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1. ENTRODUCTION

In recent years, much attention has been paid to control problems of objects
governed by equations of quantum mechanics, equations of elecirodynamics
and eqguations of guantum fields of more general nature. Such problems are
encountered im nuclear energetics, aufomatics and computer engineering techni-
ques (see [1], [2—6} and references therein). While approximate jmethods have
been extensively developed for solving various classes of conirol problems (see
[7] and references therein), approximate methods for solving control problems
of quantum processes have been litile studied.

The aim of the present paper is to suggest a scheme based on the finite
element nwethod for approximating a nonlinear optimal controi problem of
quantum processes governed by nonstationary Schrddinger equations,

In Section 2 we describe the optimal coatrol problem to be studied. Then
in Section 5 we develop the approximation scheme for this problem. The main
results are formulated in Section 4 and established in Section 5.

Throughont the paper we shall use the nofations of the book (8] |

2. OPTIMAL CONTROL PROBLEM OF QUANTUM PROCESSES

I

Let Q be a bounded domain of R?, T be a given finife, positive number,
Let = X [0, T}, S =1 X [0, T] where I' is the boundary of Q. Consider
the following sysiem ' - .

B D LV WP |
ot l,,El oz, (akj ) o, ) + fa(x) v 4 fu(x)y =0 (2.1)
(z, 1) e Q, i =VY—T,
P ! 5= Os . ) . | (2.2)
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ﬁ’I[:O:(P(x)sTEG Q, (23)
—Lli=l.f, o, 24)
Iol="1 .i=bg, .
where

(i) akj (%), a(x) belong to the real funclional space L_(Q),

o > 1 ne=1I]
(ii) Hzx)el (), n =Yn+ ¢ Ye=>0,n=2,
1 . n n > 2

(iii) a(z), u(z) > 0 almost everywhere .in O,

{iv) akj(_a:) = a; (z) k,je[l,2,.,n)

W K 1EP < Toa @ <y )

v 7 S kgl kj( k5 =g 1] )

(Vi)18a,; Jow, | <R, kile(L2 .., n, }

(vii) Qis a ball, or a ball layer, or a parallelepiped or Q can be transfora-
med into one of these domains with the aid of a regular transformation
¥ =y@ e ).

Rys By, Hg, are fixed and positive constants, £ = (¢ g e E)

is an arbitrary vector of R”, 122 = 'g?-a- cee + B2,
. P/
DEFINITION 1. 4 fur;ction WV is said to be a generalized solution in

‘ Q
W ;’I( Q) of the problem (2.1) — (2.3), if v belongs to W;’l (Q) and satisfies

¥

-, n n . _ _ !
S(— P, +fZakj kaﬂc_+ia wn) dx dif 4
1 : )

¢ o= ‘.
+ i Su v 1 dedi = S(p n(.e,0 ) de \ (25)
b g
for all q f 1‘01'{1 /“};,o (Q).
Let :
2 ‘
9 €W (@) 26)

. . . . . 1,
Then the problem (2.1) — (2.3) hasa unique generalized solation in Wg 1 (Q)
0]
12]). Furthermore, this solution helongs to Wg'l (Q). Consequently, y(x,T ; u)

makes sese and ¢ (x, T'; u) & P?f; (Q). From [2] we also have
I @t @) j=fof=1 Viel[o; T) . @B
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Let z{(z) be a given function from W‘; 0(Q). Supposc the control (x) must

belong Lo a bounded, closed and convex subset % of L+ () (L + (Q) = {u(:c) .
q

u(x)-& L (€2), u(x)y>>0 almost everywhere in Q}). The control problem we are

concerned with is to minimize the functional
J (1) =£{ Ip@ Tioy —z@Pdr=fy @ T;u)—z(@) |2 (2.8)

subject to the above constraints.

