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MULTIDIMENSIONAL QUANTIZATION, V
THE MECHANICAL SYSTEMS WITH SUPERSYMMETRY

DO NGOC DIEP

0. INTRODUCTION

« Graded Lie algebras have recently become a topic of interest in physics in
the context of «supersymmetry» relating particles of different statistics», as
it is pointed out in the survey [1], In the physical systems where the Bose-Ein-
stein particles and Fermi-Dirac particles interact together the symmetry must
be replaced by a supersymmeiry. So Lie superalgebras and Lie super-groups are
important mathemalical tools of physics and they must be studied seriously,
There have been a number of important developments in the last few years such
as: the remarkable Kac-Kaplansky’s elassification of simple Lie superalgebras
[9], Berezin-Leites’ theory of supermanifolds, Kostani’s theory ef prequantiza-
tion {8}, Manin’s suggestion on the geometry of supergravitation {19, ...

B. Kostant has developed in his work [8] the representation theory of Lie
supergroups along the line of the Orbit Method for ordinary Lie groups. His
theory is founded on differential geomeiry and utilizes symplectic structures
Hamiltonian formalism, integrality condition, line bundles with connection and
prequantization for the supergroup case. A qguantization procedure, rather
than the prequantization, requires also Hilbert spaces of quantum states and
unitary representations ol supersymmetiry. Perhaps, the main difficulty is the
fact that Lie’s theorem is not true in the case of solvable Lie superalgebras.
In general, they have also irreducible finite.dimensional representalions rather
than (one-dimensional) characters.

Using the new notion of polarization developed in Parts I and II of this
coniribution, the author proposes a supersymmetry approach fo the guantization
problem of the Hamiltonian systems with supersymmetry, The main result is
the construction of the multidimensional guantizaiion procedare using Hilbert
saperbundles with connection and some so called weak Lagrangian invariant
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tangent superdis tribitions (cailed supzrpolarizations). In particnlar, we prove
that the derivatives of the representations induced from the superpolarizations
are just the Lie superalgebra representations deduced from the mulfidimensi-
onal guantization, .

The main stimulns for this work comes from many discussions during the
« QUANG BA Mathematical Physics Seminar», May 29 ~ June 1, 1985, His deep-
est thanks are addressed to all participants of this seminar,

1. HILBERT SUPERSPACES

1.1. Let us denote by C the ground field of complex numbers, by Z/2 the
residue field consisting of two elements 0 and 1. Recall that (see [8]) a wveclor
superspace V is by definition a Z/2—graded vector space

V=Y, @'VI‘

The elements of V, are called ever, | & | = 0; those of V, odd, | x| = 1. Throu-
ghout what follows, if || of x occurs in an expression, then it is assumed
fthat x is homogeneous, and that the expression exiends to other elements by
linearity. . ' C

_ Suppose that the vector superspace V admits a formb: VXV > C(a
scalar product) which is linear relative to the first variable, and:

— superhermilian, i.e. for all homogeneous %, ¥y inV

bz, p = (—0} &1 100 Bg Ty, |
n-consi“si‘eunt, i.e. b(x,y) = 0if r and y are of different graded degrees, and
— nondegenerale, i.e. if bz, y) = 0 for all y & V then o = 0.
1.2, coroLLARY. Lel (V, b) be a vector superspace with scalar product.
(i) The resiriction of bio V , Isascalar product, in other words.V, is a prehilbertian
Space. V,is a symplectic vector space, i.e. the restriction of b to V, is nondegene-
rate skew symmetric. AP v o N o N
(iiy The correspondence z—b (s, z) establishes an. antilinear monomorphism V  Vx,
~* Proof. (i) is clear from the definiti%m of b.- s :
“ " (ii) is also an easy conscquence of the nondegeneracy property of-b.
* "1.3. In'the category of vector superspaces there is & special functor of
changing the graduation degrees: : Ce e
Co _ V)=V, A V)=V L
"Thus if V has a scalar product, then by Corollary 1.2 V. V* and we can
define llx for every elet_hent x of V. So we hav'e an adjc_)im_"su_ perform b onllV:
| VM, Tiy) = (Do),
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COROLLARY. V, is a symplectic veclor space if there exisis an even-dimensional
prehilbertian space W such thatV, = II W. '

Proof. We see that [¥=Id, thus we define W=1IIV,s0V, = Il W. By
definition, for all homogeneous w,, w, in W,

plt (w p Wy = bl (11 vy hsi 112) =(— 1)1"1| b(v s Ug) = -—b(vi, 02)

So we have R :

b (wzt 1) = ( - 1)I02| b (U 1) = ( 1)[”1] b(uli 2) = bn(wly w‘g).

Hence bl is a bemnhan form. Other properties are straxghforward.
1.4. if u € Aut (V, b), , we define

N 11, u, T e Aut (1 V, b,

We have a commutative. diagram

ny———nv

COROLLARY. u is symplectic in Vy if and only if ult is'unitary on W =11 V,.
Proof. u e Sp (V) if for allx, y € V4
blur, uy) = bx,y). .
By definition, for all z, yin W,
bl x, ullyy = T (M u Mz, DuIly)
(~0 eI | pulle, Ty = () el 12 | b, 11g)
(—1) 1 0= | (T, TIy) = b (I 11 x, T1T1 )
=0 (, ). |
But on W, b is a scalar product. Thus the cor_oll#ry is proved. .
15. Let us denote by ¢ and. gU! the-quadratic forms associated to the
bilinear forms b and b on V and I1 V, respectively.’

COROLLARY: (1) g is nondegenefate on V., but is identically O on V,
(ii) ¢Z is identically O on I Vo, but is nondegenerate on W =1V,
Proof. See Corollary 1.3:

1.6. We now define a norm of supervectors on V by

ol =1/ 9@ + o ()
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and a usually associated operator norm
TAll = Sup | A4z|.
lzi<1
Now by a Hilbert superspace we mean a vector superspace with scalar pro-

dact, which is complete with respect to the preceding norm of vectors. By an

(even) unilary-sympleclic operator u € TSp (V) we mean an even automorphism
ueAut (¥, d),.

COROLLARY, The sel of all unilary-symplectic operators forms a group
USp (V). On this group the strong topology is eguivalent to the weak topology.

Proof, On the one hand, we have by the Cauchy-Boannjakowsky inequality
that for every fixed vectors v and w in VO , arin W

(B, —Ao o) IKI@, —Hv|. ol
On the other hand, by taking w = (A, — A) v, we have
(4, — 4 v, (4, — Aw) = (4, —4) o[ .

