) optimality. In this context, the terminology should be
explained. In the literature the terms "efficient”, "nondominated”, “noninfe-
rior” or "preferred” are sometimes aliases of ”bptima,l”. The terms "efficient”
and ”nondo.mina,ted” are even more fréquently used.

Let X be a set and Y a vector space ordered by a convex cone K. A
point zp € § € X is called a (Pareto) minimizer of a mapping F : X —» Y
on S if (F(zo) —~ K)N F(S) C F(zg) + K. When the relative interior riK is
nonempty, a point zo € S is said to be a weak (or Slater) minimizer of F on S if
(F(zq) — riK)N F(S) = 0. A point z¢ € S is referred to as a strong minimizer
of Fon Sif F(5§)C F(zg)+ K. If X is a topological space and if in the first
two definitions F'(S) is replaced by F(S N N) for some neighborhood N of zg,
then we have a local Pareto (or weak, resp.) minimizer (of some kind), F(z,)
is naturally called a minimum (of the corresponding kind).

Proper optimality is the most complicated specific solution notion of
vector optimization. There are a number of different definitions. Fach of them
shows that improper minimizers are in a certain sence anomalous. However,
in the simplest case, where Y = R™, K = R} and .F(S ) is convex, all known
definitions of properness coincide. In this section we discuss three properness
definitions of Geoffrion [9] Kuhn and Tucker [33] and Benson {1] in a general
setting.

In the remainder of the section let X and ¥ be normed spaces and let

- K be an ordering cone of Y. A minimum y, € 4 C Y is set to be a Geoffrion

proper minimum (G.P.min.) of A if there exists a real # > 0 with the property
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that if {A1,%0) > {M,y) for some Ay € Y, || Ay [|= 1, and some y € A, then
one has Ay € Y*, || Az ||=1, such that

{(Ayyo —y) £ B{A2,y — vo)-
A minimum yp is called a Benson proper minimum (B.p. min.) of A if
(—K) N clcone(A — yo + K) C K.

For the Kuhn-Tucker properness we have the following extension to a problem
with parameter. Beside X and Y, let normed spaces Z and W be also given,
where Z is ordered by a convex cone M. Let U be an arbitrary set. Let the
mappingF:XxU—>Y,G:XxU—eZandP:XxUHTbeegiven. Then

consider the vector optimization problem
min F(z,u), (1.1)
s.t. (:c,u) € Xo x Uy (1.2)

where X % Uy consists of all (z,u) satisfying

G(z,u) <0, (1.3)
P(z,u) =0, (1.4)
re X,uel. (1.5)

The infinite dimension of the concerned spaces and the presence of parameter u,
on which no differentiability conditions is imposed, allow us to consider dynamic
control problems and reduce them to Problem (1.1)-(1.2) (see Section 5).

For a given (zg, 4o) € Xo x Uy, set
My ={pe M :{n,G(zo,u))} = 0.

Assume that intMg* # 0, that F(.,uo) and G(.,uo) have directional derivatives
in all directions at zg, and that P(.,uo) is Gateaux differentiable at Zo. Then,

a ninimizer (%o, %)} is called a Kuhn-Tucker proper minimizer of the first type
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(KT.p.min.I) of Problem (1.1)-(1.2) if there do not exist £ € X, a; > 0,5 >

0,u; € U, -- ,us € U for some integer s such that

Fy(xo,ue; 2) + Z%(F(iﬂo,“j) = Fzo,u0)) € —K\{0},

G (0, u0; T + Y aj(G(o,u;) — G(zo,u0)) € - int Mg™,

=1

Pl(z,up)Z + Za_,—P(:co,uj) =0

j=1
If —int Mg™ in (1.8} is repaced by —Mg*, then (zo,uo) is called 2 KT.p.min.II,
which is stronger than a KT .p.min.I.