This problem arises from the control of quantum processes ([1] — [6]). It is
known ([6]) that under the above mentioned conditions it always has a solution,,

3. APPROXWMATING THE PROBLEM BY THE FINITE ELEMENT METHOD
Co sider the set of functions 7(z, ) of the form 7 (x, 1) = w (x) ¢ (),
v O -
where w () & W; (), ® () € €O, T), As is well known, this set is dense in

Wl’o (@ (8D Puttmg M(x, ) =w(x) & in (2.5) and integrating by parts
yields '

g: [( aatl ’ w)+ IQS( - ; @ ba ey F

k. j=1
dea @y + a(E))y w F) dm} & (Hdl=—@ (0) (v(m 0) — @, w), where
(=0,
" Let us denote

fu, §] = (}: QP 'g‘_+(a‘+u)w‘g’)dx,{u,i}=f£wf‘;dxs'
5 xk .‘CJ O

& J=1 J ‘
‘ ) |
n
h _ — Y a .Eui
| w‘ereﬁw 1:7;16% (ak. () Bx‘)—.i-(a_i-u)lp'
o

Then under the assumptions (i) through (v) [y, &} generates a new scalar pro-
- wio 1/2 . . .
duct in W, (£2) and the norm [.] = [., .]"" is equivalent to the previous norm

o ‘
0.l ;1,)Q of WE_ (£2); under the assumptions (i) through (vii) {v, &} generate a
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0 . ' .
new scalar product in W;(Q) and the norm {.} =1{., .}1/2 is equivalent to the

(2)

previous norm | . wof W2 ) ([81). Hence, we can write
s, 0 I

b * aw . - B '
So (( at ) ) + il w]) @(t) di = — @(0) (v (x, 0) — @, W)
Simnce ¢(f)is arbitrary, we get

(—Zlf—-', w) 4 i [y, w] = 0 almost everywhere on [0, T] G.D

(bl 0), w) = (p, W) (3-2)

This may be accepted as a defm1t10n of the generalized solution.

DEFIN TION 2. A function ¢ is said fo be a generalized solution in W1 (0
of the problem (2 1) —(2.3), if for almost every 1 & (0, T)p (=, 1) belongs to

W1 () and for almostevery i (0,T] the equalities (3.1), (3.2), hold for ang w(a:) &

€ W (€0)_and if y(zx, t). prossesses the derivative with respect to t 8¢ / Bt & L, (Q).

To approximate the control problem (2.8} let us first applommate the
problem (2.1 —(2.3). For that, we take the equalities 3.1 — (@, 2) and
approximate (3. 1) and (3. 2) with respect to x, then with respect to t.

Let wy, Wy, <o he a basis system in W2 (.Q) [(N]. The set of linear

N

combinations of the kind I a,w, generates a subspace H(‘\') of W;G ).
]

k=1

9y .
(and of W, (). ‘

We shall seek the approximate solution of the problem (2.1})—(2.3) in
the form ’

' (3.3)
'lp\ (x, f) - E aA (.i k(x)_s
k=1

where the coefficients af are functions of t & [Q,. T} determined by the following '

system of ordinary differential equations
B'I.PN . 0 3.4
(-—a—! wk) ) + 1-[1PN, wk] (B} == (3.4

with inital condition{; ‘
- Ql‘p.\.' (.‘I"’ 0) - (P1 wk) == 09 k\e [1' 23 LS 11 ] ng N (3.5)
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which are obtained from (3. 1) — (3. 2) by the Galerkin’s methoil. The problem
(3.4) —(3.5) can be rewritten in the form

7 L iTa=0 ' 3.6)
di
. Ba (0) == ato), * ‘ (3.7)
. —taN N T _ T N _—
where a () (a1 {1}y waes aN -+, Ty = (a(o).ﬁ oor ooy Ay ao’k = (¢ W, )
B = (Bkj), A= (Akj}, Bk;'=Bjk = (w,, wj), Akj = Ajk = [wk,wj], k,je
€[l 25 o N
Clearly, the matrix B is non degenerate and the matrix 4 is positively
defined ([9]). Hence,
da . /\___1 . _ . /\__1 . I
.&?+zB Aa=0,a{0)=2D5 a s . (3.8)
. From the theory of ordipary differential equations we know that the solution

i of the latter problem exists, is usique and is of the form

a=exp{iB -1y t} ac.- _ 3.9)