The proof will be completed by the following

1. 7. LEMMA. The lopological group USp (V) is isomorphic to the direct
product of unitary groups of Hilbert spaces V) and W =11V,

Proof. By definition, u € USp (V) = Aut (V,b), iif uv. C V,, i =01 and

for all (homogeneous) x, y
blux, uy) = blx, ).
So we have

24
lvo 0

u

0 “[V1

and Aut (V, b)0 = Aut (V. b) X Aut (V. D)

Aut (V,, D) X Ant (W, 57)
U,y x UW),

it

"t

il

by Corollary 1.4. The rest of the proof is easy,

1.8. A linear superoperator 4:V —~ V is said to be antisymmelric iff for
every homogeneous =, y &V,

b(AT,y) = —(—D4bl=lp(z, 4y),

LEMMA. Antisymmetric superoperators form a Lie superalgebra the even part
of which is a Lie algebra consisting of all pairs of antisymmetric (unbounded)
operators on the direct product Vo X W of the Hiibert spaces Vo and W,

Proof., We must verify (hat the supercommautator
[4, B] = AB — (D)4l 1Bl 4
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stabilizes tise set of all antisymmetric superoperators. But this is clear from
the definition: see also [9,5.3. 4(bY].
1.9. STONE THEOREM. Every one (real) parameter conlinuous group {”U)}teﬁ

of even unitary — symplectic superoperators on a Hilbert superspace V admils
a generator iA, which is anlisymmetric coniinuous (perhaps, unbounded) supero-
perator,

Proof. Wehave for all real values of parameter le R u(ne USp (V)=~U(V ) X
%U(W), then ap to this isomorphism, u(f) = (u (), uy (1)) and
(a, (t+s), u, (i+s) = u(t+s) = a(Du(s) = (u, (1) u(s), uy () uy(5)e
Thus we can apply the usual Stone theorem to {u _({)};cpon V andto {u, O} 1R
on W.
1.10. Unitary representation, Let (G,A) be a Lie supergroup and @ be the Lie

superalgebra of (G, A), U (§) the enveloping superalgebra of G and A (GY =
= E(G, ) = R(G) X U(§) the Lie-Hopf coalgebra, see B. Kostant [8}.

Let (V, b) be a Hilbert superspace and let End V be the superalgebra of
continuous superoperators on V.

By a smooth unitary representafion of (G, A) on V, we mean a homomeorphism
of superalgebras
r: A(Gy* - End 'V
such that:
(1) The restriction r | ¢ is a continuous representation of the Lie group G inthe

group of even unitary-symplectic automorphisms
I‘[G:G—-)USP(V).

(2) Each vector v ¢ V is smooth, i.e. themap G —»V g — r(g)v is of class C*.

_ _d .
@ X = p (r(exp tk)V)]

for each v € V and each X € G,.

=0

2. VECTOR SUPERBUNDLES WITH CONNECTION

This section is much similar to the corresponding one in B. Kostant {8, §4],
where a theory of line superbundles has been developed. Our interest is essen-
tially in the mulitidimensional case, So we are trying to modify these results
{or the multidimensional situation.

2. 1. DIFFERENTIAL SUPERFORMS WITH COEFFICIENTS IN A SUPERBUNDLE.
Let (X, A) be a supermanifold and let ¥ O X be an open set, Derd{U) be the
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Lie guperalyebra of all superderivalions in A({), Which is also a A(U)— module,
T({) be the tensor algebra of Der A(U) over A(l)) ’ '

T(U) @ Tb(U) = @ Der A(U) ® AT) " “« ® A(T) Der A(U)
. b=0 b=0 . - :

b times~
Whlch is Z @ Z/2 — (bl) graded

Now Tet J(T) b~ the two side, Z @ Z/2-graded ideal in T() generated by
all elements in T2 (b) of the form § ® 1 - (—-1)l gl ”“'q ‘® Et, where §, 1 € Der
A(U) aré homogeneous Also let JV (D) = T2 (U A J(U).

" Denote by E a pro3ect1ve (locally free)-A-module sheaf on (X, A). Then for
every beN, HomA(U) (TP (U, E(U) can be regarded as the set of all b-linear
maps on Der A(U) with values in E{U) which sahsfy the condition

T T ‘ITIZIEI |
(&2 T o By 1B ) =1=D B KGNS 4 D
Now let Qb @, E) be the 'a‘el of ail’ Br ¢ Ho_ixiwA.L(U ) (T (), E(U)) which vanish on

JO (D). It is easy to see that the elements B in Qb (U, E) are characlerlzed by the
addilional condition

e e, 1,
(319 LAL S Ej’ j+1’ won ’Eb !3>=(—"1) E-’ EJ+'1.

<Ei---°’ Eiao gy ....gb] B)
~ COROLLARY. @F (U, E) = Qb (U, 4) & E(U) T

~ Proof. It-is enough to mention that for the locally free sheaf E(U)

T, E(U)) == Hom (Tb(U) A(U)) ® E(o)

Hom

A(U)( A(U)

Denote by End E the projective (locally ireg) A moduIe ‘sheaf of all endo-
morphisms of the superbundle E. Then if is easy to see that QF (U,F) and
Hom AU )(Tb(U), E(IN) are End E(U) — modules
' < By By | BF > = < g, | B> f for all f € End E(U)
and . . o e L O ’

If1 3 18]
:<§1= fgls :Ebl|3>"(“"1) i=1 <El' 9§b|fﬂ>sf°rallf5A(U)

Also QP (U,E) is Z/2 — graded:

TEyome E,, I B> G"E(U)A

k—IBI+21§I
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def
QOU,E) = E@D),
o(U,E) = @ Qb (U,E).
. b=o
Letp e‘.Q”(U,E), « € Q4 (U,E"), < ... > be a pairing of E and E’ with values

in F, then one ‘defines natd (U, F) in the usual way; for example, < .,u>> =
Hom (E,E’) is an impcrtant case.

Note that if VU is an o en subset, one has a restriction map py; 1 LHU,E)—~
—~ Q(V,E), such that if &, & Der A(U), B & QY(U,E) then p u.v BEQP(V,E) is charac-
terized by

<p[]’v El ey pU_'V Eb E pL}"V B> = pl}"v < El suvey §b i B >‘

It is clear that U —Q(U,E) defines the sheaf of differential superforms with
values in a projective (locally free) A-module sheaf E.

Assume dim (X, 4) = (m,n). An open set I/ is called A- parallelizable it there
exists 1, € Der AU), = 1,... m + n such that m, €Der A{U), if I m and 1, €Der

A(), if I > m, and such that every & € Der A(U) can be uniquely written in
the form ‘

m+n
z

£ = fym

' : =1
where f; € A(U).

Note that every A-coordinate neighbourhood (see [8, §2.8]) is A-parallelizables

Now if the open U is A-parallelizable, one defines @, €Q LW, 4) by the
condition that - '

m+n
(& al)=ff,if,§= z f[ 7, & Der A{l).

=1
Thus . ' . _

('nk, c'.l) = Skl . IU,.'

Put B[-_'- % [ < m and A(I::: al‘*‘n(;’ 1 <1< m, then [31 g QI (U,A)O anq
ﬂ{l e‘n..f (U’ A)jand . . .
‘ Bpo,=—2 P,

LY 'Yj = 'Yj Y;
We introdace the usual multiindex nofation (see [8, § 4,2])
| v = H Os; vi ey ‘vn
Bu v" 'B‘“Li ﬁp.k LR
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We see that in the A-parallelizable open U, Q (U, E) is a free A(U)-module
such that every differential superform w can be written in the form

o= 2 By v Fyps Fuy € EDO)-
e i Ly Wy

Now assume that U is an A-splitting coordinate neighbourhood with an
coordinate system {r;, Sj}, { = 1,4, m, j = 1,u., n. Then Der A({') is a free
A(U )-module with {2,73r,, a/asj} as basis. We can choose just {f., -yj} =
{dr,, dsj b So
| dry ds¥ e QKR ) o oM+ M,k
and every p € @ (U, E) can be uniquely written as '
Ei = 2 dI' dsv L] f
' v K 1,
where fll‘? e E(U).

Recall that, as in theline bundle case (see [8]) we can also construct the
map o*: Y, E)— (X, E), which is associated to a supperbundle sheaf
morphism o: £ ~ E': .