Now we compare three properness notions. It is known [3] that every
G.p.min. is also a B.p.min. For finite dimensions the reverse implication is
true. However, in infinite dimensions we have the following counterexample.
EXAMPLEL.L: Let Y =L, K =Ly := {y=(y1,42,- )€ L :y; 20 Vi},A=
2% U {0}, where '

ko ifi=k
=41 ifi=1k+#1,.
Ghy! g kit
Then, 0 is a B.p.min. of A but not a G.p.min.

Dealing with KT.p.min. we need the following definition. The con-
straints of Problem (1.1)-(1.2) are said to satisfy the Kuhn-Tucker constraint
qualification of the first type (KT.CQ.I) at (&, ) if from

G,(z,u: ')+ G(z, u') — G(%,2) € —int Mg, (1.7
Py(z,a)z" + P(z,u') = 0,

for some z' € X and v’ € U, it follows the existence of z : [0,T] — X for some
to > 0 such that :7'%(¢t) — 0 as ¢ — 0 and that ((¢),@) and(x(t), u') satisfy
(1.3)-(1.5) for all t € [0,%,], where 2(t) = £ + t + #(¢). If —int MZ* in (1.7) is
replaced by —Mj* we have KT,CQ.II, which is stronger than KT.CQ.I
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THEOREM1.2. Assume that Problem (1.1)-(1.2) with intM{* # () satisfies the
following conditions:

(i} at xo, F(., o) has continuous directional derivatives, G(.,u) has di-
rectional derivatives and P(.,up) is Gatecaux differentiable:

(ii) Fay + te,u) — F{ag.u) ast — 0 for each v and z;

(i) KT.CQ.I (or KT.CQ.II) is satisfied;

(iv) for cach v in a neighborhood of xy. for each uy,uy € U and each

« € [0,1], there exists v € U such that
F(o,u) < (1 —a)F{a,uy) + aF(z,uy),
Gz, u) < (1 - a)Gle.uy) +aG(a, ug),
Plr,u)y= (1 -a)}P(z,u;) + Pz, us},
If (zg,up) is a B.p.min., then it is also a KT.p.nin.I (or KT.p.min.II,
resp. ).

Without the KT.CQ., using the Lusternik theorem we can prove a similar

relation as follows.

THEOREM1.3. Assume for Problem (1.1)}-(1.2) with intM # § that
(1)P(.,uy) is continuously Fréchet diffcrentiable at xg;
(ii}) F' and G satisfy condition (i) of Theorem 1.2 ;
(iii) F(.,up) and G(.,up) have continous directional derivatives at zo;
(iv) condition (iv) of Theorem 1.2 is satisfied;
(v) Pl{zp.up)X = W. ,
If (zg,up) is a B.p.min., then it is a K'T.p.min.L

Since Geoffrion’s properness is the strongest among the three types, it is
worth deriving the following sufficient condition for this properness via a scalar

optimization problem.
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THEOREM1.4. Assume that K has a weakly compact base. If A € I* exists
with (A, y) >0 Vy e K\{0} and {\,y0) = min{\,y), then yy is a G.p. min. of
A

‘This is an extension of a result in [10]. Moreover, one can easily prove

" that the theorem is valid for B.p.min. without the compactness assumption.
In Subsection 3.1 the following definition of Borwein [2] will be consid-

ered. A point yg € A C YV is said to be a Borwein proper minimum of 4 if 0 is

a minimum of the tangent cone T(A + I, yp) of 4 + I at yy.
2. Existence of eflicient points

This section 1s devoted to general existence theorems which contain most
known results based on compactness assumptions. For the sake of generality
we consider a topological vector space Y. A convex cone IV is called correct
if IV + K\(—K) C K. Aset ACY issaid to be K- complete (strongly K-
complete, resp.) if it has no covers of the form {(yo — V) : @ € I} or{{ya —
L) :a €I}, resp. ) with {y.} being decreasing net in A, where (.)¢ stands

for the complement 1"\(.). For y € A we call (y — K') N 4 a section of A.

