ON LYAPUNOV EXPONENTS AND CENTRAL EXPONENTS OF LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS WITH ALMOST PERIODIC COEFFICIENTS UNDER RANDOM PERTURBATIONS

NGUYEN DINH CONG

In this paper we shall be concerned with an asymptotic behavior of Lyapunov exponens and central exponents of a linear system of differential equations with almost periodic coefficients under small random perturbations. It is proved that under small nondegenerate perturbations by a white noise, with probability 1 the Lyapunov exponents and the central exponents of a perturbed system coincide with auxiliary numbers of the given system which tend to corresponding numbers of the probability spectrum of the initial system.

We consider a linear system of differential equations

$$\dot{x} = A(t)x,\tag{1}$$

where $t \in R$, $x \in R^n$, A(t) is an almost periodic matrix-valued function (see [1]). To system (1) we associate its random perturbations

$$\dot{y} = (A(t) + \sigma C(t, \omega))y, \tag{2}$$

where $y \in R^n$, $\sigma \in R^+$, the elements of matrix $C(t, \omega)$ are independent white noises, ω belongs to the probability space (Ω, P) . Let us denote by $X(t, \tau)$ and $Y_{\sigma}(t, \tau, \omega)$ the Cauchy matrices of systems (1) and (2), respectively. We shall consider Lyapunov exponents λ_k , central exponents Ω_k and Θ_k of the system (1) (k = 1, ..., n) (see [2,3,4]) defined as follows:

$$\lambda_{k} = \min_{R^{n-k+1} \subset R^{n}} \max_{\xi \in R^{n-k+1}_{*}} \frac{1}{t^{n}} \ln |X(t, \theta) \xi|,$$
(3)

$$\Omega_{k} = \inf_{R^{n-k+1} \subset R^{n}} \inf_{T \in R^{+}} \inf_{m \to +\infty} \frac{1}{mT} \sum_{i=0}^{m-1} \ln \|X(i+1)T, iT)\|_{X(iT,0)R}^{\parallel, (4)}$$

$$\Theta_{k} = \sup_{R^{k} \subset \mathbb{R}^{n}} \sup_{T \in \mathbb{R}^{\frac{1}{n}}} \frac{1}{m \to +\infty} \frac{m-1}{mT} \sum_{i=0}^{m-1} \ln || X(iT, (i+1)T)|| \mathbb{I}^{-1}$$

$$|X((i+1)T, 0)R|^{k}$$
(5)

where R^d is a dimentional linear subspace in R^n , $R_*^d = R^d \setminus \{0\}$ and $X_{\mid R^d}$ is the restriction of the operator X to R^d . It is easy to show that $\Theta_k \leqslant \lambda_k \leqslant \Omega_k$. If in (3)-(5) we replace $X(t,\tau)$ by $Y_{\sigma}(t,\tau;\omega)$ we shall get Lyapunov exponents $\lambda_k(\sigma,\omega)$ and central exponents $\Omega_k(\sigma,\omega)$, $\Theta_k(\sigma,\omega)$ of the system (2) (k=1,...,n).

We now introduce the following auxiliary functions of systems (1) - (2)

$$v_k(6, T) = \overline{\lim}_{m \to +\infty} \frac{1}{mT} \sum_{i=0}^{m-1} E \ln d_k(Y_6((i+1)T, iT, \omega)),$$
 (6)

where $E \, \xi \, (\omega)$ is the expectation of the random variable $\xi \, (\omega)$ and $d_1 \, (X) \geqslant ... \geqslant d_n \, (X)$ are the singular numbers of the nondegenerate $n \times n$ matrix X, i. e they are the positive square roots of the eigenvalues of the matrix X^*X . The, following lemma is proved in [4].

LEMMA. For all $\sigma \in (0,1)$ and $k \in \{1, ..., n\}$ there exists he following limit

$$v_{k}(6) = \lim_{\substack{T \to +\infty \\ T \in \mathbb{N}}} v_{k}(6, T)$$

V.M. Millionshchikov introduced a notion of a probability spectrum of a linear system of differential equations with uniformly continuous coefficients and showed that the probability spectrum of an almost periodic system consists of no more than n elements $v_1 \ge \cdots \ge v_n$ and that almost all systems in the space of shifts of argument t of the given system have Lyapunov spectrum consisting of $v_1 \ge \cdots \ge v_n$ (see [5]). In [6] he proved a theorem on stochastic stability of the probability spectrum of a linear system with uniformly continuous coefficients, but his proof contains some flaws which are shown in [7,8]. In [7] he infers that this theorem still holds if the given system is almost periodic, but the proof of that result is not clear. In this paper we formulate and prove a more powerful theorem.

