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ON THREE CONCEPTS OF QUASICONVEXITY
IN VECIOR OPTIMIZATION®

DINH THE LUC

0. INTRCDUCTION

In nonconvex optimization, guasiconvesity is one of the most important
generalizations of convexity, for it possesses various properties which are very
close to that of convexity. Up to now, quasiconvex functions with scalar values
have been thoroughly studied and there are a large number of papers dealing
with their continuity, differentiability and other aspects (see [1 — 3] and
references therein). Recent, specialists of vector optimization have turned their
attention to this class of functions, taking into account the presence of partial
orders in the anderlying space (see [4—5] and [7]). They have generalized the
concept of quasiconvexity for vector functions and investigated vector optimi-
zation problems with objectives quasiconvex in the corresponding sense. The
aim of the present paper is to give an overlook at three main generalizations
of quasiconvexity. By giving several characterizations of these generalizations
we show how they are linked with the usual guasiconvexity of the scalar case.

The paper is structured as follows. §1 is concerned with notations and
definitions. §2 deals with characterizations of quasiconvex vector funciions in
terms of level sets. §3 is devoted to describing the relationship between quasi-
convex vector funclions and scalar funetions. In doing this we point out how
these generalizations are different from each other.

(*) Supported by a grant of the Alexander von Humboldt — Stiftung. This work was

written When the author visited the University of Erlangen — Nuraherg.



1. NOTATIONS AND DEFINITIONS

Let R? be the n-dimensional Enclidean space, which is partially ordered by
a convex closed pointed cone € with a monempty interior intC. We recali that

for two points uand o from R? , u > vif u—v cintC, u =Zv if —v € € and

u > v if u—v & € \ {O}. Further, given a nonempty set A & R”, a point gy 4
is said to be an efficient or minimal point of A (with respect fo C) if there is
no a € A satisfying the relation a, 2> a. We shall dencte the set of efficient
points of 4 by E(4|C) or simply by E(A) if it is clear which cone is
concerned.

Now let X be a nonempty convex subset of a topological vector space and

let f be a function from X into R".
DEFINITION 1.1 (see [5] f is said fo be Qf-quasiconvex on X if for every x and y

from X and for every a from R® with a = f(x) and a=f(y) we have
az=f (A + (I — Ny), for every & = [0,1].

DEFINITION 1.2 (see [4]) Given a point x € ¥, f is said {o be QR-qnasiconver at
x if the condition f(z) = f(y), y € X, implies f(z) = f(dx 4 (I—A)) for every
A € [0,1]; and f is said to be Q3-quasiconvex at x if the condition f(z) = f(y),
y € X\{z}, implies the existence of a point z € X\{x} such that f(z) = f(Az +
+ (1 — W), for every d e [0,1). When f is Q2-quasiconvex (resp., Q3-quasiconver)
at every point of X, we say thai it is (J2-quasiconvex (resp,, Q3-guasiconvex)
on X.

It is easy to see that every Qi-quasiconvex funetion is Q(i + 1)-quasiconvex
but not vice versa. However, if n = 1, i. e, if f is scalar-valued. then QZ-and
(2-quasiconvexities coincide and they ‘are the same as quasiconvexity or
quasiconcavity in the usnal sense, according to whether the cone C is the set
of nonnegative numbers or nonpositive ones. Further, in Defizition 1.1, it is
sufficient to check the required relation for every point a from the set
E((f@) + €y n (f(y) + €)), which is reduced to a single point whenever the
cone C is a polybedral cone generated by n independent vectors. The latter
fact is pone than a sufficient and necessary criterium for a “space ordered by
‘a cone to be a lattice. ‘ B

Z. LEVEL SETS

. In mathematical analysis if a function possesses certain property then this
property is often attached to the epigraph while any quasi-property is derived
frcm the corresponding properfy of the level sets. For instance, a convex func-
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tion is a function with a convex epigraph, while a function with convex level
sets is merely called quasiconvex, A similar terminology is used for closed
functions. In this section we will see how this general rule works for the qua-
siconvexities defined in the previous section.

We recall that the level set of a function f from X into R" atapointxeX

is the set L{(x) = {y e X: f(x) =f(y) } and a set A C R"is said to be starghaped
with a center at a ¢ 4 if it contains all closed intervals linking its points with
the point a.

PROPOSITION 2.1. The following assertions hold :
i) f is Qf-quasiconvex if and only if its level set al any poini s convex:

i) f is Q2-quasiconver al a point x € X if and only if L(x)is starshaped
" with a cenfer at x. ’

iii) f is Q3-quasiconvex at a point x eX if and only if L{z) is a single point
or it confains an interval with one end at x.

