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CAUCHY'S PROBLEM FOR SECOND ORDER
PARABOLIC EQUATIONS WITH RANDOM PARAMETER(%)

TRAN QUYET THANG

Urdinary differential eguations with random parameter have been the
subject of study of many papers (see [2}, [4], [5] and References therein). This
paper is devoted to studying the exisience of solutions for a class of linear
equations in partial derivatives which contain a random parameter We consi-

der the Iollowmg Canchy’s problem :

LI 2 a, (m,t x) a2u
ot K,j=1 ox, oz,
e Zb(w,tx)-—--—-c(m,t.:c)u....f(m,fx) - 1)
k=i xk
with the initial condition : ;
(v, 0, &) = @(w, x) (2)

where w is a parameter, taken from a complete measurable space (Q, -4). .

Y akj (®, . so)s bk(co,...) (k,j=1,2, .., 0), C{w, ., 0 ) f(o,.,.)and ¢ (w,) are

i complex~valued functions possessing the following properties:

a) for each w € (), akj(wo e !)s bk (w’ cs) (ks.] =1, 2 P R), < (m 'R s') and
f (,.,.) are defined and continuous on {0, T(w )] X B, where T(.) isa strictiy
poamVe measurable f unchon

" b) for each (f,) € R, X R these' functions considered or functions of w
are measurable on the set &, = {w e Qi te [0, T(w)]}: -

¢) ¢ is defined on Q x R”, continuous in x and measurable in ™
The parabolicity of (1) means that for each w & 0, there exists d(w) > 0

- snch that

Re mzl @, (w, b, %) 6, 6; > 80) 6] 3

(%) This work was psrformed while the author stayed at Hanot Institute of Mathema=
lics, on leawe of absence from Pedagogica! Institute of VINH.
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for all 6 = (6,, By 6.)eR", t €0, T(w)] antw < R™: where
g 1 _ , :
6] = (2 6% * (see (15 -

i=1 ,

*

For (1) to have solutionrs, just as in the determinisiic case, we have to
require that all the above functions salisfy Holder’s condition(s¢). Our main
result is the following:

THREOREM. In addition to the above stated hypotheses, we suppose that;

a) for each ® € Q, the functions a0 b, (ky j=1, 2,.., 1), ¢ and f salisfy

the Hilder's condition with index o (w) > ¢ and constanis B{w) = 0.
b) for each w € £ '
[p (s @) < K(w) exp {R{w) 2P} (4)
| | ot @) | < K(o) exp { hlw) [of} N (5)
where K(w) and h{w) are consiants, pos;sibly depending on we .. . _'
Then there exist measurable functions g, T, .k, en O and a funetion u

defined on Graph T XR® and possing lhe following properties:

(i) for each w € &, u is conlinuously differentiable in t, twice continuously
dif ferentiable in © and satisfies (1) — (2).

{0y for each (!, %) € 0, =! X R, u (., f, x) is measurable on Q, =
= [ e tel0Ty (]|

@iy | u(o, b 2) 1 < K, (o) exp {k(w) |z |2 } o )
for all w.e ©, (1 ®) € Graph T, XR" , where k(w) are finiteconstants, measu-
rably depending oft ®- ‘ |

We note that the conditions a) b) and the ones made thereahé:fe
imply that - _ '
. ¢©) the function =(.), B(), 8(), K(.), h()) can be chosen so that they are
measurable on £

This follows from the following simple proposition:

Let f: Q xR" X R™ ——R bea function, measurable in » € { and con-

tinuous separately in © € R" and u ¢ R™. Suppose that for each o ¢ Q, there

exists u = u(w)e R™ such that ' o
sup  flw, &, Mw)) <L
xz € R" .

