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MULTIDIMENSIONAL QUANTIZATION. IV
THE GENERIC REPRESENTATIONS

PO NGOC DIEP

1. INTRODUCTION

Today physicists observe that many particles admit also internal symmetry,
for example under classical Lie groups like SU(2), SU{3),... rather than the ordi-
nary external symmetry under Lorentz, Poincaré, conformal, ..., groups. The
total internal-external symmetry picture suggests some generalization of the
Orbit Methed in the multidimensional quantization context by using quantized
vector fiber bundles of finite or infinite dimensions [1—10] rather than the line
ones [13], [14].

At about ihe same time and independentiy, M. Duflo {11] extended the Orbit
Method to arbitrary Lie groups. His construction proposes also holomorphie
induction from unitary representations of finite or infinite dimensions. Oar
multidimensional quantization procedure could be viewed as a geometric versi-
on of this construction. We shall prove in this paper (Theorem 1) that every
Duflo’s generic representation can actually be obtained from our multidimen-
sional quantization procedure. :

Recently, R. L. Lipsman [15] has made a detailed analysis of the struciure
of generic representations: By induction in sieps, every generic representation
can be obtained from some square-iniegrable representation. Using this result,
we shall prove (Theorem 2) that the numerous equivalent compaciness criteria
[3, 4] are multiply applicable to these generic representations of connected and
simply connected Lie groups. This fact enables us in many cases to provide a
method of topological invariants [4] using the KK-theory [12] in the study of
the structure of group C*-algebras. -

2. THE GENERIC REPRESENTATIONS
Let G — G(R) be the Lie group of real points of a complex algebraic
R-group G, ¢ = Lie G its Lie algebra and §*—= Hom, (G, Ry tbe dual vector

space. Denote by 4P(G) the set of all ¢ in §* which are admissible and well-
polarizable (the defi_})itiqns of these concepis will be recalled in the proof of
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Theorem 1). To each ¢ & AP(G) one ASSOciaies a canonical finite set S{'G(u,é) cof

irreducible unitary representations of a two-fold cover of the stability greup
G ¢, Set

BG) = {($, T); b & APEG), T € K@)
It is easy to see that B (G) is a G-space with the natural action of G.
M. Duflo [11] has constructed a map (¢, T) +— = (% T) from ‘B (G) to the

dual G of equivalénce classes of irreducible, unitary representations of G, and
bas shown thal this map factors to an injection B (G)/G = G, the image of

which consists of generic classes in the sense that its complement in G is of null
Plancherel measure. As in_the nilpotent case the Duflo’s construction of classes
n{$, T) is based on induction on dim G. Lastly, R. L. Lipsman [15] proved that

thereis a Plancherel co-null setT/ in G, contained in B (G)/G C G, all elements
of which are ordinarily induced from representations which are square-inte~
grable modulo their projeciive kernel, A few years ago J. Rosenberg[16, Th. 4.8}
showed that for extensions of nilpotent groups having square-integrable represen-
tations by reductive groups the L? - cohomology spaces. of homogeneous holo-
morphic line bundles associated to some special polarization vanish except in
one degree. _ L o L |
‘Our multidimensional quantization procedure [1-— 10] introduced a new
concept of polarization where not only is the stabilizer extended to a larger
group and a complex snbordinate Lie subalgebra, but also its character can .be
extended to an irreducible unitary representation {of any dimension) of the

polarization Lie subgroup and subordinate com.plex' Lie algebra, The foundation
of the same construction of induced representations in L?.cohomolegy spaces
(I* — Coh)Ind (G; P, H, ¢, 5,) has been given in [1—10]. , |

THEOREM 1. Every . generic representation if(qﬁ, T) can be obtaz'né_d from the
multidimensional guantizaiion procedure, : - e :

An equivalent form of this theorem is. - N

LEMMA. For ‘every Duflo's data (¢, T) we can: choose a polarization
2 H, p, o,) such thai oo : I .
B w(p, 1) = (12 — Cok,) Ind (G: P, H. o o)

Proof. 1. Following Duflo [11}, ¢ & §* is admissible iff " the character
%¢ (exp X) = exp (;{ X, ¢) of the connected component of ide‘n,tit'y 'e_ ‘E,:C_T‘,‘?."iﬁ he
extended to the two-fold cover Gg of G¢ such that % (e, £) = — 1 where G is
the fibered product ' ’
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‘Recall that @ e@‘* is polarizable il there exists a complex subalgebrs
7 e gc which is a maximal isotropic for Kirillov form B(D , and is well-pola-

rizable iff the complex polarization 7 is solvable and the Pokanszky condition

is fullilled, H . ¢ = @ + L where H is the correspondmg analytic subgroup
of G with Lie algebra @.