Proof. This is immediate from the definitions given in the previous section,
The last iwo assertions were formulated in [4].

It is clear that among three generalizalions only Ql-quasiconvexity follows
the rule stated above. In fact, it turns out that this generalization is the clogest
one in the sense, as it will be established later, that whenever ( is the nonne-
gative orthant of the space, every component function f, of f = (f! soueq fn) is

quasiconivex in the usual sense provided f is Q1l-guasiconvex. This is why the
efficient point sets of vector problems with Ql-quasiconvex objectives have
very nice properties (see [5]) and therefore we will pay more attention to this
concept in the next section. The concept of Q3-quasiconvexity was introduced
in connection with a local and global property of optimal solutions. It i3 known
that any local solution of a quasiconvex optimization problem is also a global
solution. This fact still holds for vector optimization problems with (J3-quasi-
convex objectives. Moreover, the following resalt was proved in [4]. Let z;, be a
local minimal solution of the vector problem, denoted by (F),

min f(x),
st.x e X,

i e. there is a neighborhood U of 2, in X such that f(z) € E(f{IN). Then x, is
a global minimal solation of (P), i. e. f(ze) € E(f(X))if and only if f is Q3-qua-
 siconvex at Xy } ‘
In [4] it was constructed a Q3 — quasiconvex function which is not Q2 —
quasiconvex. By using the result of Proposition 2. 1 one can construct without
any difficulty Q2—quasiconvex functions which are not Q1 — quasiconvex. The
only thing to remark here is that for these functions the dimension of X and of

R™ must be more than one.




8. CONNECTION WITH SCALAR QUASICONVEXITY

In this section we give some characlerizations of Ql—and (J2—guasiconvexi-
ties in terms of scalar quasiconvex functions.

Let e be a fixed veclor from int C. For every a € R? we define a functior
g {.» d) from R" into R by the relation:

g, a) =min {{: ® = a + le}, forevery x ¢ R",

It is clear that the function g is well defined, i. e. g (z, @) is finile for every
x € R, and it is continuous in both variables z and d.

PROPOSITION 3. 1. A furction f from X into R® is Q2— quasiconvex at L X
If and only if the composition funciion g (f(.) f(z,)) is Q2—quasicorwex at that
point.

Proof, By the definition of the function g. it is easy to see that for x ¢ X,
f(x),) = f(z) if and only if ¢ Uz,), flz,) = g(f (), fl@, N Now if f(a )=
=1 (Az, + (I —1) ) then 9(fz,), flz )y = g0z, + (1), fz,), » e [0,1]
and vice versa. The proposiiion is proved.

PROPOSITION 3. 2. f Is Q1-quasiconvex on X if and only if g(f.), a) is quasi-
convex (in the usual sense) for every a ¢ R,

Proof. Suppose that f is not @i-quasiconves, i, e. there exist some a ¢ X,
A € (0,1) aad a € R® such that

a = f(z) and a = f(y), but f(Ax + (1—3Ny)ga - C. 3.1
Consider the function g (f()), @). It is obvions that g (4, @)=0, 0 =g (f(x), a)

and 0= g (f(y), @). Despite this, by (3. 1), g(f(hz - (1 — )y, @) > 0. Hence
g(f(.), @) is not quasiconvex,

Conversely, suppose that g(f(.), a) is no! gquasiconvex for some a ¢ R?, je,
there exist o, y ¢ X and A s (0, 1) sach ikat

gf (x4 ~ My, @) > max {g(f @), @); glFiy), a)}. (3.2
Assume that ¢ = g(f(x), @) = g(f(y), a). Then by (3. 2), we have
fhe + (1 - M) ¢ a -+ te — C, 3.3

while f(x) and f{y) belong to a 4+ fe — C, The latter fact shows that the vector
a —+ fe is greater than or equal to f(z) and to fiy). Because of this and (3. 3}, the
function f cannot be Ql-quasiconvex on X. The proof is complele.

Before proceeding to further results we recall that the positive polar cone

of C is the cone C* = {p &€ R™: (p,¢) =0 for every c & C}. We will write pf (.)
instead of (p, f(.) ) for p € C* and pc instead of D> ¢) if no confusion is likely
to occur,
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PROPOSITION 3. 3. If pf (.) is quasiconvex for every extremal vecior p of C*,
then f is Ql-quasiconvex.