(%) A fanetion f{-) is said- to satisfy the Holder’s condition with the index & = 0 if
f@ ~ fe) <Ble-gl®

y
for all z, y in R™ s where B is a constant
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Then we can choose u(.) in such a way that it is measurable,

To see this, set s(v, u) = sup f(w, z, 1), fi (o, u) = f(w, z; . o), where
RS G R;n

{a:(. 3 ; is 2 sequence dense in R" . Denote by F,, F the multifunction
i= '

defined by

[

L Py ={uer™i f w0 <1
and Fle)={u e R™: sw, ) < 1}
Then Graph F = ~ Grapk Fi o
i=1
Since each f, is o4 ® B (R™) — measarable |4, Lemma L. 14] we have
. Graph F; :{ (w, W)e R™: fi{o, 1) =10 } e A4 ® BERM), where
2 (R™) denotes the Borel o—field in R™.
Hence Graph F € o4 @ B (R™). The existence of a measurable function

u(.) stated in the proposition follows mow from the V. Neumann's sele.tion
theorem [4, Theorem ill, 22}

We nole that the compleieness hypothesis on (2, 4)is used only in the
proof of the proposition above. .

The proof of the Theorem is based on the following lemmas :

LEMMA 1. If f (o, z) is a function measurable in w for each fized T and has
derivative with respect to x for each fixed w, then for any =z, f ’T (w, ) IS measu-

rable in w.

Proof. We have fi(w, r)= lim flw, 2 + ‘::l) — fw, )

w, h — flw,
Let us put f (w, ¥) = [zt hy) = e 2) where {h_

fn
n

hn # 0 is any sequence such that hn — (), Since fn(w, x) is measurable in e

oo

} n==1 ?

and f, (v, @) — f} (» 2)as n—oo, 50 is the function fy(w, ),

LEMMA 2. [2, Lemma 2. 5]: Let (Q, o4) be a measurable space, (%, B, 1) be

. a measure space with measure L >» 0, o — finile, X be a sepamblé Banach space,

_ F:Qx 2 — X be af @ B - measurable funclion such that for each win &, the

function || f(», .) || is it - infegrable on %,
Then o —— IZ f (w, s) 1L (ds) is (-4, B (X)) - measurable, where 3 (X)
denotes the Borel 5 - ficld on X.
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in p‘rticular, if = isa separablé metric space equipped with -a Radott
mensure W =2 01 ¢ — finite, (v, §) is measurable in « on £ for each fixed s and
continuous in § for each fixed v, then w |— [ 5 f(w,] 8) H(ds) is (4 B (X)) —
measarable if /= f{w, s) W (ds) is detined for all v € Q,

L 8. Let T (v, 0) be a funcfion continuous in t on {0,.T(w)] for each
fized «w and measurable in o on Q, for each fixed t, and let T: @ — Ry be a
measurable T ﬂﬂ"m Then the function :

e F el

is measurable.

Proof . Itis €asy to see that w |—— F (w) =[0, T(w)] isa measurable multifunc~ -

tion. Hence PY [3 Theoren; 3, 6] there exists a sequence {un};:1 of measurable

sclections of £ such that F(w)=Cl {u (w)},—; Clearly," the function

Mw)=sup [ (@ )= sup f (w, u (w)) is measurable.
| IEF(U)) n :

LEMMA 4 Duppose:

a) a; ¢) are continuous in t on [0, T (w)] for each fixed w, measurable in
w on .9, for each fized t and salisfies the condition (3),

5) the Coeffiflients T(w), 8(w) are measurable in w.

‘ n t ) : ‘
Put Q (o b 3)=€33P{—'k E ) fgkj(w, B).dﬂsksj} where :-kzsdk-i-i*'rk (k=
s J&

| 1, 9, .. 0 are complex variables and

G(w, bT. % 4 iy) = (2n)7R Lty 8 g (w, t, T,6)d6, (¢t>1) where (=, B) =

=3 afp & peC”

=

Then
- n+m
) T, x 4+ i 0 - 2 o=l
DM G (v L LE= y)\ x Cp(w) (1—1) exp i —g(w) t 4
x . : —T -
+ F(e) 7 ¢ _ N3

where g ), F(w) and Cm (w) are measurable positive funcitons.