THEOREM 2.1. Let I be a correct cone and A be a nonempty set in Y. Then
there exist efficient points of A if and only if A has a nonempty K-complete

section.

The correctness assumption may be weakened by strengthening the com-

pleteness as follows.

THEOREM 2.2. Let I\ be a cone and A be a nonempty set in Y. Then, efficient

points of A exist if and only if A has a nonempty strongly K complete section.

Roughly speaking, having Il-complete sections is a general characteriza-
tion for the existence of efficient points. By verifying criteria for I{—complet-eness
in various circumstances we obtain as consequences many known results, e.g.
of Corley [5], [6], Borwein [4], Henig [11} and Jahn [16].
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3. Scalarization

Scalarization means the replacement of an original vector optimization
problem by a suitable scalar problem, i.e., by a problem with a real-valued
objective functional. If this functional is a norm, we have a norm scalarization.
This type of scalarization will be considered in the first subsection. As we shall
see there, norm scalarization gives close relations between vector optimization
and approximation theory and tells many things about the geometric structure
of the objective space . However, norm scalarization seems to be suitable only
for finding solutions directly in the objective space. For more general problems
of the form.

min F(z),

(3.1)
s.t. 2 e SCX,

where F': X — Y is a mapping between two topological vector spaces with an
ordering cone Iy in ¥, we should look for a more general scalarization, i.e., for
a scalar problem

min s(z),

(3.2)
st 2 €5 CX,

where s is a functional on X. A natural idea is that s may be found in the
form s = £ o F', where £ : ¥ — R is a functional. When £ is linear, we have
linear scalarization. Theorem 1.4 and the results in Section 5 are in the sense

of linear scalarization. In Subsection 3.2 we consider more general forms of €.
3.1 NORM SCALARIZATION:

We introduce an orthogonality concept in a normed space ¥ as follows.

Assume that Y is a direct sum ¥ = L & LT of two closed subspaces, with
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codim L > 1. Then, we say that Lt is orthogonal to L if the following mono-

tonicity of the canonical projection p:Y — L% holds:
d{yi,z1 + L) < d(yz, 22 + L) (3.3)

implies
| p(y1) — p(z1) i<l p(y2) — p(z2) ||, (3.4)

and if (3.3) becomes an equality, then so does (3.4).
If Y is a Hilbert space, then L is orthogonal to L if and only if Lt is the

orthogonal complement of L in the usual sense.

Throughout this subsection assume that A C.Y is a nonempty subset,
that clK # Yand that Y = L@ L", where L7 is orthogonal to L if codim L>

1. Sometimes we denote p(4) by AT.
THEOREM 3.1. Assume that, for all y1,y2 € KT,
lays + By2 1€ w1 T2 |l (3.5)

whenever «, 8 € [0, 1].
(a) If AC §+ K for some § € Y, then any point yo € Y with

d(fj0§+L)<d(y,g+L), VyEA\y(h

is an efficient poiut of A.

(b) Every point yo € (§ — )N A, for some g € A, satistfying
is an efficient point of A.

THEOREM 3.2. Assume that ri IV # 0 and that
K*n(u— kT CLtnBO,||ul)) YuelL™,

where B(y,r) is the ball of radius r and centered at y.
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(a) If C § + I for some §j €Y, then any point yg € Y with
dyo i+ L) Sdy.g+L). YyeA (3.6)

is a weakly efficient point of A.

(b) Every point yg € (t:! — KYN A, for some §j € 4, with
d{yo. g+ L) > dly,y + L), Vye(y—L)nA,
is a weaklyv efficient point of A.
THEOREM 3.3. Assume that
Ktny—EKHCLYnBO,|x|)uf{s} Vye Lt (3.7)

(a) If the relative algebraic interior recor ¥ # 0 and if A C § + I for
some §j € Y, then any point yy € § + recor N with {3.6) is a Borwein properly
efficient point of A. ‘

(b) If intlX # @, then every yp € (§ — intly )N A for some § € A with

dlye,. g+ L) 2 dly, g+ L), Vye(y— it A)n4,
is a Borwein properly efficient point of A.