Finally, by a superbundle we mean a projective (locally free) A-module sheat
E such that there exists a covering from opens which are principal for E in the
sense that:

E(U) is a free A(U)-module with abasal system of even generators ¢, € E(Wo,
i=1, s rank A(U)E(U). ‘ C .

9. 9. YECTOR SUPERBUNDLES WITH CONNECTION. Let E be a vector bundle
over Lhe supermanifold (X, 4), By a connection yy on £ we mean a covariant
superderivation such that for any open set U S X and any vector superfield
¢t ¢ Der A(U), one has a linear map

| ve ¢ B(U) > EQO),
where | VE! = | &1, which is compatible with the restriction maps to smaller
open sets and is such that
) v =@+ (—nlrl-1Elf . 7i(t),
for f & A(U) and ¢ € E(U), and '
(2) The map Der A(U) — End E(U), given by £ [~ Ve is A(U) — linear:

The complexification of Der A(U) may be taken to be the complex Lie
superalgebra Der A (U) of superfields of vectors. By linearity we may take

t and fin Der A (U) and A c(U), resp; and Q c(U’ E) will denote the complexi-
fication of Q, E).

Now assume that (E, ¥) is a complexified vector superbundle with connec-
tion, U & X is principal for £ and {;, i = L..., rk,E. Then for apy E € Der
' L ~
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AC (I') there exists g = g (&) such that vg-i = ¢ (§). &. The correspondence
§ ~ g(€) definesan 4, (U) —linear map Der A, (Uy~ End E (U). Therefore, there
exists a unique element a () € Qé(U, End E) such that
VEt = 2l <Eja(l)=> |
for all § € Der 4,(U) and |«(f)] = fof = 0, Lo e.
SHECEES! |
Now if 5; € g (U)0 then clearly s, ,i = L.., rankA(U) E(U} is a basal system of
generators iff s = tf for some f ¢ Ant E(U). In this ease we have
LEMMA. @ (8) — f «(t)f ~1 = (1/2ni) df /f.
Proof, Because s = ft, we have by definition
Ves = 2ni <E|a(s)=>s = 2ni <Elo(ft) > ft
= v (F1) = &Pt + (=1 Bl oz
= 27ti <& | (1270)df = t-4-(—1) & Il £. omi <] aty>1
= 2mi < & (12m0) Aff > fi 4 2 < &| faft) =L ft

from which the lemma follows
2.3, DE RHAM COMPLEX ({MX.E), dy,)

The classical formulas for the diiferential of a vegior valued funciion hold
in supercase. However we must be careful in using the right (or the left) A(lh—

module structurein Q' (U, £); for example, with f € E(U) arbitrary, one has
m I ]
df =i§1dri of jor, —|-j§1dsj af/asj.
So for an arbitrary open set U € X the map
d: QU, ) — QUU, E)
has Z/2-graded degree eqmal to zero.
Observe that Q (U, E) is Z 4+ Z/2-graded and End @ (U, E) is also
Z + Zj2-graded.
Thus u € End Q (U, E) is of bidegree (e, j) if
u(QMU, By, € btqy, By,
for any (b, {) € Z ® Z/,-graded degree.

If u € End © (U, £) is of bidegree (¢, j) we will say that u is a derivation of
bidegree (¢, /) if for any a € QXU f); and B e Q (U, E")j, and if E and E’ are
paired with values in F one has

() = (@B + (—1PH an(p).
Note that a derivation must make sense for any superbundle together: so it
has a functor sense.
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Let us now denole by ¢ the afiine connection of our superbundle F, and
by« = a its connection form. Let g & QF (U, E). Then we define the differen.
tial dv’ and the internal product i(3) and Lie derivative @(E) for any vector
superfield & ¢ Der AU, E) by the following formulas

b+1 - nlﬁl

(Ell' i b‘l"lldB) - Z (_1)

2 §!<Ei: ay gi’ ’Eb_|_1”3>

+3 (- 1 U T80 Bl Busven Eaenn By 5o By g | B

Where j[' =k§—:-ii IER[’ dk,l = Ig::jl.i jk_l + [Ejf jl-i + [Ek[ ;_‘g[l + k+ l’

mgﬁl |
(Bavees By g [{OB = (=) 771 (& B By [0
Finally we set by definition
| 0(8) = dg. i(®) - i(®) 4.
It is easy to see that d — and 8 (&) are the derivations of bidegrees (1, 0),
(—- LIEF), (O, 1 E]D respectwely
We have the superbracket relations:
Wy i@ i) + (<D iy i) = (i), i1 =0,
@08 i) — DI i) 0@ = [0, 1] = i
@) 0@ om — (DM omae) = &), om) = a4tz
and the foliowing relationship between contraction and Lie derivation
e

§< EI..., Eb[B> = 21( 1) k=1 <E e (B8 ) o B>+
. : i=

g =
+ (=D FR g B g B >

So we have a de Rham complex of global sections of K
QF (X, Bt vue — Qb (X, E) Qb-l-i(x EY = ..
iff the connection y is flat, i.e. for all g, n & Der A(U)

' Corv(y) ¢, m) = Wp']—w,]—&

Let peU C X, Tp (X, A), the tangent superspace at p, .Q%, {p) be the linesr
space.of ail E(l) — valued b-linear forms z on Tp (X, 4) = T (%) & TP(X,- A3,
such that
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1+jv; u Vg |
(Opsees Vs Vjpgaen U 2} = (1) R

(O oo D s Dy 12
b s : - .

Note ‘that QE(p) is Z/2-graded such thal if z is homogeneous then (vg500,] 2)

vanishes unless

b
121 = 12 1o, |
: i1

:So zi Tp(X) is an E(U), — valued form on Tp (X) and z ,Tp (X, )y is a

symplectic b-linear form on TP(X, A),. We define QOE(p) = E(U),
b=0
We observe that the map A7) — C= (U), f — ‘]Ede'xtends to a homomor-
phism Q (U, E) — Q (U), 8 — 53, :
(Erreeoa By 1B T = (B ..., | B)

Now let Q (X) — Qp (X) =Hom (T,(X), E (U)o) be the restriction map from
the complex .QF(X) to the ordinary E(l),- valued de Rham ‘complex, Then we

have a commutative diagram
QAEy ,Q,

WA

Q.(X)

Note that k: Q (X, E} — QEO(X} commutes with d_ and suppose that the

connection v is flat. Then we have actually a complex homomorphism commu-
tative diagram

' k
(Q(X E) dv) - ('QE (X, V)

N

(Qp(X), dy)

2.4, POINCA’RE LEMMA. Suppose f € E(U) = QU E). Then d_f =0 in-the
connected open U if and only if f = & . 1, where ) is a conslant funclzon with
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single value in End E(pi) . If, in addition, U is a coniraciible A-coordinale
neighbourhood and B¢ QP(U, E), dg B = 0 then there exists w € QO-1(U, E)
suchthat p = dg we

Proof. OQur connection is flat by assumption, solocally we canlake the trivial
form of conne.tion. Then'd, =d

m n
df = ¥ dr;8fpr, 45 ds; . af/asj

i=1 j=1

and because f = X fpsp- for every scalar superfunction the first assertion is
]
trivial.
Ok
Locally the map (Q(U, E),dv), = (@5 (X}, d¢) is a complex isomorphism.
1]

So for a coniractibla open U, the acyclicity of the usual de Rham complex implies
the acyclicity of our graded de Rbam complex, proving the lemma.

