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1. Introduction

The aim of this paper is to prove the existence theorem for local and

global solutions of infinite-dimentional functional differential inclusion(FDI).

The problem of the existence of solutions in multivalued differential
equations and their properties has been the subject for a. la,rg;e' amount of
works of the last decade. Tt suffices to refer to the monographs [2] and {10]
(which also contain extensive lists of references on this topic) for an overview
on this area of research. It-is worth noticing, however, that' most literature
was devoted to ordinary differential inclusions and quite a few and scattered
results (see, e. g. [7], [9]) have been know for other types of differential

inclusions like FDI or differential inclusions with retarded arguments.

In this paper, using the approach devéloped by C.Castaing and M.
Valadier [4] we are able to establish sufficient conditions for the existence
of local and global solutions of FDI in Banach spaces under quite general

assumptions.

For the sake of convenience, we list some notations used in this paper.
Throughout the paper, E denotes a separable Banach space with the norm
and the strong dual E', E, and E, are the spaces E, and E' endowed with

the weak topologies o(E, ') and o(E', E) respectively.

ForT >0 and b > 0, Cg|—h,T] and Cg, [—h,T] stand for the spaces
of continuous functions from [—h, T] to E and to E,, respectively. It is obvi-
ous that Cg[~1,T] C Cg,[~h,T]. Weshall endow Cg{—h,T] and Cg, [-h,T]
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~with the topology of uniform convergence on {—h, T]. Recall that the neigh-

bourhood base of Cg, [—h,T] consists of sets of the form {f € Cg, [k, T} :
F([—h,T)) C V}, whereV is a nelghboulhood of the origin in E,. We shall -
denote by LE[0, T](L1 [0, T]) the space of all mtegra,ble (resp., equivalent .
classes of integrable) functions from. [0, T] into L0, T) = L{0,T] ; and by

[0 T] the space of all classes of essentially bounded measurable functions

A flom [0,T] into Eg; Ligqy = L0, T). Throughout the integral is under-.

stood in the sense of Bochner.

Finally, let r:[o, T] —2F bhea measurable multifunction such that,
for each t € [0,T ] Ptyis a nonempty convex cr(E E ) - compact subset of
E . We shall denote by St (resp., Sr) the set of all measur able selections

(resp., the set of all equivalent classes of measurable selections) of T'. We

‘shall suppose that T' is initegrable, that is there exists a positive mtegrable
_ function m(:) such that || z [|< m(¢) for every ¢ € [0, T} and every 2 € ().
. Then, clearly, Sr - £ [0 T]. By definition, for t,t' € [0,T);

_ft ey ds={ [ Fo)ds’ € 51).

It 1s 1mportant to note that the concepts of measurability and weak

" or scalar mea,surablhty for functlons from [0, T] into E commde because Eis

a separable Banach space (see e. g.[4].[11])+

2. Ex1stence of local solutlons for FDI

Let U be a gwen neighbourhood of the origin in E,. Let us define
D = {p €Cgl~h,0] : p([-h,0]) C U}

Note that D is an open set in .CE[—'h,O] and, therefore, D is a Suslin

épace.Let G :[0,T]xD — .2_E be a multifunction _wifh nonemty convex
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o(E, E'}-compact values in E. For.a given function ¢® € D, we consider the

functional differential inclusion (FDI) of the form

2.1) (@) € Gz, te[0,T],

22) 2(0)=9°0), eé[—h al,

where, b} deﬁmtmn, a:t(G) = .I:(t + 0)(Vt € [0 1], Ve € [~£,0]). We shall say .

‘that a function z € C E[ h,T) is a local solution of FDI (2.1) satlsfylng,th_e

initjal condition (2.2) if there exists Ty € (0,7T) such that z() is absolutely

" continuous on [0, T] and satisfies the inclusion(2.1) a.e. on[0, To] and (2.2).
" If Ty =T then x is said to be a global solution. |

THEOREM2.1. Let T and G be multifunctions satisfying the above

'hypotheses. Moreover,we assume that

(i) for every t € [0,T] and 'every.(p € D, G(t,p) CT(t);
(ii) for every v € D, G(.,p) is measurable ‘on [0,T);
(iii) for every t € [0, T], G(t, ) is an upper—semwontmuous( u.s.c) function
- from D to E,.

Then for every ¢° € D, the set of local solutions of FDI (2.1) is

nonempty.

PﬁOOF: . Since ¢ € D, ¢%0) € U and, therefore, there is a neigh-
bourhood V of the origin for the weak topology a(E, E') such that ©{0)+V C
U. Since the multifunction ¢t — \]:I‘(s) ds is ws.c. from [0,7] into E, (see
Th.I11-20 in [4]), there exists Ty > 0 such that [[T(s).ds C V (¥t € [0, Ty)).