. Set M{w) = su a, ;(w, !
{’raof 7_ el TP(m)1 b a (@ D1

- k’ J = 1,:2,. 1YY Fel



ft ff)!iows from Lemma 3 that M (w) is measurable with respect to w,
We have

n
' ¢ = Re ’—-— z S
’ koJ=1 T

i .

-t
— % Re{ 6w B 4B 6, 6+ M (@ —DK
& j=1 T

<

x 2 eyl 160y dtivd 4D <
2 J =

VL]
WL

16,1 Z vy i+

<=8 1’4+ M2
1 k=1

k

+( 3 1y 2] e—n<{ -8 sl e’ s oy i+
k=

402 M|y P} —1n __ |
By using the equality a | 1 2] < e (w)a? + (2c(w) "2 by ]
2 (w) = 8(w)/4n° M (w), wehave:

Lol <{[— 8@ +2n® 2 (@) M ()] 1813 +H—n2-s"'2 (@) M (@) +

where

+ P M (m)] fy1?tt—1

o) )= 5 T M) ' M(w).

Set 81(“’) =
Clearly, the fanctions & (w) and F {(w) are measurable in w and

O b T 9 | < exp {= 8, (@) 1617 + Fla)iv1¥1¢ -1 (%)

We have also:
Clo, 1. T o+ iy) = @m) " fei T B0 Q. t, T, 6) 46 =

. x iy
= (2% v‘t—‘-r)‘"ge‘(r—t’ B)ch.t. ™ t‘st)da

By virtue of (9), G (e, 1,1, = -+ ig) is an entire function with respect to
x + iy and the funciion under the integral symbol is analytic with respect to
BroByse By o Hence by using the Cauchy’s integral theorem we obtain:
, ezt iy ]
i — =24, p+ i
e, LT E 4 iy)= (21 V= ﬂs)‘“ﬂstl (}’f—wt B+im) %

st i )
x Q (w: t! T? _3-;_:—:]' dB 101‘ an. 'Tt == (“ilnn, T]H) E RH -|



“Therelore:

iG(co, t, T,z +iy)! < (2w Vi_—-_f_)_n exp ——-l(vt_f_f—{.ﬂ)-{-
;o
FFg 1 2 fexp =8, O (V'{:Tc ) {ae

Setting 1, (w) = F (w)/2., we see that

0 @) — Fy (@) n2() > 0.
|z, | .

——:l__r—no (w). we then have

Patting 7, (w)=signz, 7

- (=)@ —[~n (@) + Fyw) 1 (w)}lau

2
== g(») tlf 'T where g(w) = 1, (@) — Fq(v) ’no ()

Applying now (8) with =(w) = &; (r\n)/f%, a=3b= —w—_%- yields:

ot 3 N ——— —— . 2
| Glw, &, T, z + i) | <@x Vi—1) " expi—g (w)!%lf +

o o
(2= (@) t—tgse‘”( 6()Jrs())lﬁl}dﬁ

It suffices now to put F(w) =2 3, (v)
&, (w)

and C_ (0} = (@r i — " S exp 3

1p12 {d{s

to complete the proof for the case m = 0.

The proof for the case m > 1 is analogous (see I, p. 20).

" PROOF OF THEOREM. -
We shall find u(w, I, x) in the form: C
u(ua, t, ) = Sz(m, 0, z, B ¢ (w, B) dE+
sdtsz(w,t B f(ndd=P+Q ' (10)

Where Z(w, 1, T, & &) is the elementary solution of the equation Lu = 0.
© 4. PROPOSITION 1. Let akg(‘“’ t) be lunctlons, continuous in { on [0, T (0)]
for each fized w and measurable in w.on £y for each fixed t, Let T(w) be &

measurable function., Thenthe equation:

ou B ¥ u ‘ ‘ ..
Lol =— — Z». a,{w _ - =20 11



-
1

admits the elementary soluiion Go {m, {, T, &, which is measurable

. in w on
Q, for each fixed {, T, 2 with { > ¢ and satisfies the cstimation:
__n-l-m | T i_?
ni - P . -
D.’L‘ GO(ws T, '1») = CJ’H (OJ) (t —_ T) 2 e-'k.p 3 —m g(m) R g ‘:12)

where Cm(w), ¢{w) are positive and measurabhle.