9, 5. DE RHAM THEOREM. One has a commutative diagram of algebra
tsomor phisms

—_—

Coh (Q(}(.E), dv)) k — COh (QEU(X))’ dv)

7

ot

H(X ; End E(X),)

Proof. For the complex (X, A), B. Kostant [8, § 4.7] has constructed a
flasque resoluiion of the constant sheal, Qur complex Is, by Corollary 2.1, its
tensor product with End E(pf), Thus we have a flasque resolution by our com-
plex for the constant sheaf.

9. §. CURVATURE. Let (E, v) be a vector superbundle with connection form
@=c_ 0N 3 supermanifold (X,B). Then there exists a anique differential 2-super-

form « e 2?(X, End E) such thatw =dg o, 1. e
Enlw) =(nlga)— D8 T1(e [qa) —(Em] L)+ [E1ad, (0] a)].

Th's 2-superform is called the curvafure form of the connection y.

PROPOSITION.

(& | Carv (E,)) = [Ves Vn 1 —V[g,q) = 27i(E, 1 [ @)
The proof is the same as in the classical case,
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2. 7. The action of HY(X; Aut E(X)e) on 2 (X, A). Let(E,y) be a vector
superbundle with connection over (X, 4) and {(U, , fij)} iel, j= 1., rank 4F,

be a locai sysiem for E. We denote {;, = {/, g) and €, € End E{),

7 2 fi rank 4
the transition functions defined by ¢, ¢ =lis and we will then refer to the
set (cij, ),

w ey ot = (@mi) ey et
as local data for (E, 7).

If (cij,oc:,) is an another local data of some vector smperbundle (L’ v’),
then (E, ¥) is equivalent to (E’, v’) if and only if there exists A, € ISO (E, E)
such that

1 s

?L!. Cij ?\j' = C;; and

> "1= _1._ -1

Since every vecter superbundle with connection admits at least one local data
with respect to a contractive covering, it follows that the notion of curvature
is an equivalentce invariant and hence Cury [(E, v)] + = [ Curv (E,v)] is well
defined. Note that the set £_ (X, A) of all equivalent classes of vector superbun-

dles with conection has the structure of am abelian group:
[(E. )] = [(E v + (B v7))

C,, = C . (344
ij ij i

& — o a?
t i + i

Cury ((E, v)] = Curv [(E, v)] + Carv [(E”, v7)].
Now for any closed 2-superform w € Qf;(X, End E(U)o) let £ (X, A) be the
set of all classes [(E, v)] € £ (X, A)such thatw = Carv [(E, v))s

L(X, A=V £, X, D
w

is a disjoint union over the set of all closed 2-superform o € Q% (X, End Eq)o.

Now given a closed 2-superform w € Q%(X, End E (I)) the question is to
decide whether £, (X, A) is empty or not. We ebserve that one has the same

answer as in the ungraded case.
If Aut E(p{) is the automorphism group of fiber transformations. Then the

cohomology group HY(X; Aut E(X),) operates on £ (X, A).
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Let {U } < 7 be & contractible covering of X and assume that (E, v) is a
vector superbundle with connection over (X, A). Let (c ;s @) be the correspond-
ing local data for (E,v). Let 2y .be a cocycle for the constaut sheaf Aut E(pt),.

LEMMA. H! (X, Aut E¢X ),) operales as a group endomorphisms of £,(X, 4)
in such a fashion thal one has

[Zr.j].[E,V)]=[(E » V)]
where (E’,v') has the local data {éijzij,a;) with respect‘ to the covering
, -1
Uhier “ T 45 .

* Proof. 1t is casy to see that (¢, z.,, z, 2.2, ) is a local data of some Super-

ijrif ijoitis
bundle with connection (E', v'), We must prove that Cury (£’ , v ) ==w « Since
( » 0) is also a local data, there exists a flat superbundle with connection

(Ez v,) such that (zij’ 0) is its local data. By the abelian group structure on
£ (X, 4), we have '
Curv (£, v*) = Curv (E, v) 4 Curv (E,»v,)
_ =wp+0=0w,
2. 9. COROLLARY. 2, (X, 4) = H' (X; Aut E (X) )
2,10, Let us denote by exp the exponential map
f e End E (U)a l—- exp (2mf) € Aut E(U

exp (2mif) = Z'. (27rtf)"/n!

n=0
The exponential series converges absolutely on the operator norm topology, as
usual,

Note that the elements of the form [ 4- End EI(U)O » the unipotents,
have un‘q{:e logarithms in End E? (U)o’ hence there is an 1somorphxsm
End EY(U), == Iy; + End ELU); .

Denoting by I the kernet of the exponential map, one has an exact sequence
of sheafs of groups

exp
0 — I —= (Bnd E); — Aut E, — 1,

So by the long exact cohbmology sequence we have
2. 11 COROLLARY. Lei (X, 4) be a supermanifold ond let L, (X, A) be the

group of equivalence classes of superbundles over (X.A). Then one has an isomor-
phism of group

£,(X,A) = H2(X,T)



Remark. By the Kuniper type theorems, Ant E(U)y can he homotopically trivial
in the infinite—dimensional case. The interesting case is tie classification of all
infinite dimensional Hilbert superbundles associated o a priacipal superbundle
witha Lie-supergroup as the structural group. Nothing in this caseis trivial and
it is the main subject of the multidimensional guantization.

2.12. LEMMA. Lef (X, 4) be a supermanifold and lef o Eﬂg (¥, End E), be a
closed 2-form. Then £ (X, A)is non emply if and only if the cofiomology class

(] belongs to the cohomology group I* (X, ryc_H0? (X, Aut E(X)O Je
froof, Assnme that the class [w] is F—valued. Let {Ui }, i€ I, be a contrac-

tible covering of X, By the Poincaré Lemma there exists «, @ of (Ut. » E) such
thatde, = «lU; , Hence in the inlersection U, n Uj s d(e; — ocj) = 0. Thus there
exists f[.j e Aut E(Ul. N Uj) such that @ — o == dfij' Bul tzenin theintersection
U, n Uj nU, d(fij + fjk — fik) = 0. So one Bas some %y € Aut £\X), such

that ffj + fjk — ftk= % IdU:‘A vy, Bul now the class of w is I'—valued,

and Z; ik canbe chosen in 7. So €,; = exp (f!.j) e Aut E(U)O. Itis easy to verify
that (cl.j, %;)is a local data of some vector superbundle with connection (E, v).
Clearly w = Curv (E, y) proving that £, (X, Ay is nonempty.