So we have

" 23) - | ¢(0)+/t () C U,V [0, T3]
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Let us define a set of functions

= (o) € CE[~h. Tv] : ©(8) = ©°(8),¥6 € [~h, 0],
z(t) = 0(0)+[ J(S)ds,Vf = [O,TQ],'O' E_SI‘} .

It is clear that X is a nonempty and convex subset of Cg{—h T()]
We will show that X is compact when legarded as a subset of Cr, [—h, Tyl
Observe first that for each ¢t € [0, Tol, fo ) 'ds is a compact subset of
E,. Therefore, by ascoli’s theorem it suﬁ'ices to prove that X is uniformly
equ:contmuous, i.e., for any 0- ne;ghbourhood V in E,, the1e exists § > 0. -

such that for every = € X,
z(t) —=z(t') € |4

whenever [t — t'| < § and ¢, t’ € [—h,Ty]. Without loss of generahty, we may
take V = Ver c,={zecE:|<e.x>]|<¢} with some nonzero ¢ € E' and
e > 0. Since ° is umfonnly continuous on [—h,0] and fo m s)ds is absolutely
~ continuous on [0, T o], there is 6= 6(5) >0 such that for ¢, e [—h, Tp} with
[t — '] < &, we have ' '

t )
/. m(s)ds < %He’“, if t,¢ € [0,Tq),
¢ .
and |
%) — ) < —||6|| if ¢t € [+, 0}.

It follows that for any ¢ € X a.nd for any t,t' € [—h,To] with |2 —t’[ <
6, the following condition holds | < €', z(t) — =(¢') > | < e, or, equiva-,
lently, () — z(¢') € V. Thus, X is an uniformly equicontinuous subset of
Cg,[—1, To], the closeness of X can be proved analogously as in 4, Th. VL1

and the compactness of A follows from Ascoli’s theorem.

Now consider a multifunction & : X — 2X defined as
P(z)={yeX: y(t) € G(t,z;)a.e. on[0,T1}
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We will show that @ admits a fixed point in X Notice first that by

" virtue of (2.3),for each z.€ X and for each t € [0,T], 2 € D. Morever, it is

obvious that the function t — z¢ is continuous from {0, Ty| into D. Therefore,

by [4, Th.VI-6], there exists a measurable function ¢ : [0, Tp} — E such that

o(t) € G(t; 2¢) ace. on [0,T]. Ini view of (i), o € Sp. We set

[ ¢°(t), for t € [-h,0]
y( ) =
@°(0) + fo o(s) ds, for t € [0, Tq]
It is clear tha,t y € @(:c) Thus, ®(z) is a nonempty and convex

subset for each X € A In order to appply the Kakutani-Ky Fan fixed point

theorem, it remains to show that & is w.s.c., or, equivalently ([3]), that the
graph of @ is  closed i in X x X (with respect’ to the induced topology of .
Cg,[—h,To) x Cg,[-h Tg]) To this end, notlcmg that X x X is metrizable,

we suppose that {(z* z”, y*1}$2 , is a sequence in’ the graph of & converging to

" (z,y) € X x X. Then, by definition, y*(t) € Gtt z¥) a.e. on[0,T] and, for

any nonzero ¢ € E' and for any £.> 0, there éms_ts N such that
. ' ~ . \
v s .
|< e ,zk(t) —2(t) >|<e (Vk > N,Vte [~k T)).

Therefore,
<€, 28(8) — 2((8) > < e (Vk > N,Vo.€ [=h,0]).

In other words, ©¥ converges tb_ xy in‘the topology of Cg, [~£,0]. On
the other hand, let

’*(t) B { gao(tj | o ifte [—h,0},
T )+ I o(s) ds if t€ [0, ],

and

| “(t) if t e [-h,0],
y(t) = { .
@ (0) + fo 3) dq if te& [O?TO],
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" where o and o belong to Sr. Since y' converges to y in Cp,|—h. To), it

. ~ TET et
follows that for any e € £,

=1

(2.4} ]ﬂ < e op{s) > ds——>/ <e U(s)> ds (vt € {0, Ts)).