THEOREM. For all $\varepsilon > 0$ and $k \in \{1,..., n\}$ there exists $\delta > 0$ such that, for each $\sigma \in (0, \delta)$,

$$|v_k(\sigma)-v_k|<\varepsilon$$

where $v_1 \geqslant ... \geqslant v_n$ are the numbers of the probability spectrum of the almost periodic system (1). Furthermore, the following equalities are satisfied with probability 1

$$\Omega_k$$
 (6, ω) = λ_k (6, ω) = Θ_k (6, ω) = V_k (6).

Proof. We take a system \tilde{A} (t) from the space of shifts of argument t of system (1) such that \tilde{A} (t) is absolutely regular and its Lyapunov spectrum consists of $v_1 \geqslant \cdots \geqslant v_n$ (the existence of such a system follows from [5]). The matrix \tilde{A} (t) has the form

$$\tilde{A}(t) = \lim_{n \to +\infty} A(t + t_n), \qquad (7)$$

where the limit is uniform on segments. It follows from Bochner's Theorem [1] that from the sequence $\{A(t+t_n)\}$ $(n \in N)$ we may extract a subsequence convergent uniformly on R. For simplicity we assume that the sequence $\{A(t+t_n)\}$ $(n \in N)$ itself has this property. To every system

$$\dot{x} = A(t + t_n) x$$

we associate the following perturbed system

$$Z = (A(t + t_n) + 6 C(t, \omega)) Z$$

and the auxiliary function $v_k(\sigma, T; t_n)$ defined by formula (6).

Denote by $v_k(\sigma, T)$ the auxiliary functions of systems

$$\dot{x} = \tilde{A} (t)x,$$

$$\dot{y} = (\tilde{A} (t) + 6C(t, \omega)) y.$$

Since the sequence $\{A(t+t_n)\}$ $(n \in N)$ uniformly converges to \overline{A} (t) we get the following equality for all $\sigma \in (0,1)$, $T \in \mathbb{R}^+$ and $k \in \{1,...,n\}$

$$\lim_{n \to +\infty} v_k(6, T; t_n) = \tilde{v}_k(6, T). \tag{8}$$

Using the results in [4] we may easily prove that for all $n \in N$ and $\varepsilon \in (0, 1)$ the following inequality holds

$$|v_k|(6, T; t_n) - v_k|(6, T)| \leqslant c\sqrt{\varepsilon} - \frac{1}{T} \ln \frac{\delta \delta^{n(n^2+2)}}{2},$$

where the positive constant c does not depend on ε , σ , T, k, t_n while the constant δ depends on ε but not on σ , T, k, t_n . Consequently, by (8) we have

$$|v_k(6,T)-\tilde{v}_k(6,T)| \leqslant c\sqrt{\varepsilon}-\frac{1}{T}\ln\frac{\delta 6^{n(n^2+2)}}{2}$$

Therefore, by the above lemma for each $\varepsilon \in (0, 1)$ we have

$$|v_k(6) - \tilde{v}_k(6)| \leqslant c\sqrt{\varepsilon}$$
.

Since e is arbitrarily chosen, we get

$$v_k(6) = \tilde{v}_k(6). \tag{9}$$

Proof. We take a system \tilde{A} (*t*) from the space of shifts of argument t of system (1) such that \tilde{A} (*t*) is absolutely regular and its Lyapunov spectrum consists of $v_1 \gg ... \gg v_n$ (the existence of such a system follows from [5]). The matrix \tilde{A} (*t*) has the form

$$\tilde{A}(t) = \lim_{n \to +\infty} A(t + t_n), \qquad (7)$$

where the limit is uniform on segments. It follows from Bochner's Theorem [1] that from the sequence $\{A(t+t_n)\}$ $(n \in N)$ we may extract a subsequence convergent uniformly on R. For simplicity we assume that the sequence $\{A(t+t_n)\}$ $(n \in N)$ itself has this property. To every system

$$\dot{x} = A(t + t_n) x$$

we associate the following perturbed system

$$\dot{\mathbf{z}} = (A(t+t_n) + 6 C(t, \omega)) \mathbf{z}$$

and the auxiliary function $v_k(\sigma, T; t_n)$ defined by formula (6).

