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A FAMILY OF SOLUTIONS OF THE PLANE FLOW PROBLEM

HA TIEN NGOAN

1. INTRODUCTION

In connection with an analysis of the familiar «Stokes paradox» the pro-
blem of plane flow passing an object has been discussed by various authors
([1], [3], [4), [6], [7]). This paradox consists in the fact that a solution of the
homogeneous two-dimentional Stokes system which is equal to zero on the sur-
face of the object and equal to a given constant different from zero at infinity
had not been found. In fact, if the boundary of the object is smooth then, as-it,
was proved in [1], this problem has no solution, It is then natural to ask whal
will eccur if this boundary is not smooth. ‘

In this paper, using the Fourier transform we shall find out a family of
solution for a very particular case of the above mentioned problem, assuming
that the object is an interval wblch is parallel to the speed of flow at infinity.
Let

r={@yer; —l<z<l,y=0} )
and G = R®\[7. In the region G we consider the following Stokes’s system of
viscous incompressible flow:
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Wlth the following boundary conditions: '

limi u(z, §) = a , lim v(x, y) = 0, : (5)
lel-Hyl oo ol lgl—>oe e
a@ylp=0 . v@plp=0 (6)

where o = w(zx, y), v = v(x, y) are components of the speed of the flow and
p = plx, y) is its pressure,

Our method for solving the probleém (2) — (6) is as follows:

First of all we solve the system (2) — (4) in the domain (. For thls, we try
to find a solution in the whole R? of the sysiem S
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where f(z) is an unknown summable function on R! with supp f C [—L I}
and g(z) &(y) is a direct product of two distributions g(x ) and 8(y), i.e.

(g(=z) d(y) g(a,y) ) = g(x), 9(x,0) ) ' (10)
- for g(z.y) & S(R?). ,
Then we define the function f(z ) satisfying the boundary conditions (5), (6)-

It is very interesting to note that in this case the problem (2) — (6) has more
than one solution,

‘2. STUDY OF THE SYSTEM (7) — (9)

n

Let/cp?(fg) = (Fo) (&)= (2x) 2 Se ~ifz,8) ¢(z) dz be the Fourier transfo.rm, of
a function ¢ (z) € S(R™ ). “I'he Fourier transform /h\(g) of a distribution
h(z) € (R ) is delined as a linear continuous functional on S(R® ) such Lhat

CR @, 9)) = (B(2),9 (2))-

We shall use the formulas:.

o) =P 5= * Vv e 1)
L= ("7 SRR €
v IO =) TORE 13)
TE=x)’ ad®) : (14)
)
~ S50 6 = @) ° 9@ s =@y R E=En R, 19

where @ ¢ denotes a convolufion of two functions o(z) and ¥(z), a(z} =
= a = const. ' .
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.__E.—-—-, the inverse Fourier transform exist in the sense of principae value of
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an integral (see [B}, p. 124 — 128), and

It is well known that in the case n = 2, for the functions
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‘where Km (1) is homogeneous function of degree — m,

K _(zy) € C=(R? \ {(0,0) }) s K_(xy) do=0.
T +y =1

F1 = 27 8(x,y) + K, (z,9) (17

PROPOSITION 1. Let f(x) be a summable function on R? with suppf <[ — LIJ;
K_(z,y), Ky(x,y) be defined by (16), (17) Then Lhe system of the following functions ;

w(zy) = a - L ZEKLZY) w gy s
2r oy .

() = 5 2o (a‘”’y) * f(2)B(y); | (19)

P(z,y) = 7ft (33)6( i) + E; Kz(afsy) f(:l:)&(y), (20)

defines a solution of the system (7) — (9).
Proof, The Fourier transiorm, applied to both sides of the s]stem (7)—(9),
yields
_1

— @+ ?z‘(g,m +iEpEm = @m 2 EfE), @1
— @+ v Em 4 pEm) =0 (22)
[Eu (gm) + e (Em) == (. ' o (28)

In view ol (14) and of the fact that A(E ,n)&(&.’n) =0 for h(&,’q) € C~(R% and
h(0,0) = 0, the following fﬁnctions/l;(g,n), p (E,'q) satisfy (21), (22):

1.
iE ~2 B
”(E"ﬂ) = 4a + W P(&:'ﬂ) (275) gz F rqz f (&) (24)
) = W P o (25)
We obtain from (24). (25), that
) 1
—~ —~ —~ = Ta 2 —
e m) + i o) = — pEa) + @r) 2 *Ez—g_l? fE@). (26)
- The equalities (26), (23) yield
7
CRm=en C oo @
Sl g2 -+ 1
By substituting (27) into (24) and (25) we have
1.
W =2 —em ? 5 Ry @8
WM =amEn @y 16 « '
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W) = 127) 2(&2 e fo. (29)

. Then (18) — (20) obviously follow from (27)—(29), (11)— (15), (16) and (17).
The proof of the proposition is complete.
Since K _(2.)) € C=(R2\4(0,03}) and f(x) is summable, the functions u(a:,g),

v(z,y), ploy), defined by (18) — (20), are infinitely differentiable out of I,
Moreover, taking account of (10), we have

COROLLARY 1. Provided (x, y) § I' lhe functzons n(x, g), v(x, y). Pz, y),
defined by ( 18) — ( 20), can be represented as follows

P __1___ aKo(I, y)
uxr,y)=a oy @ f(x), (30)
1 Koz, y) o ,
v, P = o @ f@, - 61
Pz, y) = % Ky (z, ) @ f(z) o (32)

where the symbol & denotes the convolution of funclions in x with fixed 3.