It is noted that (3.5)and (3.7) are equivalent.

Now we pass to necessary conditions.

THEOREM 3.4. Assume that I is closed, L = I N (=K ) and cor K™ # 0.

(a) Each efficient point yp of an arbitrary subset 4 C Y satisfies the
condition: for a given §j such that p(§) € p(yo)— cor K7, d(ye,7+L) < d(y, i+
L) and

I plye) — (@) i<l py) —p(g) | whenever plyo) # p(y), (3.8)
for all y € A if and only if

Lt o B0, || plyo)—p(#) |}) = (p(3)—p(yo )+ B )N(plyo) —p(§) — K 7). (3.9)
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(b) Each efficient point yy of an arbitrary subset A C Y satisfies the
condition: for a given § such that p(§) € p(yo)+ cor Kt,d{yo,g+L) = dy, v+
L) and

| p(wo) — (&) 1> ply) = p(3) |l whenever p(y) # p(¥), (3.10)
for all y € (§ — I5) N A if and only if (3.9) holds.

Similar statements are true for weakly efficient points without conditions
(3.8) and (3.10) (see[27]). The above theorems contain results of [51], [50], [14],

[15] and have applications in control approximation problems (see [27]).
3.2. SCALAR REPRESENTATIONS:

In this subsection we assume that J{' is not & linear subspace of Y. Given
Problem (3.1), it is desirable to have a problem of type(3.2) with the property
that any optimal solution of (3.2} 1s also a minimizer of (3.1). Problem (3.2) is
therefore considered as a scalar representation of (3.1). More precisely, (3.2) 1s

said to be a scalar rebresentation of (3.1) if for every 1,72 € X,

F(z,) € F(z2) + I implies s(zy) > s(z2) and
F(z,) € Fle) + K (—I) implies s(z1) > s{z2).
In the case rili # 0, we say that (320) is a scalar weak represéntation
of (3.1) if, for @y, T2 € X,

F(z,) € F(az)+ 1k implics s(xy) > s(a2).

It is clear that any representation is also a weak representation.One can easily
see that any optimal solution of (3.2) is a Pareto minimizer of (3.1) whenever
(3.2) is a scalar representation, and is a weak minimizer of (3.1) whenever (3.2)

is a scalar weak representation.
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THEOREM 3.5. In order that Problem (3.2} be a scalar representation of Prob-
lem (3.1), it is necessary and sufficient that s be a composition of F' and an

increasing function on F(X).

By virtue of this theorem. in order to get a minimizer of (3.1). 1t suffices
to take any increasing functional £o F'. Of course. one tries to choose € as simple
as possible. Other requirements on é are sometimes needed. For instance, we
wish to have the scalar problem solvable whenever so is the vector problem;
or if the vector problem possesses certain specific properties(linearity, convex-
ity, quasiconvexity etc.), then so does its scalar representation. Recall that a

mapping F is said to be quasiconvex if for any y € Y, 1,2, € X and ¢ € [0,1],
Fla). Flzy) €y — K imply F(ta, + (1 —ta) €y — K.

THEOREM 3.6. Assume that Y is finite dimensional, F is lincar and S is a
polvhedral set in X . Then for every minimizer (resp.. weak minimizer)r of (3.1).
there exists a € € rik*(resp., £ € K*\{0}) such that v Is an optimal solution of

(3.2) with s = £oF. (Problem (3.2) is then a scalar (resp.. weak )representation. )

THEOREM 3.7. Assumie that (3.1) is convex, i.c., ' is a convex mapping and
S is a convex set. Then. for every weak minimizer x of (3.1}, there exists
£ € K*\{0} such that x is an optimnal solution of (3.2) with s = £ o I (Problem

(3.2)is then a weak representation.)