The converse assertion is proved in the same way as the classical one:

3. QUANTIZATION OPERATOR

3.1. Let (M, 4, w) bz a symplectic supermanifold of dimension (i n). Since
(X, kw) is a symplectic manifold the even dimension m must be even m = 2m0
and there exisls at every point a Darboux ecoordinaie system (p, , g;) In a
coordinate neighbourhood U/, On the other hand, becanse the resiriction of o (o
the odd part of the tangent superspaces is a nondegenerate symmetric form,
there exisis (see [8,§5. 3]) a Morse canonical system of coordinates s.,

J =1,.., n. So altogether there exists at every poini a so called A-Darbouzx
coordinale system Wp;: q; ey yoors my? 570 J =1,...,n), where P;. q; € A(U)D,
and 5; & A(U)1 » and in which

o n Sj
w=2 dp Adg + 3 Loy
i=1 ! o= 200

where € is either 41 or —1,
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It is easy to see that in this A-Darboux coordinate system the hamiltonian
vector superfield 'gf corresponding to a superfunction f, i(&,f) w = df (see

[8, §5. 2]) mow becomes

m n of o
R L Lar IRy
i=1 {9¢. %, 9D, 0q, i=1 Vet B
In particular

0

Ep, = — » B9, = ’

k 0P

ESi:Ejas

In such a A-Darboux coordinate system the Poisson superbrackets has
the form ' '

fig € AUy > {fog}i =5 @ =— (D11 B e ()= <t g 1 0>

=5£no(af og  of ag)Jr g(_l)lfle_i_gg_

i=z7 \OG; Op;  Op; 04, j=1 I os; asj

In parlicular we have for the Poisson brackets the canonical supercommau.
tator relations '

{pop) =>4} = {55 Py =659} = 0
{4 P} =31y
{si, sj} = EjaijIU‘
| Now we consider the quantization problem. By defimition, a quanfizalion
procedure is a correspondence associating to each superfunction f a supersym-

metric saperoperator £ in some fixed Hilbert superspace which is antiantoadjoint
superoperator if £ is a real superfunciion and

P

(fofa) == [fuld
T=1d

where f = #/2x and h is the Planck’s constant in physics.

32. Let us denote by (E, y) a vector superbundle with connection and with
Hilbert superspace fibers such that the connection preserves the Hilbert struc-
ture. Let us denote also by (fi/i).a(.) the connection superform of y. Then the
values of the superform « are the antisymmetric superoperators for complex
vector superfields and are anti-auteadjoint for real vector superfields..
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Now we deﬁne for each superfunction f € A(M) the corres ponding quantized
superoperator f
=T+ Hi.y ep =1 + hi2mi . v,
3. 3. THEOREM 1. The three following condilions are equivaient :

(1) The superoperator-valued differential 2-superform satisfies the following ( non-
linear in multidimensional case) equation

@ ldgay=(nigey— (— 1=l nq) +%[<§ [ ), (11 )] = (B [ wild
(2) The curvalure of vy is symplectic. More precisely,

&1 Carv (Eav) = Vg » V] — Vg, q = — (& 11 0)

T
(3) The correspondence f — f is a prequantizaiion procedure.
3. 4. Remark 1. Here we talk aboul a prequantizalion procedure bhecause
as usual the covariant derivatives \% £ &€ Der A(U) operales as superoperators

in End E(U) for every open set U.

Only with regards to the superpolarization can we construct the correspon-
ding Hilbert superspace of the quantum states of the physical system under
consideration, and have then a guantization procedure,.

Remark 2. In condition (1) of the above theorem, we bhave a nonlinear
superoperator-valued differential equaiion

Enlden) = Enlold)
In condition (2) this nonlinear equation takes on the equivalent form of some
curvature equation

Curv (E, ¥) = :_}:L—i-(.,.}m)ld.

Equations of this kind related to the curvature of some connections are
encountered in modern physics. An interesting example is the Yang — Mills
equation

* Curv (B, v) = + Curv (E, v).
where the star means the Hodge star. By Radon-Penrose transform this equa-
tion becomes the Cauchy-Riemann conditions for the corresponding bundle in
the space of light rays of the complexificd compactified Minkowski space.

CONJECTURE. Our ¢uantization equation could be also converted by the
Radon-Penrose transform into some algebraic condition of the eorresponding
superbundle.

3.5. Praof of Theorem 1. (1) =(2):

‘We have

V> Vol = Vg, o) = PEF — (Elad, 0+ —(ala)] =

—GH&M%—%H&nHN-
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; i nl €] _
=[0@. 2]+ 10 @ (0 [ed]— (=D 1o Catal)]+
+(£) el nfa)] = 0(L8 M) — — (B[ =
"[B(G)se(n)]_a({‘é:n)"i"
+ 1@ )= = Mo, (g7 -

;_ﬁ

— (& nlla)y+ (&l (al )]

In view of superbracket relations 2,3 (3), [8(2), 8 ()] = 8 {[&, m]) the rest of
the proof is immediate

LEMMA [0(7), (n]e){=(n]{ =)
Proof. For all supersections f € E(U} we have
[BE), (nia)f=08@ e+ 1) El%knayo@f -

— (=l g i aye @)f =
—0® (1] a)f
3.6. (2) & (3):

By the definition of the quantization operators we have

—~[f1 f21= ““‘[f +T T Ve, & +T Vi) =
i
RERELES Ve, 1 ¥ (—1{) [VEff fal+ (_i)[vgff Va1 -

~ Vi - i Y +
. t {f1: fo} t {f1» ra}

+ (v o ol (v o A
It is easy to see that g{f o} = [Efi R Efz I So the proof of the theorem will he

completed by proving the following

] Igfl II ‘:jzj
LEMXA. [fjs VEf] = [V(gfj_, fg} = B(Efi) fg = — (—*" ) & Efz}(f1)
2

=(Ef1' %fzm)z {fj’fg}

Proof. The multiplication by a superfunction is supercommuting with the
multiplication by any superoperator-valued superfunciion, So

[f_-[’ vgfg ] = [ij’e (E-fQ)]'
For every section s € L(U), one has

1 f2)l
[Fis 8(EF2)] s = FO(EF2)s) — (—1) i) B(EF2)(f1S)

= Fo(8(5Fy)8) — =1y LRI (qerirns — (en2 VR MAL £ e
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= < Efl’ Efz w )S.
Similarly,

[ng s fz] = e(\E}rI)(fﬂ) = (Efis Ef2 | (1)).

1
The lemma is proved.

4. APPLICATION TO SUPERGROUP REPRESENTATION

4+ 1. COCOMMUT ATIVE HOPF SUPERALGEBRAS I8, § 3. 3]. We recall that if G
is any group and K is the fixed ground field (R or C) the group algebra K(G)
is a cocommulative Hopf algebra with antipode over X,

, At K(G) = K(G) ®@ K(G)
so thatfor g € G, A(g) = g ® g, s(g) = g1, 13 () =1L

Now assume also that ¢ is a Lie superalgebra and one has a representation
II: G > Aut G. Then IT extends uniquely fo a representation of G by auto-

morphisms of the universal enveloping superalgebra U(G). Now the smash pro-
duct :

K(G) : U(G)
with respectto II (or simply smash product if IT is selfevident), is by de-
finition a cocommutative Hopf superalgebra with antipode such that o
(1) as a vector superspace it is the graded temsor product K(G) i U(§).

(2) as an algebra K(G) and U(§) are subalgebras but gug~1 = I{g) u for
gin G and u in U(G),

(3) with respect to the diagonal map A the elements of G are group-like
and the elements of § are primitive and. '
(4) one has s(g) = g% $(X) = —X, and 1,() =1, 15(X) =0 for g € G,
Xed
Conversely, let E be any commutative Hopf superalgebra with antipode
over an algebraically closed field X of characteristic zero, & be the group of"

all group-like elements in E and & be the Lie superalgebra of all primitive
elements in E. Then there is a representation I1: G — Aut & such that for any

9€G, X & UG, g%g~ 1 =Tl(g) X and E is isomorphic to the smash product
with respeet to I1

E = K(6) # U(@).