8, A FAMILY OF SOLUTIONS OF THE PLANE FLOW PROBLEM

The purpose of this section is to prove the fol'owing main result:

THEOREM. The problem (2) — (6) has no unique soluiions. The solution of the
homageneous problem is

()= =@ e e
9K, (x, y) :
(. y)= ® w(@) _ RGO
Pz, )= Ky(w, 9) @ W) | (35)
This problem has a special solution as follows: ' '
oK (:B, y) = ‘ :
u(, 1 J)—a_gﬂ_—"—-—@mw(x), (36)
T o1
: ) 8K (ﬁ’), U) : C
ol = 20T @), @7)
' ox S .
(%> 9)= K, (2, ) ® 29(), (38)

where K, (z,y), Ky(, y) are defined by the formulas (16), (17) and $(z) Is
given by: ‘
__1
() ={ Vi2 —a°
0 , x>t

el
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We begin with some lemmas.

LEMMA 1. Let h(x,y) € C~ (R? \{(0,0)}), h(z, y) is homogeneous of degree --1,
w(x) be a summable function on R with supp ¢ = [ — 1, I}. Then

hA(z,y) @ (x) =0 alz|4|y|—>oe
Proof, We have .
. [
h(z, y) @ 9(z) = | I(z — 1, y) o(D)dt.
Since h(x, y) is homogeneous of degree —1 il is casy to see that
i

| h(z ) ®o(z) < sup k(=1 g)l. (1o 1ag

-1 i
1

sup —_—,
i<t w-0H2 + g2
from which the assertion ¢f the lemma follows.

<C

. COROLLARY 2. Lef the functions u(z, y), v(x, y) be given by (18), (19), where

Ky(x, y) is defined by (16) and f(x) is any summable funciion on RL with supp
f C [— 4 U} Then

1) lim wx, y) = a.
lel-+ Jgl—>e
2) lim - v(x;, y) = 0.

Je|+ [yl —> =0
Proof. This is an easy consegquence of the Lemma 1 and the fact that the
alo{x, 1) and oKo(x, y)
oy ox

functions are homogeneous of degree 1.

0Kq(, ¥)
ai‘ s
which is infinitely differentiable in x when y + 0 and fized, converges i,

LEMMA 2. Let Ky (x, y) be defined by (16). Then the function

zero as y — 0 in the #opology of the space S’(R_i)

o
Proof. 1t is sufficient to verify that for any ¢(z) € S(RI)

0Ko(x, y) \ N
( o ,(p(CL‘)/ Oas gy 0. (39

It follows from (16) and by definition of Fourier transform that

oA 1
e @ = domr | e an,
| o | (€ + %)®

We have

Kol )

o

1 8Ko(@, 1)

A <
(,E
\ e e /

(g), (£} (B) >
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There ..Te

. _

( L oo > —im ? S[S oy ey e"”“dﬂ](F—icm ® d& (49)
It is easy to verify that o '

T < (&Zgirlnf:]lz)” | L

S & Ej:]nz)zdn = S % =0, for% #0. | - (43)

In view of (41), (42) and since (¢ (§) belongs to the Schwartz class S(R!} we
can apply the Lebesgue theorem to pass to the limit in (40) as 'y — 0. Then tke
assertion (39) follows from (43).

COROLLARY 3. Lel v(z, g) be defined by (31). For any summable function f (x)

on R! withsupp f « [— I, I} we have
lim o(x, y}= 0,
g—ro

where the limit is taken in §° (Ri_ ). Therefore the boundary condition U(:r:,y)l[.= 0
is always salisfied.

LEMMA 3. Lef K (x, y)be def ined by (16). Then the function gli‘)-g—c—q—) which
b .

is infinitely differentiable in x for any fized y # 0, converges lo — % PV, (l—)
x

in the topology of the space S'(Ri)._
Proof. 1t is sulflicient lo prove that for any. o(x) € S(RY)

(aKn;:.ﬂg)’(P(@) .1 ( 5. v'.( ?15 oo ) (44

y— 0 2

We have (see |5))

p. 0. (i) @ = —5(3)2' sign &
x 2 :
It follows from (16) that
1

aKo(o 1) ooy 2 e ign - -
Ol G = [ (2% s . _
LD @ =i Ve & )

By definition we obtain
B L (2 ) -
oy 24 ENE - igM T . . .
= 12 m@2+n2)2 My — = s:gna](F '9) @) d& =
1

—_—

— i@r) 2 HE’%}T (- 1) dn] (F-19) ()&, (46)
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where we have used the inequality
I 2
(€% + m?)? (1 + 722
As in the proof of Lemma 3, the Lebesgue theorem can be applied for (46) as
y — @, and the desired assertion (44) follows.

=~2£sign§,§+0.

COROLLARY 4. Let u(z, y) be defined by (30), where f(x) is any summable
function on Ri with supp f < [—1, {|. Then we have

i
1
lim wa, §) =a+ — S —f@-—~ dt, (47)
gro 45 z x—i

where the limit is taken in §’ (R;)

Proof of the theorem. In view of Corollaries 2 and 3 we have to define f(x)
satisfying the last condition

u(z,y)t =09 " (67)
It follows from (6°) and (47) that

l
lﬁ_i@_ﬂ=4m—t<x<L 48)
T t—x

—I
This singnlar integral equation is well solved (see [2], p.446),
The homogeneous equation corresponding a = 0 has the solation
1

)= —/—m=—— — | < x < l, 49

f@) = == (49)

while the nonhomogeneous equation corresponding to 1 3 0 has the solution
x

) =da —, =l < x <L 50

f@) =4a e (50

The assertions of the theorem follow now from (30) — (32), (49) and (50). The
proof of the theorem is thus complete.
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