Proof. It is known that for each fixed parameter w, the equation (11)
admits as elementary solution the function:

GO(U); i, T, :I.‘) — (27r)—”11 fei(:t, 6) Q((.IJ, f, 'E, 6) dﬁ

n
where Q{w, f, T, ) = exp ? — X S

_ a; (w0, B) dBLﬁ'k 6j {see [1]).
ka] = 1

T

By Lemm 4, there exist positive measurable constants Cm (w)- and g(w)
satisfying the estimation (12). 5

Applying Lemms 2 to the case X = (4 .T) (equipped with the Lebesgue’s
measure), we infer that Q(w, t, ¢, 6) and G, (w, {, T, ) are measurable in o on
Q‘t for fixed f, T, 6, x and ! > 7.

Consider now the equation
Lu =0 (13)
2. PROPOSITION 2. Suppose thal the coefficients of (13) are continuous on

[0, T{w)] ¢ RPTor each fixed w and measurable on Qt for eachfixed (f,x). Suppose,
furthermore, that [or each w € these coeflicients satisfy the Holder’s condition
w th respect to x with the index o(w} and the coefficient B(w), bothbeing mea-
surable in w. .

Then (13) admits the elementary solution Z(w, t, T, x, ¥) which is measura-
ble on Q, for each fixed ¢, 1, z, & with for { >> T and satisfies the estimation:

—n+mn
— .zl
DT Z(w, t, 7, 2, B C @) —1) 2 exp; — 91-(03)———[?_%,’5 {14)

where Cm (w) and g, (w) are positive and measurable.

Proof : For each w € Q let Gy (v, £, T, &, y) be the elementary soluti;h of
the equation: -

’ n 521
su_ 5 a,;(w, §, ) —2 . 15
K3 -~ (15)
ol Ej=1 ox ) 63:j

0__"19A : aAn



We shall find the elementary solution of (13) in the form:
‘ Z("J’ LT, 1, E\ i Gﬂ(ws [: L —y, y) +
¢

+alGo @tz — gy g (0 BT g B dy = Gy (16
T
where g{w, &, T, 7, £) = z (—D"K_ (v, 1.1, =, 5 (17)
=1

K, (ot T x, g) = K(w, 1, T, 2, §) = L{w, Go (0, ; T, 2, £))
H
Kyl t, 1, 2 E)=S dBS E(o, t, T, 9) K__,(w, B T, 4, &) dy (see
T

{1, p. 28, 29]).
"We now show the measurability of W,
. First, by Lemma 1, K(w,f,T,x,%) is measurable in o oniﬂt for each fixed

LT, 4§ with ¢ > 1. Next, set Mi’u)} = sugi 11 b}.— (o, L) |, | t{w, 1, x) [‘},
1e[0,1 (] o

By Lemma 3, ¥/, () is measurable and

K(m,i,’t,:l:,&,) = ‘>" fa ((‘) t, E)_' {* (m,f 21':)] X
kvJj=1

X

32 n
55— Gy— 3{ b, (w,1,z)

. . G, — c(w,h,x) GO
.EI\_ .Ij 4 »TA. .

