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ON THE PROBABILISTIC HAUSDORFF DISTANCE AND
FIXED POINT THEOREMS FOR MULTIVALUED CONTRACTIONS

DO HONG TAN

As is known, the Hausdorff distance plays an important role in fixed point
theory for multivalued mappings. The aim of this note is to establish a relati-
onship beiween the probabilistic Hausdorff distance and the usual one, and
some fixed point theorems for multivalued contractions in Menger spaces.

1. ON THE PROBABILISTIC HAUSDORFF DISTANCE

Let (X F, mm) he a Menger space, i.e. X iz a sef, Fis a famlly of distri-
bution functions F for each pair x,y ¢ X, which sattsfy the following condltzons.

(t) = 1 for all t >0if and only 1f x =Y,
F (o) =0,
Edid = F,;]:L'
F:cg(t + 5 = mig_ {Fr.z(i) : Fzy (S)}
forallz,y e X.and {,5 ¢ R.
When X is a metric space. (t) for z,y € X, t € R {the real line) can be

.mterpreted as the probability that the distance between x and y is less that £,
The topology in X, called the (g, A)-topolocy, is generated by the family of
neighbourhoods of r ¢ X

N &N={yeX:F_ () >1-2,(c>00<i<1)

It is known that a Menger space is a uniform space with the family of
pieadometrics

61




dl(.;;,y):: sup {I:ny(f)Q]. — ?&},(0 =A=<1). (1)
A sei A C Xis said to be probabilisiic bouaded if
Sup inf F y=1.
t€Rax.yea ¥

The class of nonempty probabilistic bounded and elosed subsets of X is denoted
by CB(X). For 4, BeCB(X) the probabilistic Hausdorff distance between A and B
is defined as follows (see, for instance, [1]):

H, ()= sup min {inf sup F y(s\ inf sup F_ (s}}.
5=t T€A y<B yE€L zeA
Ii is known that (CB(X), %, mie) where ¥ = {HAB: A, B e CB(X)} is a Menger
space ioo, i. e, H ,, possesses all properties analogous to that of me listed in
the beginning of this section {see [3, p. 300)).
For a Menger space (X, ¥, min) we define a family of pseudometrics dy
by (1) and then let

D, (A, B)_max sup inf -dy{x,y), sup inl d4(x, ) 2)
A {xeA eBl’ yeB eA?L J @

be the A-Hausdorff distance beiween A and - B in CB (X). In [2] Hadzic has

proved that
D, (A, By < sup {t: Hip <1 =13}

and hence H,p (Dy (4, By {1 — A

The aim of this section is to answer the question: When have we the
equality

Dy (4 By=sup {¢: H 4pD<T =2}y 3)
Moreover, we shall show that in this case we have also the inverse formula
B(i)—l—sup{?&e((}l) D, (4, By > t}, _ (4

“where we agree that the supremum over any empty set is equal' to zero.

Before giving the answer we need the following

LEMMA 1.1, Forfizedye X and 1 &R, the function ny (ty: X = [0, 1] is lower
semicontinuous. . ‘

Proof . Fixing T, € X we have to show that there exists a neighbourhood U
of x_ such that F - (B—ceKF 2y () for ali x ¢ U, where £ is an arbitrarily
gwen,,osnwe number. Without loss of generality we may assume thatF (i)>.0
ande<F (I) Denote a = F (i)—s and b= 1= a. SmceF (1’)>1-b
by the Ieft conllnmty of Fxoy (as a distribution function) there ex:sts an s < {
such that ', (s) >1 — b, PuttingU = {z e X: F.'IO‘T (t — s) > 1—b} we get

F,, (#)> min {Fx:ro (t—s). F:coy ()} =1 —-b=F_ ()~—c¢

oy
for every € U. The lemma is proved.
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PROPOSITION 1.2. If (X, ¥, min) is a Menger space then we have (1) and (2) for
compact subsets A, B of X.