- : : - Y
It tollows that the approximate solution Vg (%, i) zkjlja}{ H W, (@)

exists and is unique,
Of course, the system (3.6) is not convenient for practical use and the
formula (3. 9) is enormous, To improve upon these shortcomings we discretize
3. the gystem (3, 6) with respect to L
We cover the interval [0, T] by a grid tj — jt, T =T/, je [01,., M]
and consider the system '
S 1) — ali . .
R €l )c aU)+ l.;;a(./ + 12)+au) _

(. (3.10)

To this system we associate the minimization problem

N y :N ' N N l .
| 1, @)= Zaq MW, — Iz w “ —> inf (3.11)
! k=1 k=1
A |
n - - - .
ud =121u“ weUN BNy sy Wy ) = UM (3.12)
=,

We shall assume that for every system {w;, i, Wy ! and every: grid

wy One can compuie by any available minimization method the approximate
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* *
N > . N - Y
value ]N, i + ¢y, y ©of the infimum IN , of the function 7, , (uV) in ¥

subject to conditiens (5. 10) and the approximate control ug} ; € 24N Such that

x4

# N %
IA’. M < IN! M ( ) < I + SN,'M' ? . (3.13) |

By, e N,

where ¢, - converges lo zero as N and M tend simaltaneously to infinity.
Ve

It is worth pointing out that approximate methods for solving optima]

eonirol problems in formulations analogous to (3,10y — {3.13) are also studied
by several authors (see [7], [10] and references therein).

-4, FORMULATION OF THE MAIN RESULTS
THEOREM 1. For every N {he system (3.8) has e unique solution and

fw(z, 1) =gy (z DI << cb, (N) - 0as N — o, ¢4.1)
where 8 (N) Is the rate of convergence of ¢, (z) lo g(x) in L, (),

t —_ .
I (2 1) — by (2, 1) ||W;(Q) <eb (N)—0as N.“T o (42

where 0, (N) is the raie of convergence of ¢, (%) to p(x) in Wé(ﬂ},

[ (@, 1) — vy (2, )] Wz(n)_, 0 as N — oo. : (4.3)|

2

FPurthermore, for every N and M the sysiem (3. 10) has a unique solutton and
Tl (@ ) =y (m 15) 2 <o (8N +T). (4.4)

Throughout the sequel ¢, ¢;, ¢, vy, denote a genevic positive constants
independent of N, M. °

COROLLARY. Let Q = (¢, d). Consider agrifi of [e.d}c= Ty <Ty <<z,
<xy=d, h; = Tj— Ty h=max h;, je [1, 2 .., N] and the system of

f unctions .
a:—-a;j_1
T,xe(xj_-l_’ xj) )
J J+1 _
,\ T pa:E(a:j:’x’:_}_I),JE[f, .m-,N—za
|0 VEE (T Ty)
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J
w (o= BT (T T
o ®/= 7 (4.9)
’ -0 ,:v'é(:co, x; )
SN e(my oz
wN(x)z . h!v * - N-I’ N
0 a8 (T gy

Then, (N) = h?, 0,(N)=h, consequently

() — wN(:v. t)F < c(h‘i + 1),
(4.6)

THEOREM 2. Lel u,, be asolution of the problem (2.8}, uf * M e a solution of the
problem (3. 11) — (3. 12).