Denote by $v_k(\sigma, T)$ the auxiliary functions of systems

$$\dot{x} = \tilde{A} (t)x,$$
 $\dot{y} = (\tilde{A} (t) + 6 C (t, \omega)) y.$

Since the sequence $\{A(t+t_n)\}$ $(n \in N)$ uniformly converges to \tilde{A} (t) we get the following equality for all $\sigma \in (0,1)$, $T \in R^+$ and $k \in \{1,...,n\}$

$$\lim_{n \to +\infty} v_k(6, T; t_n) = \tilde{v}_k(6, T). \tag{8}$$

Using the results in [4] we may easily prove that for all $n \in N$ and $\epsilon \in (0, 1)$ the following inequality holds

$$|v_k|(6, T; t_n) - v_k|(6, T)| \leqslant c\sqrt{\varepsilon} - \frac{1}{T} \ln \frac{\delta 6^{n(n^2+2)}}{2},$$

where the positive constant c does not depend on ε , σ , T, k, t_n while the constant δ depends on ε but not on σ , T, k, t_n . Consequently, by (8) we have

$$|v_k(6,T)-\overline{v}_k(6,T)| \leqslant c\sqrt{\varepsilon}-\frac{1}{T}\ln\frac{\delta 6^{n(n^2+2)}}{2}$$

Therefore, by the above lemma for each $\varepsilon \in (0, 1)$ we have

$$|v_{k}(6) - \tilde{v}_{k}(6)| \leqslant c\sqrt{\varepsilon}$$
.

Since e is arbitrarily chosen, we get

$$v_k(6) = \tilde{v}_k(6). \tag{9}$$

It follows from a theorem in [4] and the stochastic stability of Lyapunov exponents of absolutely regular system A(t) (see [6, 7]) that

$$\lim_{\delta \to 0} \tilde{v}_k (\delta) = v_k.$$

Consequently, taking account of equality (9), we get the first assertion of the theorem. The second one is proved in [4]. The proof is complete.

COROLLARY. In order that the least Lyapunov exponent of an almost periodic system be stable, a sufficient and necessary condition is that this exponent coincide with the lower central exponent of the given system.

Proof. It is proved in [9] that for the almost periodic system (1) we have $v_n = \omega_o$, where

$$\omega_{o} = \frac{\lim_{t \to \tau \to \infty} \frac{1}{t - \tau} \ln \| X(t, \theta) X(\theta, \tau) \|}$$

is the lower special exponent of system (1). It is proved in [10] that $\omega = \omega_o$, where

$$\omega = \frac{\lim_{T \to +\infty} \frac{\lim_{s \to +\infty} \frac{1}{sT} \sum_{i=0}^{s-1} \ln \|X(iT, (i+1)T)\|^{-1}}{sT}$$

is the lower central exponent of system (1). The corollary now follows from the equalities $\omega_o = \omega = v_n$ and the above theorem.

State of the state

REFERÈNCES

- 1. S. Bochner, Beitrage zur Theorie der pastperiodische Funktionen, I Teil. Funktionen einer Variablen, Math. Ann., 96 (1927), 119 147.
- 2. A. M Lyapunov, Collected works, Vol. 2, Izd. Akad. Nauk SSSR, Moscow-Leningrad (1956) (in Russian).
- 3. V. M. Millionshchikov, Typical properties of conditional exponential stability I, Differensial nye Uravneniva, 19 (1983), № 8, 1344 1356; English transl. in Differential equation 19 (1983).
- 4. Nguyen Dinh Gong, On central exponents of linear systems with coefficients perturbed by a white noise, Institute of Mathematics, Hanoi, Preprint, № 19 (1988) (in Russian).
- 5. V. M. Millionshchikov, A stability criterion for the probability spectrum of differential equations with recurrent coefficients and a criterion for almost reducibility of systems with almost periodic coefficients, Mat. Sb. 78 (120) (1969), 179 201; English translin Math. USSR Sb. 7 (1969).
- 6. V. M. Millionshchikov. On the theory of the Lyapunov characteristic exponents, Mat. Zametki 7 (1970), 501 513; English transl. in Math. Notes 7 (1970).

7. V.M Milionshchikov. The stochastic stability of Lyapunov characteristic exponents, Differensial nye Uravneniya 11(1975), 581-583 (in Russian).

8. Nguyen Dinh Cong, A criterion for stochastic stability of the greatest Lyapunov exponent, Mat, Zametki 43(1988), No1, 82-97 (in Russian).

9. V.M. Millionshchikov, Metric theory of linear systems of differential equations, Mat. Sb. 73(119) (1968), 163-173; English transl in Math. USSR Sb. 6(1968).

10. B.F.Byl., On upper stability of the greatest characteristic exponent of a linear system of differential equations with almost periodic coefficients, Mat. Sb.48 (90) (1959), No. 118-128 (in Russian).

Received December 2, 1988

INSTITUTE OF MATHEMATICS, P.O. BOX 631 BO HO, 10000 HANOI VIETNAM