Proof. Lei us fix two compact subsets 4,B and A < (0,i). Using the
techniques of Hadzic in [3] and ourselves in [7,8], we shall first prove that

SIIP{t'HAB(t)\l-—A}zsup{t-G(i)agl——-?\}, (5)
where G{l) = min {inf sup F_ (l) inf sup F_ (f)}.
x€A pER yEB z€4

For this we denote M, = {f: G() <1 — 1}
My= {1: sup G (5) < 1— A } and we need only to show that sup M, = sup
s <t

M ,. Sinee G(f) is a nondecreasing function we have sup G(s) < G(f), hence
St
M, C M, and consequently, sup M, < sup M,. Now let f & M,. For s < t we

have G(s) {1 — A which implies that s e M, . From this t < sup My, 80 sup
M, < sap M,. This implies sup M, =sup M,, as desired.
Next, denoting P(f) =inf sup F, (t), Q) = inf sup F, () we shall

x€4 ye&B yeB x€4
show that
sup {t:min { P, Q () } <1 — A} =
maz { sup { t: Py < 1 -4 },sup {£: Q) < 1—A}} (6)
Obviously,

{t:PO)<T -2}y {t:min{ P (), UD} <1 —1}

{t.-Q(t).g1--1}c{t:mfn{}3(z),Q(t)}gz--l}-

Hence we have

mazx { sup { t: P () <1 — 4}, sup{t: Q(if)M -2 1} <
L sup { t: mm{P(t),,g(t)}<1 AL

To prove (6) we assume the conirary that there exists a real number ¢

such that
max {sup {t:p() < I1—A},sup {t: Q) L 1--2}}=<c=<
sup {t min {P(t) , Q(1)} <1 — A}
Sincesup { : P() {1 —h }<cand sup {{: Q)1 — A} <c
weget P(c)=1— A, Q(cj>>1 -- A and hence min{P(c), Q(c)} >1 — A, Butsince
¢ - sup {f : win {P(t), AH} L 1 — A} and P, Q are nondecreasing we obtain a
contradiction:

min {P(c), Q(c)} <{ 1 — A. Thus, (6) is proved.
For each & € A we have sup F_ (i) > P(t)

YEB
and hence
sup sup {t: sup F_ (i) <1 ~AySsup {£:PH 1 -2}
z€A y<B

We shall prove that if A is compact then if must be an equality, Suppose the
contrary, that
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sup sup {l :sup F_ NKURS <1 - Ay =s<sup{t:inf supF_ BURS <1 —AL
TEA gEB rEA JEB
The first inequality shows that for each x € A there exists y € B such that
F ( s) > 1 — A, while the second inequality shows that
inf sup F_ (s)«:l - A
€A yeEB
For fixed s and y, the function ny(s) is lower semiconiinuous in x by the
above lemma, so is the function sup ny(s). As A is compact, the last function
yeR

attains its minimum at some point %, € A. Thus we have F__(s) < 1 — a for

ol
all y € B, a confradiction. So we obtain the equality o
sup sup {t:sup F_ (t)gi—i\}:sup{t:p(i)gl’—-l}. ¢
x€4 yEB
Analogously, because B is compact, we have
sup sup {t:sup F, () << 1—A}=sup {t: 0y <1—2}) ()
yEB €4 Y
To complete the proof of (3) we shall prove that for each x € 4
sup {t:sup F_ (t)g:t-—h}:inf sup {t:F (h <1—1r}) . (@)
yEB y€B .

Since for every r € A and y € B we have /7 g sup F 7 it follows that.

sup {t:sap fv‘xy(t)g 1 — A} < sup {I:F (i) 1—1}
yEB
and hence
sup {t: sup F,B<1- A} < inf sup {t: F (i) < 1—A}h
b 1=35] yEB

To prove the equality (9) we assume ihe conirary that for some x, € A we have
sup {t:sup F__ (t)<1-—7\}<s inf sup {t: F_ (i)<1—?t} '

yEB yGB CT
The first inequality shows that sup F (s) 1 -2 While the second mequahty
- YEB : :
shows that .
sup{t-‘F'y(t)' 1—A}=>s forall y e B
which implies F_  (s) <C “1 -2 . for all y € B, a contradiction, Thus, {9y
is proved.
Similarly, we get ' o
sup {t: sup F (1) < 1 — A} = mf sup {t: F, () < 1- A} (10
€A Fr€A