- Let ( @, T) be a Duflo’s data. Then @ is ‘admissible and well-polarizable
and T is a unitary continuous representation of Gg in a separable Hilbert

space, whose Lestrxctaon to (G@ )er isa mu}.hple of %q,

Il It is now easy to see that there exists at least a (1:, <D) — polarization
[1, Def. 1.1. ]({?, p, 6,) such that (a) 2 is a Lie sub'llgebrg of G containing

G5, (b) The subalgebra 72 is invariant under all Ad @c xz, r e Ggv © The

vector space P 1+ Pisa complexification of a real Lie subalgebra M, i e.
= (? + ?) N G (d) All the subgroups M_, H_, M, H are closed in G,
where M (resp, H_ ) is the connected suhgroup of G with Lie algebra M
(resp QG—Q’Ag)andﬁlfﬁM 'GfI)’H =H .Gg. ’
(e)6, isan irreducible unitary representation ot H in a Hilbert space |4

such that:
1) The l;'estric‘tion 6, 6p N H, is a multiple of the restrigtion of T to

Gr\H

2) The point 6 is fixed under the natural action of G(D in the dual of H

(f) p is a represe ntation of the complex Lie algebra (P in'V satisfying all the
Nelson conditions for H ,and p |% = d5

Following [1, Th, 1}, the Duflo’s generic representation n(®, T) is equiva-
lent to one of the representations (L? —Cob, ) Ind (G; @, 0,6,) of G in the
L? —cohomology with coefficients in C= (G 2, o, 6, Jo

7 III. In accordance with [2, Th. 2], we can construct from each (7, ®)-pola-
r.zation (?,70, 6 )a (X, 17)-polarization (L, p, 6 o) and conversely, where the

triple (L, p, 6 o ) satisfies the following condxtmns
(a) L and L 4 T are integrable complexified tangent distributions.
(b} L is invariant under all operators Adx, x € G.

(¢) L N Land L 4 L are the complemflcauons of some integrable real
distributions L% and L 4 respectively.

(d) The polarizatlon subgroups M_, H , M, H are closed (see [2] for defi-
nitions).

(e) L is a weakly Lagrangian distributien, ise. ,



1) The resiriction 6 [ G r\HOis a multiple of the restriction of the restric-

o]
tion T to Gq_) NnH

2) The point 6 is fixed under the natural action of Gg on the dual ﬁo

of H .
[&]

(f) p is a representation of the complex Lie subalgebra @ in V satisfying
all the Nelson conditions for H  and Plogg = ds,

IV. By Theorem 3 of [2], we have a Hilbert jfiber bundle with affine con-
nection (6, v) and then the Duflo’s generic representation (@, T)is equivalent

to the natural representation of G on the space of partially invariant partially
holomorphic sections of this bundle, and the Lie derivative of this partially

invariant holomorphically induced representation (L®-Coh, )Ind(G; ®.p6,)

is equivalent to the representation of our Lie algebra
. i
Y xk
' o~ i : .
where f=f 4+ — AETC' The proof of Theorem 1 and of the Lemma is com-
i

plete.

3+ THE COMPACTNESS CRITERIA FOR THE GENERIC REPRESENTATIONS -

Let us recall Lipsman’s analysis of the strueture of generic representations.
Let (@, 7) € ® (G) be a Duflo’s data, m == (®, T), N be the unipotent radical
of G, /= Lie V its Lie aljebra and 6= @ ]?29 the pestriction of ¢ to /. Set

61=G, N, §¢'=Lie G and ¢’ = ® | g; Tt was shown that 0! ¢ AP G
and there exists 1’ e 3{21 ((DI) canonically defined by T such that © (&, T) =
=Sy g (@D,

Repeat the procedure with (@1, 1) e B(G). Let NT pe the  unipotent
radical of G ... gl = @1 | i The sequence stabilizes for a finite number of
steps, say I, .
G = (Gf}er. N, (07, 1) eB(G").
By induci on in sleps one has

1 -1
(@, 1) =1Ind §, Ind%; ... Ind 2? mgr (OF, T )=

G .
— IndG}' WGI' ((Dr ’tr)l



Let ¥ = = or (87 ) be the Kirillov representation of N7 determined by #" .
Then sclecting a Levi facior § of G7 which lies in (G')gr» we have Gr= S.NT,
a semidirect product. Since § fixes 67, y exlends canonically to a (perhaps

projective) representation Y of Son the space of v. It is well known that there
is a canonically determined (perhaps projective) irreducible unitary representa-
tien @ of § such that Tl (tIJr ;" )= (w @7{1) '>< v. By passing to two-fold

covering if necessary, we can view w as an ordinary represenlation of S. If
L=, ¢thereexists v ¢ X IS (¢), canonically determined by T such that
w = 7Tg (& v). | 7

THEOREM 2. For every generic representation 7 and every function ¢ & LI(G),

the operalor 7 (@) is compact if and only if in every induction slep Ind G 16:1 the

compaciness criteria (see [3]) hold. _

Proof. Observe that the compactness criteria proved by the author in I3]
can be applied to the irreducible unitary representationsinduced by CCR-repre-
sentations of a closed invariant subgroup. We must only check these conditions
for every induction slep of generic representations,

From the construction, it is easy to see that G!is an -invarian closed sub-
group of G 1,

Lipsman shows that one can always restrict oneself to the square-inte-
rable =g (¢ +), see [15]. Then 7:5.-{9'3" , ") is CCR by the Gelfand-Piateskije
Shapiro’s theorem on CCR-property of square-integrable representations.

In every induction step one now applies the concrete analysis of the in-
luced representations in the space of functions of two variables as was done
in [3). This completes the proof of Theorem 2.
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