Proof. We recall {hat p is an extremal veclor of C* if there are po t{wo
linearly independent vectors & and { of C* with p= & + L. Suppose that f is not

)1-quasiconvex, then there exist some z, yeX,aec R and % e (0,1) such that

az=f(x), a = f(g) and fhx + (1 — M) ¢ a — C. (3.4)
Since C is convex closed, there is an extremal vector p & C* such that
pf(hz + (1 — Ny) = pa. (3.5)

Indeed, if that is not the case, then by wvirtue of Theorem 18.5 of [6] we have
pa = pf(dx 4+ (1 — W)y) for all p & C*, conseguently f(Ax + (I — Ay)ea—C,
contradicting relation (3.4). Further, it follows from (3.4) that pa = max

{pf(x), pf(y)}. This fact and (3.0) show that pf is not quasiconvex, completing
. q
the proof.

Remark that the inverse assertion of Proposition 3.3 is not always true,
l.e. it is not necessary for the function pf to be quasiconvex whenever pis an
extremal veclor of C* and f is Ql-quasiconvex. ‘

PROPOSITION 3. 4. dssume that C is a polyhedral cone generated by n indepen-
dent vectors. Then f is Ql-quasiconvex if and only if pf is quasiconver for every
exiremal veclor p of C*, ‘

Proof. By Proposition 3.3, it sufficez to prove that the Ql-qumasiconvesity
of f implies the quasiconvexity of pf if p is an exiremal vector of G+, First we
nole that if a,,... @, generate C, then the nonzero vectors by,..e, b, defined by the
relation

b; a; = 0, it bia, =1,1{=1.u,n (3.6}
generate C*,
Now suppose that bf is not quasiconvex for some b & {bj,..., bn}. say b = by,
Then there exist some x, y € X, A € (0, 1) sach that bf (Az + (1 — M) >
masx {bf(x), bf(y)}. This means that b strictly separates {f(Ae 4 (1 — My} and
{f(x), f@)}. Assume that bf(x) = bf (). Consider the hyperplane H generated
by b and passing through f{x). By (3.6), we have that H = f(x) 4 lin (@g500,a)

where lin (...) denotes the linear subspaze stretched on ay,me, @ . Consequently,
{f{)+C} n H = {f(y) + lin(a,)} N H + cone (agss @), (3.7)

where cone(...) denotes the cone generated by the vectors @y, @ o In fact, let

n
P2 a oy 2> 0. Hence a = f(y) + «,q, +
f=1

ae{fy)+C} N H. Thena=f@) + I a.a,,

n n
o+ Z e.a.. But ae H, and so f(y) -} oyq, € f(@) -+ lin (@, @ ) — Z 70, =
=277 T j=2

= f(x) +lin(g,,..., a ). In this way, a € {f(y) +linaq,} " H -{- cone {ay,..., a_}.
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Conversely, a € {fy)+lina;} N H +cone{a,,.., a }implies that a=f(y)-+o,a,+C,
where o, € RY, C & cone {a2 - an}, and f(y) + wa, € H, It is clear that a & H,
To prove a & f(y) + C, it suffices to show that o, > 0. But this is trivial because
it not, bf(y) = bf(x). Let us consider the (n — 1)-space H — f(x) with the order-
ing cone C, = cone (g,,.., a,). Then the set E(Co N T + lin(a)} A
H— f(_:v)'—[— Co) | Co) consists of a single point, say ¢, We prove the following
properties of the point ¢: = ¢y + f(x)

Dee(f@)+ O n ) +0

i) c € H.
In fact, it is clear that ¢ & f () 4~ C because €, < C ‘Moreover, it follows
from (3.7) and the definition of C, that ¢ € (f(y) + C) (N H. This shows both
iy and ii), With i) and ji) one sees that ¢ » f(x) and ¢ > f(y), while
f(hz 4 (1 —4A) y) ¢ H — C. In this way, f is not Q1 — quasmonvex The proof
is complete,

COROLLARY 3.1. Assume that C is the rionnegative orthant of the space. Then
f = (fy v f, ) is Q1 —quasiconvex if and only if f,,.., fpare quasiconver as

scalar functions.

Proof. This follows from Proposition 3.4 and the fact that the polar cone
of the nonnegative orthant is itself.

Conclusion. We have considered three generalizations of quasiconvexity
and their connection Wllh scalar quasiconvex functions. As in the scalar case,
similar results concerning continuity and differentiability can be obtained for
QI -— and Q2 — quasiconvex vector functions (the reader who is interested in
this can venty himself by using the technique of papers [2] and {3]). The cor~
cept of )3 — quasiconvexity has no other special characterizations except for
that presented in {4} about the local and global property of optimal solutions.
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