Then
. 4.7)
lim I, = J*, (
N—roo N» JW
1 . M=o .
N: M vl L
—cfflue—a " T, V(N +T) <
W (4‘8)
Iy y— I <c Vo, (N)+ T
For the onedimensional case (4. 5) we have
‘“‘"(””--*«'*” PRI (4.8")

*
< IN, M C\/ Lt + T,
If the sequence { u?;, c His delermined from (3.13), then

<y ) — I < eflu—uy ll, + VI (N F 1) +ey y

5. PROOFS OF THE CONVERGENCE THEOREMS

Proof of Theorem 1: First we p‘ro‘ve a priori estimates of vy, . Multiplying

both sides of the equations (3. 4) by af(t) and adding from 1 to N then inieg-
rating with respectto {* & (O, f) we oblain
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t

P, ‘
‘ (( a‘\s“r‘N )J‘IW\’“’ ] )df’—_—oa‘

Y

0 i

Hog 2= Ivyl?©,0<t<T

adding from 1 to N yields
G 8P ) L
(_E, __N) ) +z[1pN___N](t)_.o
ot . ot
Taking the imaginary part, we get

YN

[wN, __] m+[ "N,

N ] () = 0,
h_t_ N’Ns WN] (ﬂ =‘0o
hence
[ 0 == [4y] O)

Taking the real part, we obtain

Dy (12 Sy Wy

‘—ar' == ( Loy, %) HL‘”N e | ”
hence \

Wy = 2 2

T ~<\C L’lel = ¢ %ng -

By an analogous argument, we have

My 3 ) ( 3 )'--0
—_— 2 Ly B Lll) s e L == Uy
( o TN LN e SN

oy 12 5 |
| -] —if{ L s——L'lpr)=0,
[ ot I( PN T

d

Re (Lqu, % L”’N‘)=°’ __3 Ly {2=' 0.

Thaus, ' :
_ {opt = {vy} ©
. From (5. 4), (5. 5) we conclude

oY 2 - ' 2
“ N WN ; (i)gc}mpN(m,O) %
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- Now. multiplying both sides of the equations (3.4) by —::TaN (t) and
> k

5.2)

y

5.3

(3.4

&.5)

( .6)
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Now, to estimafe the rate of convergence of ¥y to P as N tends to infinitys
letgy = P — ¥y- Then '

- . *
(?’ k )_hg.l Byr wel=10 Gy.w)=0, kel 2, N,

From  (5.3) — (5.6), (3.1), (3.2) we can write

[EN ) = lp@ — Py (x, 0 (5.7)

g} = fo@— by@0h 5.8)
aq;N 2 9 - ) 2

— O+ { vy ¥ ) <clo@ — vy OF. (5.9)

Since ¥, (w, 0) is the orthogonal projection of ¢ (x) on HN , the strong conver-

gence of Py to P inthe norms of WI and W; respectively follows from (5.7) —
(5. 9). We have thus proved (4.1) — (4 3). '

If Q= d) an wy are defined by (4. 5) then from {9] (th, 1, p. 102)

we obtain

o, ) — pyde O 1 < ¢ B _ (5.10)

Il ¥z, ) — x, )l <'¢ h, 5.
(@, 1) — by 2(9) _ ) . (5.11)

_ Turning to the syslem {3.10), let a(!\) = Ba (&.

Then
R . . T o~ — 1~
oj + DA+ig AR ali+Dh=
~_, .1:/‘\-/\_"1"\".
= a(J)-—l-z—AB alj)e

Since all the eigenvalues of |he matrix A B! are positive ([9], p. 217), it

T rwe~—1\—

' ~ . T~ 1 LT et
folkowsihata(;—{—l):(E-}- [ AB ) (E—« P) AB )a(ﬁ,
and :

. 14 G+ DISITOE < < 1@ Ol=lawl.

" Thus,

1y @ L D<@ )] < e S oy @1 (5.13)

which means that the system (3.10) is absolutety stable,

=
=9
)



Let z(x, L) = Py (@, tj) — W(x,,fj). Then it is casy to prove that

2@ - D17 < st 0) 7 ket <

<la(z, 02 4- et < e o (V) + .
If & = (¢,d) Lhen we haye from (5.10), (3.11)

< hE@ P < okt ).
- The proof of Theorem 1 is complete.