4. 2. Lie-Hopf superalgebras. Now assume that G is a group, & is a Lie
superalgebra over R and E is the Hopf superalgebra with respect to some re
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presentation I1: G — Aut G, Following B, Kostant {8, § 3. 4], we will say that E
has the structure of a Lie-Hopl superalgebra if:

(1) & has the strocture of a (not necessarily connected) Lie group,

(2) ¢ =G, + G,is a finite dimensional Lie superalgebra where ¢ = Lie G
is the Lie algebra of G,

3 Adg is defined on the identity component G, of G and 11 E'Go = Adg .

If E(G, &) is a Lie-Hopf superalgebra, let E(G, G, ) be the Lie-Hopt algebra

obtained by replacing & by its even part. As a Hopf algebra it satisfies
E(G, G,) =C(G)

where C*°(G)* is the set of distribution with finite support,
The collection of Lie-Hopf algebras form a category in which a
morphism
LG, §) — E(H, %)
is a morphism of Hopf superalgebras such that the restriction to Hopf even
parts is a Hopf algebra morphism

E(G, ;) ~ E(H, 96,)
induced by a morphism G — H of Lie groups.

Of course E(G,§) and E(H, %) are isomorphic if there exists an
isomorphism

EG, 6,)% B, 9,

4.3, Superalgebra B(Y)*. Let (¥, B) be a supermanifold B(Y) the superalgebra
of superfunctions on (Y, B). Consider the full dual B(Y) of B(Y). One has
certainly an injection

0 — B(Y)Y @ B(Yy — {(B(Y) @ B(Y))
and also the diagonal map
: A By — (B(Y) ® By
defined by the relation
n | o(f ® g) = vifg) .
for ve B(Y),f, ¢geBY).

Consider the subspace B(Y)* defined as the supersubspace of B(Y) of all
v € B{Y) which vanish on some ideal of finite codimension of B(Y). One knows
that if 2 ¢ B(Y) av e B(Y) ® B(Y) iff v€ B(Y)*. So one has a morphism
oz BYy — B(Y)x @ B(Y)*
which induces on B(Y)* the structure of a cocommutative superalgebra.

Recall that if A: C— € ® Cis a superalgebra an element 6 € € is called
group-like if it is 2 non zero even element and A6=6 ® 6. An element v is called
primitive with respect to a group-like element 6 if

Av=6Q@pv-0v®E6.
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Note that B(Y)* is just the set of all distributions of finite sipport on (V,B).
Reeall that a morphism
T:BY)*—~ C (Z)*
of supercoalgebras is said to be smooth iff it is an induced morphism T = o*
for some morphism of supermanifolds
o: (¥, B) — (Z, 0)
Now let (G, A) be a supermanifold of dimension (m,n), let
A A(G)x — AGys @ A(G)*

be the diagonal map with respect to which A(G)* is a cocommutalive superal-
gebra. The counit is given by the identity element 1, € A(G), 1,(») = v(1;) for
v & A(G)x. .

Recall that (G, A) has the structure of a Lie supergroup if A(G)* has also the
structure of an algehra such that

(D (A(G)*, 1, A) is a Hopf superalgebra with antipode s,

(2) the map

‘ ‘ AG* @ A(G)* — A(Gy*
given by the multiplication and the map
51 AG)* — AG)*
given by the antipode are smootl.

It is well known (see B. Kostant [8, §3.5]) that if (G, A)is a Lie supergroup,
then G with respect to its manifold and group structure is a Lie group with Lie
algebra Lie G ~ G_, thecven part of the Lie superalgebra G = {primitive
elements of A(GY*} and

AG) = EG, §) |
with respect 1o the representation I1: & — Aut ¢ gzl geg—ltor z 6 G,
geGand |G, = Adgthe restriction to the identity component.

4.4. Homogeneous superspaces and isotropy supergroups.

Let (G, 4) be a Lie supergroup and let (Y, 5) be a supermanifold. We shall
say that (G, A) operates on (Y, B) or (Y, B) is a (G, A)—space iff the following
map is smooth

A A(GYy* X B(Y)* — G(Y)*
. H’.’ w’- -
A(pw)y= Z (- * woow, Q@ ww,
i=J ;v
f A= 2w @ H;’
: i
1
and Aw) =2 w, @ w,
j J 7
for all ue A(G)*, w e DB(YY.
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So in this case, B(Y)" becomes an A(G)*-module. By duality the commuta-
tive auperalgebra 5(}) becomes also some A(G)*-module;

(@, u.f) = (- Dl fol sy . w, )
Observe that if f, g € B(Y) then

afg =20/ g

Recall that a Lie subsupergroup (H, B) in (G, A) will be called closed if H is
a closed Lie subgroup of ¢. Let :

p:G—— H\ G, g —— Hyg

be the coset projection map. Put V = p™1(U) if U is some open set in H\G.
Then (V, A(V)) is some (H, B)-superspace and the restriction map Pe, V:A(G)"’

— A(V) is some (#, B)-module map. Now put

B\AWU) = {f € AW); RY f = (-l l1lfs(w) = w,1_)1)

It is easy to see that B\ A(U) is a commutative superalgebra confained in A(V)
and the correspondence 7 |~ B\ A (U) is a sheaf of commutatiive superalgebras,
As it is pointed out in [8. §3. 9], the sheaf B\ A on H\G togeiher with the
homomorphism B\ A () -~ C>= (U) define the struciure of a supermanifold
(HN\ G, B\A) of dimension (m-m’, n-r’) if dim (G, A) = (i, n) and dim (H, B) =
= (m’, w’). Furthermore, we have alio the local friviaiity of the projection
map, i.e. for sufficienfly small open sets U, one has an isomorphism

8:UxXH, BNAXDB) - (V, A)
So we obfain some principal superbundle associated to each Lie subsupergroup.
It is not hard to show that if (H, B) is a closed Lie subsupergroup of a Lie
supergroup (&,A) then with respect to the action of (G,A) on (H\G, B\ Ay,
(H\G , B\ 4) is a homogeneous superspace (see [8,3.10. 3]). Conversely, if
(X7, A’) is a homogenesus superspace for (G, 4) then (X', AN == (H\G, B\ 4)
where (H, B) is the stabilizer of a point p =X’ . ' '

4.5, Integral Poisson represeniation. Suppose that our Lie supergroup (G,4)
acts on a symplectic supermanifold (M, B; w) by a representation II (.):
4 (¥ — End B(M) such that its restriction to the Lie superalgebra € is a
representation of the Lie superalgebra ¢ by the canonical transformations
Xeg - &y € Ham B(M) S Der B(M).

Dencte by L, the Lie derivative along the vector superfield gi e Ly ::H(EX).