Stice the set SI {the quotient of br for the equivalence ™ equality

Y is compact-for the weak topology 0’(11 0, To, 10, Tsi),there exists

a subsequenee {o1:i}%, which converges ‘to ¢ Sr. This implies that for
each ¢ € E', the sequence {< ¢, 04i{") >}E’f=” converges to < ¢, o) > for
the weak topology G’{L[lﬂ,ﬂ, Lﬁi,_,;u]). Hence', we can apply Theorem V14 in -

[4] to conclude that o(t) € G{t,2,) a.e.-on [0, Ty} Moreover, from the above

it follows that

£ ' 1
f < e*['],oki)(s) > ds — / < e, o(s) > ds,
0 ' 0
for.each t € {0. Tg] and for each ¢ € E'. This gives, in view of (2.4),
. o t . ' t ) ' ’
<€ ,/ ag(s) >=<e¢ ,] ods >, (¥t € [0,Tp)).
' 0 - Jo _ . _
" Since E is a sepasable Banach space, it follows that

¢ ¢
f agds = j a(s)ds, (Vt € [0, To])
Q 0

Lonsequently, y € ®(x). Thus the graph of (1? is a closed subset of
X x X. ‘According to Kakutani-Ky Fan’s theoren, & admits a fixed point
7€ X.ier € 7). Clearly, T s a solut,on of (2.1) satlsfymg the innitial

condition (2.2). Theorem 2.1 is completely proved. -

3. Existence of global solution for FDI

Let G :[0,7,] x Cg,[—h,0] = 2% be a multifunction with nonempty

convex compact values in E,. For given ¢° € Cp{0, Ty, we consider the




foﬂowing.FDI'
(3.1) - " #(t) € Glt,m), te[0T],
""with the initial condition B |
(3:2) - al(0)=¢"0), 8el-h0l
| THEOREM 3.1. . Suppose that G satzfsﬁes-the fcﬁlowing assunﬁptions:-
. (i) for every ¢ € Cg,{—h,0],G(., ) is measurable on [0,T);

(i) fur every t € [0,T),G(.,) is a us.c. mpltifunétion from Cg,[—h,0]
| into Eqy |

(iﬁ) there exits a balanced convex o(E,E') - compact set K C E and

exists a positive function af-} € C[IO,T] such that for every t €[0,T]

and for every ¢ € Cg[—h,0], '

- Glte) C eI+ o K.

Then, for every ¢° € Cg|~h,0], the set of global soiui_&fons of (3. 1‘) is
nbnemp;ﬁy. ‘ ‘ . -
PROOF: Set . _
c=sup{||z ||: z € K},
and :
a=ll® = sup{ll 0°(6) I 6 € [~h, 0]}
Suppose that z(-) is a global solution of (8.1) satisfying (3.2), then we .

. have :c(@)'z ©°(68), ¥t € [-h,0] and z(t) = ©°(0) + j: £(s)ds(Vt € [0,T] with
2(t) € G(t, z;) ae. on [0,T}]. Therefore, for every't € [—h, T},

le® I a+ [ i) IS ate [ )i+ | e, fids.

1
0 "
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. This iniplies
et +6) < ate [ als)(1+ 12 )ds
fo:i* all @ € [—h,0], and thert.efore,
I él"t |<a+ cj: a(s)(1+ | s ||)d,’3; Vt E.[O,T].

Using Gronwall’s lemma, we obtaln that every squtlon x(-) of (3 1)-

(3.2) must satisfy the following 111equahty
: ' t : ' :
| 24 | € (a+ i)e:rp(c/ a(s)ds) -1, Vte|[0,T].
: : o . T

" Put z(t) = (a + 1)exp(c fot a(s)d.s) — 1, € [0,T). 1t is easy to verify

‘that z(t)-is the unique solution of the equation -

z(t)=a+ /(; a(s)(1+ 2(s))ds

(the uniqueness follows from Gronwall’s lemma). Now let us define the nwl-
tifunction | | | .

I‘(t) + a(t)(l + 7(15))11

. Then, by f4, Corollary V. 4] and [1] the quotient S[‘ of the set Sp of
all measurable selections of T' is a nonempty - convex set of L £10, 7] which.
is compact for the weak topology o(L% [0 T, L% [0 T)): Therefore, Sr is

metrlza,ble.

For eve1y f € &p, we set

i :{ POE) Hor te |- h,0]

(3:3) g\
@*(0) + Jj fs)ds for te[0,T)
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Obviously, 2f(-) € CE[—lh,_T]. Let us introduce the multifunction ¢
by setting, for each f € Sr, - |

B(f)={9:[0,T) = E:yg 111éa.51irable and g(t) € G(t,x])}.