Proof of Theorem 2. We shail need some lemmmas.

LEMMA 1. There exists a number N* ¢ N+ such that for all numbers N > N»
UN = U’r\HN = ¢ and U is a convex, closed set of Hy

The proof of this Lemmn is straightforward.

LEMMA 2. Let all the conditions of Theorem 1. hold. Then for every uel,
N =-N* we have ¢ :

| 7Cw) ~ Iy ()] < ¢ 30,001
For the onedimensional case (4.5) the following more accurale estimate holds;

lJ(”) Nvf( )f C‘/h/’-i-”t
Proof. Clearly.‘

| 1) — Iy, (2¥) < l:m Tiu) — @)% -

—py (0T w) — 2y 2017 < (e ;e w1 +
| ipm,‘(m,T; uﬁ) =1 N () nl) ( f (T a) — 4y {z,T; ui\) It -+
1 2(2) — 2y (2)1]) |
Taking account of (4.4), we get

JJ(u) ~ Iy (uM)l SOV (N)+T +78,0)) < e Ve, GyE=H

LEMMA 3. Lef all the conditions of Theorem 1 hold and u be any conirol from
U. Let uN is the orthogonal projection of u on 7 n - Then

P = Iy @< e Cu® —uy |+ Vi T 7).

For the onedimensional case (4.5) we have

IJ(H)"‘IN,M(“N)IQ c (%IHN—uﬂq - V1¢4—|— )

%

v
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Proof. Using the inequality for coefficients of .the equatmns (1) (2, and
[6), p-18) we cap write ‘

}J(U)—-IN,M (uN)f =|I11P($,T; ) — z(z) |2 — (e, T; uN)—z (x) )2 )<
C o TN )i ) 2(w) | vy (T aN ) | () ) %
XMo@ T 2V ) —vy (wT5a¥) 1 + Hzz) = 2 (x) i) <
<C (w15 ul )—tPNM(x, T5aN) 1 2(®) — 2y (2) 1) <
<o T3 uY) —v(@.T; u) | + (2 T5 w) =ty (e, T5 a¥) | +
+lz(@) — 2y (@) [ ) <o —a |, + BN+ 0.

Let us now prove Theorem 2. As we have seen above, the set of all optimal
controls ¢f the problem (2.8) U/ is. non emptv Let us peak u, e U,. According

J to Lemma 1, for N > N*, Uy -+=¢. For w eU it follows from Lemma 2 that

&

N
Ly <y @) <T@ )+ Vo, +-

Further, the fanction (3.11) attains its infimum on the conpact set UN' i, e°

* 3‘

I > -~ oo and (DN) s, Taking any control uN’M & Uy, we get from
Lemma 3 o

,M N’M b
<T@y @Y e (e, Y VRN D)
. # N,M e re
: < T ol —w 7 i Ve o
Hence,

. : N.M LRI 1-* * ——— s
—ella —u T H F VWM FT STy y —T <cfi Mt

[]

On the other hand
N,M

I u —u u.gi->0 as N, M — os,
4 Then
e u )
lim I = J%,
N—»co ‘N’M
Moo

7

. ' N
Consider a sequence ; Uy e gdetermined by (4.13). Clearly
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[(HM,/ —Jt = [ / (u:?dr;'" )_ v (uﬁ,E)]+

N - b3 g s ?.
+ [IN,M (HM, 3 IN,M} - [IN,M J j
From (3.13), (4.1), (4.2) we tken obtain

| J(Hllfl, s)q < C(“ e = uﬂj\;/ g “q + VW)+EN M

I:ia} is a minimizing sequence for the
>

This means that the sequence {u
A

problem (2.8).

The proof of Theorem 2 is complele,
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