We have the natural exact sequence of super Lie algebras
0 —»RIM—-—;v B (M) Ham B (M) —

Hence for each X ¢ @G there exists a superfunction, the generating function,
freBM).
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By the calculus on supermanifolds (see § 2.3), we have
[LX s LY] = L[X,Y]
and Lf = {fy.f}

Now suppose that fX depends linearly on X we then have a.2-cocycle of
Lie superalgebra
e (& V)= ifyo Fy} — Fryp
The quantization procedure yields
[/ (X AY)] = JT([X YD+ o5 1)
by setting JI(X) = —-ﬁ— . fx f + Vexe

DEFINITION. We shall say that the action of (G, 4) by canonical transfor-
mations on the sympleetic supermanifold (M, By is flat if the 2-cocycele ¢ (...)
is zero. -

Remark. If the (G, A}-action on (M, B) is flat, the Lie superalgebra homo=
morphism G— Ham (M,B), X — £, can be lifted to the superalgebra homo-

morphism § > B(Y). So we recover Kirillov's notion of strictly hamiltonian
action in Lie group sifuvation. _ o

Obviously, the Lie superalgebra representation ¢ — B(Y), X — {fx,.} is an
intergrable Poisson representation in Kostant’s sense [8, §5.4]. ‘ S

In the flat action case we have a representation of our Lie superalgebra G
by the superfunction, the classical (physical) guantities, and a representation JI
of our Lie superalgebra by the quantum quantities, the antisymmetric supero-
perators. If E. Nelson’s conditions on integrality are satisfied, we could obtain

a Lie supergroup representation exp (% fx) of the universal covering G

of (G, A).

DEFINITION. By a mechamcal system with supersymmefry we mean a symplectic
supermanifold together with a flat homogeneous act:on of some Lie supergroup
(of supersymmeiry). :

Thus starting from a mechanical system with flat action of Lie snpergroup
(G,A) we can obtain some representations, i, e. the correspondmd quantum
systems, by using the quantlzatxon procedure

<

‘5¢ INTEGRALITY, CONDITION

We see that to construct the quantumn systems one needs a prequantfzalion
procedure and a Hilbert superbundle of quaninm states (with internal symmetry)
with connection (E, v) € £ (M, B). This section is devoted to the question of
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whether the set £ (M, B} is noen empty. In general this questicn is similar to

the classical question of line snperbundles with connection (see B. Kostant
[8, §6. 4] and the preceding section 2.12),

5.1. Infegral funclional. LetGbe any finite dimensional real Lie superaigebra
and let (G, 4) be the corresponding simply conuected Lie supergroup. Let
(M, B) be an arbitrary homogeneous (G, 4)-superspace with flat action of
(G, A). Letm ¢ M and let (G_, 4 ) be the isoiropy subsupergroup at the point
m. Let ¢ C G be the Lie superalgebra of (G, 4,) The point m can be
considered as a superfunctiozal in §* in the following“sense. Actually every

element of G is just some group-like element of the Lie-Hopi superalgebra. So
m e« 8 eAG)*

def

- i i
X = () = fm
In the flat action ease we have some characier xm

% (Exp X) = exé(—% f ¢(m) )

So we shall say that the point m is infegral iff this characler admits a continua~
tion to some smooth unitary representation of the whole stabilizet subsuper-
group (Gm L] Am )‘ . et erema e T Termtwie e et

5.2, Existence of quantum superbundles ot an integral point

Suppose that the character % can be extended to some umiiary represen-
tation o of the stabilizer (Gm ’ Am } in some Hilbert superspace H. Takinga
fized connection on the principal superbundle

that is formed by some {G, A)-invariant fangent guperdistribution and the
differential of our extended representaiion, we obtain some affine connection
on the associated superbundle. It is easy to see that this vector superbundle is
just some quantum superbundle, i.e. its curvaiure is the symplectic form of '
our mechanical system. In fact the character % gives a connection on some

line superbundle. Its continuations to representations are ennmerated by the
cohomology group HY (3, Aut (H)). Thus we have the following results:

PROPOSITION. If (M, B) is some homogeneous flat (G,A) — superspace then
the following slatements are equivalent:

(1) Some point m¢ M is integral,

(2) Every point of M is inlegral

(3) The set £ (M, B) is nonempty.




PROPOSITION. If (M, B) is non empty, iis elements are paramefrized by the
elemenis of the cohomology group HY (M, Aut E(pt)) for some (E, y)€ £, (M, B),

Proof. The essence of the proof of these two propositions has been pointed
ou! above. The rest is trivial. '

6, SUPERPOLARIZATIONS AND INDUCED REPRESENTATIONS

In this section we shall derive for the supersymmetry some results analo-
gous to thosein [3, §11.3), The main point is the supervariant of the Frobenius
theorem.

6. 1. Tangent superdistributions. Let {M,B,») be a symplectic flat homogenous
(G.4)-manifold, i.e.a mechanical system with snpersymmetry, O(M) = M/ the
(G,A)-orbit space, Q a fixed (G,A)-orbit, x € Q a fixed point, (G _, A_) the stable

supersubgroup, §  the Lie superalgebra of @ A (G o A) the connected

component of the stabilizer, and finally ¢ a unitary representation of (G _,4,)
the kernel of which contains ((G_ ) A,).

Let T(Q,C) be the complexified tangent superbundle of the orbit (,C). Note
that the sheaf C is just the quotient sheaf A_\4, for some point = in Q.

Assume that L is an invariant, integrable (i. e. such that the Frobenius condi-

tions are satisfied) smooth tangent distribution such that L -+ L isalso integrable,
where the bar indicates the complex conjugation.

LEMMA (Frobenius integrability condition). The sets of all global sections of

the distributions L, L + L form Lie subsuperalgebras iff the corresponding distri-
butions are integrable.

LEMMA- (Invariant condition), The Lie superalgebra of invarian! global sections
to integrable distributions L, L + L are isomorphic lo the quotient tangent super-
spaces L, L_ + L_ iff the distributions are invariant.

LEMMA L =2 (G ) ., L_ —]—TLJ: = (? +7,5)/(g$)c for some compiex Lie
subsuperalgebra P C gc_

The proof of these lemmas is trivial if we remark that the invariant smooth
sections of L, L 4. L respectively form the invariant vector superficlds. Then

L, £ + £ <o Dergg ) (20),
andsoﬁé-_—“Lx,ﬁ+Eﬁ.Lx+Lx

35



As veclor superspaces 9P = LJP 4 (&, ). The invariance garantees that
(G » Lx 1€ L_. So @ is a complex superalgebra.

6. 2. DEFINITION. We shall say that the disiribution L is closed if thé connect-
ed subsupergronps (H,, F), (M, I) corresponding to the Lie superalgebras

=P NG M=(P+ P) N & and the subsupergroups
(H, F) = (Gx s Ax } X (Hoy FY ,(M, I} = (G:‘c s Ax ) IX (M, 1) are closed.
6.3- DEFINITION. We say that (L, g, oo} is a (X.I s 6) — polarization and I is
weakly Lagrangian if :
(8) 6, is an irreducible unitary representation of the supergroup Hy, F) in

some Hilbert superspace V such that :

" (1) The restriction ool (Grs Ag) N (Hgy F) = mult %,. “,

(2) The point o, in the dual (Hy, F)™™ is fixed under the action of the super-
group (G_, Ax),

(3) p is a representation of the complex Lie superaldebra 7 in the Hilbert
superspace V such that its restriction to the real part &% is the Lie derivative
(or the differential as called usually) of the representallon oo and all the E.
Nelson conditions are satisfied,

6.4. (c x) — polarizations. ywe modify the motion of (c' :c) — (see [3]). We
say that (P, o, s, ) is-a (o, )—polarization if

{(a) ? is some complex subsuperabgebra of %, containing G
(b) The subsuperalgebra ? is Adg . (G, )—invariant.