It is worthwhile noticing that if £ is linear and belongs to J™*\{0} and
(3.1) is convex, then(3.2) is convex but, in general. not a representation. For a
given minimizer of {3.1), it is not necessary for £ € L'*\{0} to exist such that
(3.2) with s = £ o F is a scalar representation of (3.1) and has x as an optimal
solution. The existence of such £ can be guaranteed for instance if z 1s a proper

mimimizer and Y is finite dimensional.
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THEOREM 3.8. Assume that int i # 0 and Problem (3.1) is quasiconvex in
the sense that F is quasiconvex and S is convex . Let e € intl be given. Then
for every weak minimizer x of (3.1) there exists a € Y such that z is an optimal

solution of (3.2} with s = hg o F, where hy is defined on Y by
holy)= min {t:y € a+te — K,t € R}.

Observe that with this %, (3.2) is a quasiconvex problem and a weak
representation of (3.1). One cannot expect s to have a simpler structure. For
instance, instead of h, one should take any vector ¢ € K*\{0}, but the com-
position s = £ o F' is no longer a quasiconvex functional. Moreover, it might

happen that (3.1) has weak minimizers while (3.2) with s = £o F is not solvable.
4.Duality

In this section we shall present a scheme for constructing dual problems
of a given vector problem and prove some duality results. Let g : X — Z,Z
being a topological vector space ordered By a convex cone M, be given. Consider

the problem

.min F(2), :
(4.1)
st. x € X, ¢9(x) € —M.
As in scalar optimization, a dual problem of (4.1} is of the form
max D{u),
(4.2)
s.tau € U,

where U is a nonempty set and D is a’ mapping from U to Y. Problem (4.2)
means that we look for a maximizer (resp., weak maximizer) uq € U. The
mapping [} and the set U must be constructed in such a manner that by solv-
ing (4.2) one can obtain optimal values of (4.1), and, of course, other duality
relations must hold. In general it is impossible to construct a dual problem

with the objective mapping single valued. Therefore, we consider {4.2) with D
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set-valued. A maximizer of (4.2) is then defined as a point ug € U with the
property that there exists yo € D(up) such that

(yo + K)ND(U) Cyo — K.

Weak maximizers are defined similarly. For the sake of simplicity, K and M
are assumed to be convex, pointed with nonempty interior.

Now we are able to give a definition of dual problems. Problem (4.2) is
said to be dual of (4.1) if

F(z) ¢ D(u) — K\{0}, for every z € X,g(z) € =M,u € U.

Being a dual it is said to be an exact dual if there are zo € X with glzg) € —M
and ug € U such that F(zg) € D(up). In order to obtain a dual of (4.1) let us
proceed as follows. Choose a linear space E ordered by a pointed convex cone

C. Let U be the set of mappings from ¥ x Z to E with the property
u(y,0) € u(y',0)+C Vy,y' € Y withy € ¢’ + K\{0}.

In other words, U consists of mappings from ¥ x Z to E which are
increasing in the first variable when the second is zero. We take any nonempty

subset U C U and define a set-valued mapping D: U — Y :

D(u) = {y € Y : u(y,0) is an efficient point of the set

Ié,lxu(l*"(:c) + K, g(z) + M)}. (4.3)

Remmeber that u(y,0) € E and the efficiency is considered with respect
to C. It is not hard to prove that with these D and U, Problem (4.2) is a dual
of (4.1). Now the question is when (4.2) is exact. By specifying E and U € U
we shall see that the exactness of (4.2) can be reached. We take up the case

E=Y and C =K.

THEOREM. 4.1. Assume that (4.1) possesses a minimizer. Then (4.2) with D
defined by (4.3) is an exact dual of (4.1) in the cases:
(i} U is the entire set U;
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(i1} U consists of mappings which are increasing in the first variable and

nondecreasing in the second one and the set F(X) has a lower bound.