== i =it

2 . (‘I’m)zﬂri (m) Il(f - 1:) 2 +

< [c2 (@r B(w) |z —2 ] ““ ¢ — )

, - ' |z —g(?
—|—c (m)M w)(t -7y ° | exp ) — g(w) i — 1.
wiere g(w) ¢ m) (iIn=0, 1, 2) are the constants appearlnﬁ in Proposition 1,
. 113‘((’-’)/2
Set now N(w) = sup ———— | By replacing R by a sequence dense in

tE€ER r(OO)u/Q
it we see that N() is a measur 1ble (fzmte) function. Further, set

Cy (@) = C, () N ()2, : (18)
We have: )
a 1-<z(w_)
1K< ’L'cg @B @) + €, (@M (@Tw). 4 C,)w) M, (w) %
QMZ(U)‘ _ nt2—aw) _ g(») |z — g | 2
X Tw} Al —T) 2 exp 2 I—1 ;z
S akC)l g_ gw) fr—-2]?
=4d@)t—1  *  exp|T 3 ez f : (19)
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¥

it is clear that A(w) is measurable.
: t
The function K&, (w, £, Ty, &) = S dBf K{w P2, y) X Ky (0,37, 4,8 dy is
T .
continuons in the variables 4, t,%, y wher{ > t and the fanction Flw, b ) =
=Ko, 0,2, g} X K{w,B T. 5, &) is by (19) inteirable with respect {o y, hence by
Lemma 2 for each fixed B, the function cw I—» fF(w». B,y dy is measurable.

- Moreover, for ench w the integral [F(w, 8, y) dy is by (19) uniformly convergent

with respecl to B on [t,f], hence [F(w,8,y) dy is continuous in B. Thus
w = K (w,1,7,2,3) 18 by Lemma 2 measurable on Q.t__

The proof of (he measarability of Kg s Ky v with respect to w on Q,; for
each fixed 4,7, x,& with { > T is analogous,
Now let us estimate ¢. For each w we have (see [1, p. 30]:

F {oc ((l} n(m"“’i)
\ 2 ) , L) 2,
K, otoed) < 2L ] am@) (o) P %
g
ma(mf—n——2 _ g('u) [ x —t 1_9_2
% (l—1) 2 exp 2 t—t ' @0
Therefore, (17) is uniformly and absolu'ely conve :ent fort —7 >e=>0and
| R ONNE =Y b |
lo | <Clw)(I—1) ? cxp 2 A &)

where C(w) is a ineasurable posilive function.
Sinze K, Kl, K, ,... are measurable with respect to « for each fixed ¢, T, x,

e

and for 7, it follows that ¢ is measurable with respect to.w for each fized
. C, &, £ with > 1,

Since ¢ and K are measurable, by a method analogous to that usged for
proving e measurability of K, we can show {Lat W is measurable in o on
Q, i:or each fixed , ¢, . £ w.tn ¢ > 7. This and Proposition 1 imply the measu-
rability of Z in @ on Q for each fixed ¢, T, x, & with ¢ > 7.

P

Moreover, @ satlshes the Hélder’'s condition with respect to x (see [1])
Further, just. as in tie proof of Lemma 4 and formula (19), we can show
the measurable dependence on w of the constants ay{«)y g';(w) and C(w)

- in the estimalion:

Al =lo (w0, L, T, 2, &) ~ 9o, £, T, $=5)|

nt 2oy ()
< Clo) 1) =1 ? max S exp (—g’; (v) E%‘ﬂ ,
—t

n___ o — = (OJ)) 2
eepl g (() 'T{—__T—))

%y (w) < ot(o.:), ay (@) = a{w) — o, () ' (22)



To omplete the proof of 14) it only remains to cstimate the derivatives

: g
of W. Consider, for example, the derivative 0 W,
), 0%
Setling ¢, _S we get by [1, p. 3‘,_3]: .
| t ‘
2 W , S dp
ox, 8x <600 2 — a{w) X
T - 5
C=pE—v
dy
X exp g-—g (m)_"L_TJ_ u)'U_L_ j
T IS fu e T
o) o Lap 2 = u1? o = y? )
i r—
(- B
— y —EP f 1y
* Xeng 7' (w) — TR
| ¢—v
- - 2 — a{w) 2 —a (w)
+C’(w)C(w)S(:— n  ° og-uy -7
Xéxp;——gd(«)\, IT_ngdB—-—I +f ~I—13,
B T