Since the function ¢ — z{ is continuous from [0;7}] into Cg, {—h,0],

it follows from {4, Corollary VI-5] that. &(f) is nonempty for every f € Sr.
\P\‘urthmg by the definition of T, for each f € Sp we have

| £ 1< ale)(1 + 2())e, V € [0,T),

and hence,
1

lIWﬂH<a+fo@wds
< a+cfota(b)(1 + 2(s))ds = z(t) Vt € [0, T]
This implies that , for every g € ®( f) and a.e, t € [0,T], .
9(t) € G(t,z{) C a(®(1+ || f |)E =T()

Consequently, ®(f) C Sr, Vf € Spr. Thus, ®is a multifunction with
nonempty convex values from a compact metrizable set St into itself. To
apply the fixed point Kakutani- Ky Fan theorem, it suffices to show that
the graph of @ is a closed subset of St x Sr Suppose that a sequence
{(f&,95)}%2, belonging to the graph of & converges in St X Sp to (f,_j)
Then, by definition, gx(t) € G(¢,z] ) for a. e..t € [0,T]. It is clear that
for every ¢ € E', the sequence {< ¢, fi() >}k;1 (resp., to {< € ,gx(-) >
}22.,) converges to < e, f(+) > (résp., to < é',g(-)\'>) for the weak topology

o(L1[0,T), L>[0,T]). In particular, for every ¢ > 0 and for every ¢ € [0, 7],
there exists N = N(#,¢) such that - ‘

[ <=9 >asis S

l\DIO‘)
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Whenevef k> N.

Taking é = 6(t) > O sufficiently smalf we Eaﬁ write, for all £ €
[t —o,t+ 61N [0, T] and for all £ > N, the following estimate

|[ <e,fk<s) f(8)>dSI<[/<e,f;(s) F(s) > ds|

-Hf <6Ju@ ﬂg>dq<;+mu|u/ als)(1 + 2(s)ds

<2+——

Let {t € [0,T] :[ t —¢; |< &},i = 1,2,...m, be a finite covering
for{0, 7] and let us define N. = maz{N(ti,e),1 = 1,2,...,m}. Then, for all
t710,7). | - |

" 1/<e fuls) = (6) > ds e

.wherever k > N.. Consequently, we obtain that
| < e xt"(B) ~z1(8) > | <e; Vte [0 T, \:{9 E'[—h;{)]?

‘whenever k > N.. This means that :ctf" converges to z§ in Cg, [~F,0] for
the topology of uniform convergence. Therefore, l'ay, [4, Th.VI-4], it follows
that g(t) € G(t z7) ae. on'[O T), and, hence, g € ®(f) or, equivalently, -
(f,g) belongs to the graph of &. Thus, by Kakutani-Ky Fan’s theorern, ]
~admits a fixed pomt fo € Sr. The function 2/°(-), defined by (3.3), is then a
global solution of FDI (3.1) sat1sfymg the initial condition (3 2). The proof .

is complete

4. A particular case : Retarded diﬁ'erential inclusions

‘The functmnal d1fferent1a1 1nclu51on 2. 1) is a very general type of

inclusions and mcludes, as particular cases, ordinary ‘differential inclusions

(1) € F(t, 2(t)),
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 retarded differential inclusions

d(0) € Flt,a(t i), 2t —ra(0), - 2t —r0),

with0 <ri(t) < h, i =1,2, -+, p, as well &3 the iﬁte'gral—diﬁ'erefiti'é.i inclusion

i(t) € f ’ F(4,6,x(t + 0))dd..

To illustrate the above result let us consider the case of retarded dif-
. ferential inclusions. _Lef U- be an open subset of E,, »? a given strongly
continuous function from [0, T into U and ri(-)-(i = 1,.+-,p) given contin-

uous functions from [0, T into [0, A].

" Suppose that I' : [0,T] — QE'is' an integrable multifunction with’
nonempty convex o(E, E')-compact valuesin E and F : [0, T|xU? — 2F is a
multifunction with nonempty convex o(E, E')-compact values in E satisfying

" the following conditions
i) for every t € [0,T] and for ev'éry (:L‘l,'ﬂ?;"_,, e € ve,
- F(4, ::::1,;1:'2, e, 2f) .E P(t}; |
ii) for every (a!,22,:. ,2P) € U'P., F(_,$1’$'2, coe TP is illeé,;urable on
T B E
iiij-for e:ve.ry t€[0,7], F2, ) is ws.c. froml_Up .into- Es: .
Then the retarded differential inc_'lusiqn' : |
(#1) H(e)€ Flt,alt —ra(e)), 2 — ral))y- - ,a(t = ry(8), £ € [0,7],
with the initial condition

(4.2) 2(0) = ¢"(6), 6 € [~h,0],
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has a solution defined on {—h, To) with 0 < To £ 7. To prove this, it suffices

t_o set

D = {p € Col-h,0]: o= 0).C T}
and deﬁne_'a. multi'functioi} G: [b,T] x D —2E by -
Gltsi) = Pltp(ry (O ol ra®)e s l=raD)-

The result is now immediaté from the above Theorem 2.1.
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