Now we show that Lagrangean duality can be obtained by taking U in a
special form. Denote the set of continuous linear nondecreasing operators from
Z toY by L. Let U be the set consisting of mappings « from ¥ x Z to Y which
can be expressed in the form u(y,z) = y + (z) for every y € Y,z € Z and for
some ! € L.

Evidently, U € U. Hence (4.2) with this U and D defined by (4.3) is
actually a dual of (4.1). It is also seen that D takes the form

D(u) = {y € Y : y is an efficient point of the set

LGJX(F(:E) + l(g(z})), where | € L determines u}.

THEOREM 4.2. Assume that ¢g(X) N (— int M) # @ (Slater’s condition) and

the set gX(F(:c) + K, g(z) + M) is convex. Then, (4.2) with U as above is an
exact dual of (4.1) whenever(4.1) possesses a B. p. min..

The dual problem obtained in Theorem 4.2 is quite simply structured.
Its objective mapping D is a generalization of usual Lagrangean functions. The
convexity assumption in the theorem holds, for instance, if F(.) and g(.) are
quasiconvex. This assumption, Slater’s condition and properness assumption
are all we have to pay in order to get exact duals with the constraint set rela-

tively simple in comparison with the exact duals obtained in Theorem 4.1.
5. Optimality conditions

5.1. NECESSARY CONDITIONS:
Consider Problem (1.1)-(1.2). We define the Lagrazigean

L{z,u, A p,v) = (A, Fz,u) + {g, G(:c, u)) + (v, P(z,u))

and the simplex

L

Zz{a=(a1"‘"’as):a‘j20’za‘j Sl}
=1
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THEOREM 5.1. Assume for Problem (1.1)-(1.2) that

(i) int K # 0 and int M # |

(ii) P(.,uq) is continuously Fréchet differentiable at x;

(iii) F(.,u) and G{., u) are continuous in a neighborhood V' of z, for each
u € U and regularly locally convex (see[30]) at zo foru = up;

(iv) for every finite set of pointé Uy, - ,us € U and every § > 0 there
are a neighborhood V' of 24, V! C V,e > 0, a mappingv: V' x ey, = U and
points e € K and g € M such that for all z,z' € V' and a,a’ €€3.°,

v{z,0) = ug
| P(z, v(z,a)) — P(z',v(z',a')) — Py(zg,ug)(z — z')

—Z(%—a (z0,uy) < 8(] & — &' |I+Z|%*a )

j=1 =1

F(z,v(z,a)) — F(z,ug) — F(z, uo) - ZGJ(F(;U u;) — F(z, %))

J_

< &l = — o u+2a3)e

G(z,v(z,a)) — G(z,up) — Za,-(c;(m, u;) — Gz, uo))

j=1
<6(le—wo |+ aj)g
- a

(v) Pl(zo,u0)X has finite codimension.
If (zg,up) is a local weak minimizer, then there exists (Ao, io, %) €
(K* x My x W*}\{0} such that

0 € 6 L{0, uo, Ao, 40, 10),

L{zo, uo, Ao, to, ¥0) = :;neitl}L(:cg, u,-)\o , 105 V0 )-

Theorem 5.1 is an extension of a main result in [13] and contains many
Lagrange multiplier rules. Its proof, although complicated (see [30], goes on

the same way as most of the proofs of necessary optimality conditions using
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approximation theorems and separation theorems. For such general approx-
imation theorems see [20], [22] and [23]. The assumption that intK # 0 is
commonly used in the literature, but it is rather restrictive. In [31] we obtain
also a multiplier rule under the relaxed condition that riK # §. Note that if
K is not a subspace of Y, any minimizer is also a weak minimizer and hence

necessary conditions for the latter also hold for the former.

52 SUFFICIENT CONDITIONS:

In this subsection we confirm a common fact that multiplier rules are
also sufﬁéient optimality conditions under appropriate convexity assumptions.
We present general sufficient conditions for proper minimizers {(and so for min-
imizers and weak minimizers as well) under relaxed assumptions on convexity
and differentiability.