Combining (5), (6), (7), (8), (9), (10) and (1), (2) we obtain (3).
To prove (4), fixing 4,B and t we denote

a=1—sup {he (O,1). D,(4,B) >}
and prove that H,p(f) = 4,
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If the set {A: Dy (4,B) >.1}is emply then a = 1. On the other hand, this
shows that t > D (4, B) for all A € (O 1) and from (3), M, g(f) > 1—2 for all A,
hence H,g(f) = 1 = a.

We now consider the case where the mentioned set is mommptj,r First we
prove a < IIAB(t) Assume the contrary, that .

1—sup {A: Dy(4, B) > 1} > H_(0).

Then by (3),
1 — Hypth=sup {h:sup {s: H,zs) <1 -4} > 1}

Ii follow that sup {s: H, z(s) < Hph)y <t
which is obviously a contradiction. ' o
To prove that a = H, (I) we assume the contrary‘that a=<b <H p(b). Then
we have : _
1—b<sup {Asup {s: H,z(s) <1 — A} > 1}
From this sup {s: HAB(s) b} > & Hence HAB(I)' b ?' g, a- contra-
diction, Thus, (4) is proved and the proof of the proposmon is complete

In the sequel by (.(X) we denote the class of all nonempty compact subsets
of X,

COROLLARY 1.3. If (X, ¥ min)isa Menger space then (C(X), e, mm) zs a
uniform space wzth the family of pseudometrics defined by (3).

2. SOME FIXED POINT THEOREMS

Up to now there is no analogue of the Nadler fixed point theorem for

"multivalued contractionsin Menger spaces. In fact, in 1983 Hadzic [2] partically

solved this problem for compact Menger spaces using the corresponding results
in uniform. spaces. On.the other hand, in 1981 Mishra [5] established some
fixed point theorems for generalized multivalued contractions in uniform spaces.

1t is natural to expect an analogue of the Nadler's theorem by combining the

meniioned Mishra’'s theorem with the corollary presented at ihe end of Seciion 1,
Unfortunately, there is am error in the proofs of Mishra: the sequence of
iterates constructed there in depends in general on the index of each pseudome-
tric. By this reason in the present section we must still restrict ourselves to the
case of compaci Menger spaces. Our first” theorem generalizes the meniioned
result of Hadzic in f2] while the second oneis an analogous result for probabilistic_
generalized multivalued contractions in the semse of Kirk [4]. They are based
upon the following result of Pai and Veeramani [6].
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THEOREM [0} Let (X, d,, iel) be a compacl uniform spaceand lei T : X~ C(X)

satisfy the followmg condtimns
a) For every i el and ¢ > Qthereexist j el and & > Osuch that d ()<

implies D (Tz, Ty) <=,
b} For eache > 0 andie I the sel {x € X d.(x, Tx)<c} is noremply.

Then T has a fized point.
Before staiing the main results we need the followmg

LEMMA. 2.1 Let (X, d;.iel)be a compact uniform space and let T : X—-C(X)
satisfy the following condzfzon foreveryieland x,y € X such that d, (z, =0
we Aave

D, (Tz, Ty) < d, (:c y). | (11
Then T has a fixed point.
Proof, Fixing i &l we denote p; (v} = d, (x,Tx), It is known that (11)

implies the continuity of T' as a multivalued mapping and this in turn implies
the continuity of p;e From the compactness of X it follows that there exists an

x; & X such that p, (x, ) = min {pi @:reX}l=ax 0, If a > 0 then there is
an y; € Tz, such that 4, (x;, y;)=d, (¢;, T2;)=a > 0. Then by (11) we have
D, (Tx,, Ty, )< d{z;, y;)=a< d (y;, Ty,).

e LT

But this contradicts the fact that d, ;- Ty y <D, (Tx,, Ty, ) because y; € Tz,

Thus, @ = 0 and Condition b) of the previous theor:m is satisfied, Condmon
a) is derived immediately from (11). The lemma now follows from applying the
above theorem.