Where the constants €, (@), Cw), C(w), g,(w) and ¢g'(w) are measurable
-and defined by the formulas (12),(21) and (22).
Now let us estimale I,, I, and I,. We have ’

172

1—-al®w) ng '1)

—_— e —_
: 2

ARARNA® C(w) Tly) ’ ( V T

Tye) g; (@)
za{w)—n -2 )
‘ T _ 2
xi—v . _exp)ﬂgl(w)’—f%—fg
_n+2- a(w)
2 , EL

< C @)t —1) exp | —g, (o) ——mf :

t-—t

Where C, (w) is measurable. The estimation for I, and I, can be -obtained
in a similar way.

132



Finally
1 ) _nt2— alw)

2ar - . b4
W 2 lx — &1
L Cw){ —1 _— L~
|ox 0z, < Gl ) ‘ exp? 92(2) f—1 £

Similarly, we can obtain (14) for all m > 2. Thus Proposition 2 is proved.

3. It remains to show the convergence of F and @ in (10), and the
measurability of u with respect to » and (6),

We have Pw, [, @) = [ Z(w, I, 0, z, ) 9 (0, £ lp(w, f, )] <

< G, (o) Klw) JeXP —g(m)[——-[— + A(w) |E| { 2 dg =

T

1 .
— C K T Ter (o) h { 2 - gw) h(w) 2
(@ KOV [g0) ~he] 7 expf TR0 (o] f
glw) — <, (w) . ‘
Fo<ig TR Ty(@), 0 < ¢, (w) < g(w), then P is convergent
and satisfies 3
| P < K, (w)exp { kU, ) |z | %}~ | (23)

where CO (w), K(w), glw), h(w) are measurable and ¢ 1{») can be chosen in such

a way thatit is meaéurable. Thus T 0(m) is measurable, Fuarther k(w, {) =

— g(w) hw) . . o — 0 eto
= ey — ko is measurable in w on o = {w e. 1t e {0, 1‘0 (w)]} and

continnous in { on [0, TO (»)].
. On the other hand,

, E
Q(w: I, x) = f dt J Z((!h t, T, a, E) f(wa T, &) dB,
. o ‘ :

. n
. F ) —
101 < €,0) Kew) § dt [ expf gt LL=EL le—tl; Lt heiife—n *a -
' 1
t S
—C. ) — B (f — T 2 g() 1 (@) »
Cote) K@) [ o) — hw) (( =) * exp |-T 8B x 1212] av

For 0 <t <t < T,(») the expression under the integral symbol is well

defined and attains its mammal value when T = 0, Hence
) i .

Q1< C,to) Kw) YT Hglw) — hlw)) * exp

glw) Alw) |$|2£<

g(w) — h{w) ¢
< € K@) V7 T, () 5, ) exp? g-“\’w(;")_hh(:’jw | xﬂ?{ =

= Ké(w) exp {K(m. Hix| 2}



Where K, (w) is measurable. Setting K (w)= max { K (w), I\’z(m)} yields (6).

The estimation (23) and (24) imply the integrability of the function under the
integral symbol on the right hand side of (10).

Applying Lemma 2 we infer that u(w, {, ) is measur;ble on @ for each
fixed (I, x).
" Finally, analogously to what has been done in [1] we have also:

lim u(w, {, ) = ¢p(», T),
t—>0 ‘

Lw(ow, t, x)) = f(w, t, ).
The proof of the theorem is complete.
Remark. The hypothesis () can be replaced by (5°) [f(w, 1, x| <
K(w) exp { k(w, &) || 2}
Hence, the cenclusion is still valid if (6) is replaced by

(o, & 2) 1 < Kolw) exp { plodk(o, ) 1= 1%} , (6"
The proof is analogous to that of the theorem,
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