Consider Problem (1.1)-(1.2) with the additional constraint ¢ € 2 € X

and a pointed ordering cone N for W.

THEOREM 5.2. Assume that for a feasible point (zq,ug) € (2NXo) x Up) there
exist nonempty sets Gy,Gy and G with K\(=K) C G; CY,Mg* C G, CZ
and NU(=N) C G3 C W, such that F, G and P have partial directional varia-
tions (see [31]) on z at (zy,uo) with respect to g1,G2 and Gj, resp. . Assume
further that the composite mapping (F, G, P, P) is partially differentiably (- C)-

quasiconvex (see [31])at(zg,ug) with
C = K\(=K) x M** x N x (=N).

Assume, finally, that there exists (A, g,v) € K* x Mg x W* satisfying
(i) {\,y) > 0 for all y € K\(—=K);
(i) (Ao, Fi(zo, ua)(z — 20)) + {0, G¢(z0, to)(z — 20))

+{vo, PL(zo,u0)(x — z0)) > 0 for all € &

(111) L(:BO‘) Up, )\0, iy V) = min uGUL(wl); Ug, ’\Onu"l V)
Then, (zo,uo) is a B. p. min. of Problem (1.1)-(1.2).

Theorem 5.2 contains some results of [17] and [31] as consequences.
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5.3 APPLICATIONS: PONTRYAGIN MAXIMUM PRINCIPLE FOR COOPERATIVE
DIFFERENTIAL GAMES:

Let us fix a time interval [tg,%;]. The following many players game is

considered:
(1) = ot (B () cup(B)) 2(l) € CMtg, ],
ui{.) € LY [to, t1),u;(8) €U, S RY,j=1,-
iﬂﬂh”:OM&hﬁR"ﬁR“gan:&L
max té[to‘n]g,-(t,.r(t)) <0,2=1,---,k,
Fa()our(L), - vum(l)) = E(a(t))+ th flt e(d), w (@), yum{t))dt — min .
The Hamilton is taken as (with « = (wy. -+ Jum))

H(t, 20, py Ao ) = {proplto ) — (Ut 2, 0) = (gt 2, ).
Applyving Theorem 5.1 we get the following maximun principle.

THEOREM 5.3. Assume that o.hg, hy,g.& and f are jointly continuous and

continnously differentiable with respect to «. Let ul(.),++-,u%(.) be local

IT!
weakly optimal controls with the resulting state xo(.). Then, thcre exist A €
K* 1y € R0 L, € Ry pll) [1‘0 ti] — R" and noncgative regular mcasures

i =1,-- kon [ty.t,]. supported on the sets
T; = {t € [to,ta] : gilt, 27(1)) = 0},

resp., not all zero aud such that

(a) p(.) is a solution of the integral equation

p(t) = —E(2°(#))A — hi(a tghffﬂrl ). 28(r), p{r). N

k f ‘
—nguw%wm
j=1 V¢

with the initial qondition plte) = hy(a®(to))lo;
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(b) for almost all t € [to,t1],
H(t,2°(t), u’(£), p(t), \) = supH(t, 2°(t), u, p(t), A).
vl

Under appropriate convexity assumptions the maximum principle be-
comes a sufficient condition as follows. Consider the case ho{z(%g)) = z(tg) —2°
for a fixed z° € R™ ( i. e., the left end-point is fixed). Then, we have

THEOREM 5.4. Let K be pointed. Let u3(.),...,u% (.) be admissible with the
resulting state z°(.). Let the following differentiability conditions be satisfied:
hy and ¢ are Fréchet differentiable at @°(t1); f(t,.,.),¢(t,.,.) and gi(¢,.) have
partial derivatives at (z°(t), u®(t)) and at 2°(t), resp., for all t € [to,t1]. More-
over, assume that there exists A € K* with (A\,y) > 0 Vy € K\{0},]; €
R p(.) : [ty,t1] — R™, and nonnegative regular measures p;,1 = 1,--- , k on
[to,t1] such that assertions (a) and (b) of Theorem 5.3 hold. Assume further
that