THEOREM 2.2. Let (X, ¥, min) be a compact Menger space and lel T': X — C(X)
satlsf y the following condition: for each ¢ > 0 there is a & > 0 such that

Hygg ) 2> F ) (4 9) (12)
for all z,y € X. Then T has a fired point.

Proof. First we prove that from (12) we get ' ' '
Dy (I Tyy<<e  if 0 <Tdy (x, y5<e+6 ' (13y.
Fix A & (0,1) and suppose that dy (x,y) < e+ 8. From (1y it follows that
(a 4 8) > 1 — A and hence He. Ty (e} > 1 — A by (12). From ﬂns and (3) we
obtain Dy (Tx, T) <&
© We mow show that (13) is equivalent fo the following'_
Dy e, Ty <elfed; (T,y5)<ec+ 3., : (14)

Indeed, obviously (13) implies (14). To prove the inverse implication we note
by putting d; (.L N=c¢cin (14) that

66




Now, if ¢ <{dy (z, ) <c -+ & then we have Dy (Tx, Tyy << ¢ by (14). It
0 < al;JL (z, y) << e then by (15) we bave Dy (Tx, Ty) < = again. Thus (13) always
holds, : '
Because T satisfies (15), Theorem 1 follows by applying the above lemma.

COROLLARY 23. Let (X, ¥, min) be «a compact Menger space and let T,
X = C(X) satisfy the following condiiion: -there exists a function k : Ry — Ry
(the set of all non-negative numbers) which is upper semiconiinuous from the

right with k(t) <<t for all t > 0 and
, Hpyopy k@) 2 F (1 S (18)
forall e, ye X, teR. Then T has a fized point. S

Proof. Let ¢ > 0 be given. Since k(z) < c and % is upper semicontinuou
from the right, there exists & =0 su_ch that X(e + &) <e. Since HTa:Ty is
nondecreasing as a distribution function, from (18) we get. '

F e+ < He oy (ke 4 8)) < Heory @
i.e, (12) bolds. The corollary follows from Theorem 1.

COROLLARY 2. 4. (Hadzic [2]). Let (X, 7, min) be a compact Menger space
and let T: X-» C(X) salisfy the condition that there exists a J <1
such thal _ a

' Hp o, (k) > F o0 17
forallx, y e X andi ¢ R, Then T has a fived point,

Proof. It suffices to put k(t) = kt in Cbrdl'lary I

THEOREM 2.5. Lel (X, F,min) be q compact Menger space and let T :
X - C(X) satisfy the following condition : for each x ¢ X there exists a k(x)<1
such that _ y , Ce

Hy gy (k@) > Ea® B C8)
forall ye X and t € R. Then T has a fized point,

Proof. Without loss of generality we may assume that k(z) = 0 for al]
x ¢ X. We shall prove that T' satisfies the following inequality

DT, T,) < k @)dy(a ) (19)
for all z, y € X and A € (0,1). Suppose the contrary that there exist z, Y and
A suchthat Iy (Tx, Ty) > k(z)d, (x, y). Putting ¢ = D, (T'z, Ty)/k(x) we have
D, (TxTy) = k{x)t and" dy (x, y) < 1. From (1) we get me(l)> 1 — A and
hence HT:cTy (k(x)t) > 1 — A by (18). From this

HT:J:Ty (Dh Tz, Tg)) =1 - A

But from (3) we obtain HTxTy D, (Tz, Ty)y < 1— A. This confradiction

shows that (19) holds and hence T satisfies (11)," Tke proof is complete by
applying the above lemma,
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REMARK 2.6. Either Cond.t'on (12) or (18) implies Condition (17) (hence Theo-
rem 2 serves another genmeralizafion of the Hadzic’s theorem (Corollary 2)),
but none of them implies the other (see an example in [9] for the meiric case).
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