~ (¢) The vector superspace € -+ ‘.’,1’ is the, complemflcatmn of some real
supernlgebra, i. e M= (EP +?)n g

(d) The subsupergroups (M), T »(H,, F), (M I), (H F) are closed,

‘where (M , 7)-(resp., (H F)) is the connected subsupergroup of (G A) with
‘the Lie superalgebra (resp., H=P NG and’

M, I) = (Gx_. Am) IX (M, T), '
HF) =6, A)IXH,P

(e) o, is an irreducible unifary representation of the supergroup H, , F)
such that the restrtctxon o, | (G 43 N (Ho F) 1samull1ple of the representation

X, s LG, 4 ) AL, B, where by defipition
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(@, X) )

and (2) the point o is fixed under (G, A ) — action on the dual (H_, FY™.

X, (exp X) = exp (

(f) o is some representation of the complex Lie superalgebra ? in the
Hilbert superspace V such that its restriction to the real part &% is equivalent to
the derivative of the representation o _ .

6.5. THEOREM 2. (L, p, 6, ) is a (X, , @ ) -polarization iff (#, H,p, 0, Jisa
(’;,.x') - polarizatioa. ' - o

Proof . If (L, p, co) isa (X, 2’) - polarization, L is a weakly Lagrangian,

invariant, integrable tangent superdisiributicn of the tangent superbundle
T (2,4 \4).In § 6.1 we have reconstructed the Lie subsuperalgebra % by L

P = (QI)c ® Lx . It is easy to verify that we have in this case a (E, z) — pola-
rizalion, Conversely, it is easy to recomsiruct a (4, o)-polarization (L, p, g,)
starting from some (n;’ :z:)-pol_ar_izatipln. (GD? H_, PrSy) - _

6.6. COROLLARY. Suppose Q to be an z‘hfegral orbit of a mechanical system
with supersymmetry (M, B; G, 4, 0) , (L, py o ) a (X, ;)-polarization, wheijq 3

is a representation of (Gx, A) the kernel of which contains the connecled compo-
nent (¢_), . A, ). Then:

- (1) The homogeneous space Q admils the siructure of a mized mqnifold of
iype (k, I, m) in the sense of [3,2] (2) There exists a unique irreducible unilary
representation o of the supergroup (H, F) such that ils restriction to the stable

supersubgroup (G ,A ) isa multiple of the representation X . s and its deriva-

tive is.the restriction of the representation p fo the real part X =@ N G

Proof. The proof is the same as in the ordinary Lie groap situation (see
(3, T1.3.8]). o ‘ ‘ '

6.7. INDUCED REPRESENTATIONS (see B. Kostant [8,§6.1] for the line superbun-
dle case), Assame now that (L, p,'&"o) isa (%, :;) — pola:ization of our orbit Q.

So by the preceding consideration we obtain some unitary representation ¢ of
the polarization (closed) subsupergroup (H. F) in some Hilbert superspace V.
Let us denote by 7, the natural projection (G, 4) — (H\G, F\A), Let

U ¢ HNG be an open set and let V = 1:;1'. (U) & G. One thus has
A(Vy BEY S AV B
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Denote by A(V,o) the superspace of all V-valued superfunction [ ¢ E (U)

such that
{wv [y = ow) (v.f) v € A(VY, w e BH)

It is easy to see that (F™\ A4) (U) can be embedded into A(V) as a subsuperspace
of superfunctions such that

(wo, gy ={w, 15){v, gh g € F\A) W), ¢f € E;, (U)

for all v ¢ A(Vy', w e BH)". So if f ¢ Ey(U), g € (F\4) (U), then ¢f ¢ E, (U).
Furthermore, U ¢ H\G v E,(U) = E‘V(r: (U), o)is a sheaf on H\G, Let
o™ be the elemenl of EV(’CZ (U) such that for any w e B(H)*,

(w, o) =o(wjt,, and
for a fixed {#, in EV(tEI(U)' Beeause the represeniation is irredacible we see

that tie opea set U is principal for the sheaf EV‘ Thus it ia some superbundle
sheaf,

It is also easy to sec that E (G, A, o) is a closed subsuperspace of V-valued

superfunctions on (G, 4) and it is stable under the action of our supergroup
(G, A) on the right. In particular, the elements of the Lie superalgebra § acts
via the Hamiltonian superfields on the right. Hence for each open set U in I\ (G

the subsuperspace EV(T(‘;"T(U), o, p) consisting of the sections which have the

covariant derivatives zero along the vector superfields from our eomplex polari-
zalion ? form a subsheaf which gives us also an invariant closed subsuper-

space of global sections of our guantum superbundle Z, . We refer to this
. Q

invariant subsuperspace of global sections of our guantum superbundle as the
induced representation Ind (G, 4; 2, H, p, 5,).

1P T

6. 8. COROLLARY. Thenatural representation caifled parliallyinvariant holomor-
phically induced representation and denoted by Ind (G, A; L, x, p, 0, ) of the Lie

sapergroup (G, A) in the superspace of so called partially invariant partially holo- h

mor phic_ sections of the induced superbundle E is equivalent o lhe naiural

V, s Og

right reqular representation by right translations on the superspace A(G, A ; L, x,
P 04} of smooth superfunctions on G with values in V such that

(wy, I )=0o(wj{v,I)

v i=0 for all X s 2,
X

where véx =0t ) +(% .P)-
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7. LIE BDERIVATIVE OF THEE INDUCED REPRESENTATIONS

The aim of this final section is to compute the Lie derivative of our
representation as a (G, A)-bomomorphism of superbundles. We will show that
this Lie derivative is just the Lie superalgebra representation obtained from the
corresponding multidimensional quantization procedure.

7. 1. STATEMENT OF THEOREM 3. The Lie derivative of the partially invariant
holomorphically induced representation, Ind (G, 4; %, (H, F), p, o) is equivalent
to the Lie superalgebra represenfation

X LT

of the superalgebra G of our supersymmetry grouap (G, A) via the multidimensional
quantization procedure.

The proof of this theorem is lengthy and we divide it into several
sieps,

7.2. Suppose that E is an induced superbundle. Then we have a

V.09,
homomorphism
A(G)* - End EV, o, o, ().

such that its restriction to the Lie superalgebra part is equzl to the Lie
derivation of the action of the corresponding one parameter subgroup
action

X.u="L(expux)u exp (~X)
dat 1=0
It is easy to seethat X . u is then some differential superoperator of degree 1
r i ¥
Xu=Xpu— (1 ey x_

7. 3. CONNECTION. We consider the similar case for section u ¢ E )N

V@ Go
Then we have the Lie derivation X. u as the covariant derivation, so that

Vex = 06 + = (& | 2

By identifying EV, 0, Go(U) with the corresponding superspace of V-valued super-
functions on U which are s-invariant @ —parallelizable, the covariant derivation
is of the form

OE,) 4 (X | o)

for all X in our polarization subsuperalgebra @.

74, Differential superform B. Note that each point y of our symplectic super-
manifold (M, B) can be considered as some linear functional on the Lie
superalgebra G: '

(X’y>= fx(y) s X Eg »
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Wherefx is the potential of the corresponding Hamiltonian field vector

superfield'EX_

Define a 1-form B € ol (Q) on & by
(E1B) () def (E(e) 1y

Then so we have
f) = (%Lg) = (IR .

7.5. We see now that the Lie derivative of our induced representation is
i .
Vixy = @-(%X) +'_ﬁ: aI(Ex)

= Oy + — Fx+ o (B Lo — Ex | BY)
Denotmg bjf a the differentml I-superform a; — B, we have

RACLINEECNE +--f

T
'ﬁ -
This completes the proof of the theorem.

‘=—'( @@X)foﬂaxm)%%
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