(c) the following convexity assumptions are satisfled: U = Uy X --- X
U, is convex; (X, €(.)) is convex at z%(t1); {l1, h1(.)) is quasiconvex at z°(t1);
(A f(t,.,.)) and (p(t)+2f=1 f:l gl dui, (i, ., ., )) are convex and concave, resp.,
at (z°(t),u"(t)) for almost all t € [ty,,]; '

(d) for almost all t € [tg,t;] we have

k T ’
At OO [ gt = 0

and
k 3 m .
([ dhalt O Dl (1,220,005 0) = w30 < 0
=1 =1 :
for all admissible controls uj(.),7 =1,--- ,m.

Then, u(.),...,ul () are global optimal controls.

Other maximum principles for slightly different games may be found in

[48]
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6. FKELAND’S VARIATIONAL PRINCIPLE FOR VECTOR OPTIMIZATION:

Ekeland’s variational principle [8] is one of the most useful tools for
nonlinear analysis. It has been used in various fields: optimization, global
analysis, convex analysis, fixed point theory, generalized differential calculus,
sensitivity. This section is devoted to an extension of this principle to vector
optimization. To include known related results, we consider a general setting.
Let N be the set of positive integers. A pair (X, —) of the set X and a subset
of XV % X is called an L-space if:

(i) 2n = z € X,Vn € N, implies ({,},2) €—; and

(i) if ({zp},z) €— , then ({:cn‘.},:cr) €— for every subsequence
{zn,} |

In what follows we shall write z, — z instead of ({z,},2) €—. Let ¥
be an ordered vector space with an ordering cone K and d : X x X — K a
mapping. The l-space X is called d-complete if 3 ", d(z —n 4 1,z,) < k for
some k € K and for all m € N implies z, — 2 for at leat one z in X. A
mapping d: X x X — K is said to be a vector halfmetric if the following two
conditions hold:

(i) d(z,2) =0 < z = z;

(i) d(z,z) < d(z,y) + d(y, z) for z,y,2 € X. -

A mapping ¢ : X — U between two L-spaces is closed if ¢(z) = y
whenever z, — = and ©(z,) — y. A mapping J: X — Y, X and Y being as
above, is referred to as lower semicontinuous (1. s. ¢. ) if 2z, — a and J(zn) <y

for some y € Y and for all n € N imply J(a) < y.

THEOREM 6.1. Let X and U be nonempty L- spaces, Y be an ordered complete
separable vector space with an ordering cone K and B C X. Let ¢ : B — U
be closed. Let d: B x B — K and d; : B x 9B — K be vector halfmetrics
such that B is d-complete and ¢ B is dy-complete. Let a mapping J : 9B =Y
satisfy the following two conditions

(i) J(@B) is minorized,;

(ii) sup{d(., z), di(e(.}, o(z)}} + J(o(.)) is L. s. c. Vz € B.
Then
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(a) for each u € B, there exists a Pareto minimizer v € B of J (tp()) +
sup{d(.,v), di{¢(.), ¢(v))} such that

Tp(v)) < J(p(u)) — sup{d(v, u), di(¢(v), p(u))}

and, for all z € B\{v},

J(p(v)) # J(p(e)) + sup{d(z,v), di((2), p(v))};

(b) if p is a Pareto minimum of J(¢B) and is comparable with J( (u)),
then for each € € K, J(p(v)) < p+ € implies

sup{d(v, u), d1 ((v), p(u))} <e

Theorem 6.1 has an equivalent form which is a generalization of the
Caristi-Kirk fixed point theorem (see[24]). It includes most results in this di-
rection, e.g. that of Downing and Iurl\[’?] Husain and Sehgal [12], Kasahara
[18] and Park [49].
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