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1. INTRODUCTION

Let k be an algebraically closed field, Let V — P7 be a reduced irreducible
non-degenerate varlety of codimension n < m and degree s > n, Let p y denote
the defining prime idedl of 'V, Recently, Treger [T] ‘showed that 1f Viis
arithmetically Cohen Macaulay, Py may be generated by forms of degree

<J § [ Where ] [denotes the least mteger >— Some authers [G]’ [M_V]
n I

have dxscussed Treger’s result and the aim of thls paper is to solve the prob-
lems raised in their approacha : i

In [G] Geramita has shown that thoge cases in which pV actually needs a
generatm of degree] s [are rather spemal For mstance, he has proved that
, . n

if n>5(res. n > 2), Treger’s bound could be only sharp for varieties lying

on quadric (res. cubic)hypersurfaees Slmllar results have been also obtained by

‘Maroscia and Vogel [M—V] for varieties of codimension 2, The first part of this

paper will explam this phenomenon by giving a finer degree bound for the

generators of Py which lnvolves the number of lndepex:sdent quadrlc (res cubic)
A hypersurfaces not contalnmg V.

Let H denote the Hilbert functior of V, i, 6, _H () is the number of inde.
pendent hypersurfaces of degree ¢ not contai-ning V. Put

£

g = 1o (—1) (m--n)H(t—»t)
. . ! 0 N
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for all ¢ > 0, Write ' _
$=>b (a, —1)+ ¢, + 1.
0 @c <a, = 1, and define
s, =inf {{ > 0; c—n+1<a}
T, = ib + ¢, + 1
Then the main result o-f the first part may be formnlated as follows,
THEOREM 1.1. Let V be an arit hmetically Cohen-Macaulay variety. Then P?

may be generated by forms of degree <t for all i >0,

We will see that T, = ]?[apd T, “:\:}Fl for t > 1. In particular,

i "]%[-..1: .>[bl (ai—mtn—- 1)]’

n
where for a rational number g, [q] denotes the iargest integer < q. Therefore,

T, < }; [lf s anda, are large énough in comparison with r, €. g in the case
considered by Geramita, Maroscia and Vogel This explains why Treger’s bound
u rather spemai

The second part of this paper will deal with the following problem raised
by Maroscia and Vogel in [M—V]. Let V be an arithmetically Buchsbaum
yariety, i.e. the local ring A of the affine cone over V at the vertex Is a
Buchsbaum ring, and let i(A) be the difference between colength and multi-
plicity {(A/g)—e N (¢) of a parameter ideal ¢ of A which is, independent of the

choice of ¢ [S— V). Is then Treger’s result still valid if ] —;— [ is replaced by

] [ 4- i(A)? Note that i(d) = 0 if V is arithmetically Cohen-Macaulay.

Following a technique of [['g3], we are abie to answer thxs question affirmati-
vely by the following result, '

THEOREM 1.2. Lei V be an _arifhmeiicaliy Buchsbaum variety. Then pV' may
be generated by forms of degree < ] [ + min {2,i(D}.

The proofs of the above theoréms will be fouui in Se:tion 2 and Section 4,

respeclively. Section 3 is devoted to the relationship belvlveen ]n [and T
|

2. PROOF OF THEOREM 1.1

Let d — m—n be the dimension of the arithmetically Cohen-Macaulay
variety V. It is well-knowan that one can find (generically) linear forms Lz-"';

r
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L such that (pv L ,...,I: ) is a radical ideal whieh defines a set of s points

in H-uniform position in the subspace P““ n (L;=0) of Pm[G H, (2 13)L
=1
Let X be a set of s points in P: - Let H, denote the Hilbert function of X,

Then X is called in H-uniform position (the <y is for Harris) if X is non-
degenerate and Hy (f) =inf { Y,H; (#)} for any subset ¥ of X and ¢ 3>0.In

particular, this condition implies that X is in general position, i.e.no subset
of n 4+ 7 points of X lies on a- hyperplane of P;.

Let p, denote the defining ideal of X. It is also welleknown that if X arises
as a generic section of V¥, then a minimal basis for py can be lifted to one py
and HX(t)_a fot all £, fhelefore, to prove Theorem 1,1 we need only to

prove the 1ollow1ng ‘

PROPOSITION 2.1. Let X be in H-uniform’ posu‘!on withy ()=a;, i = 1,...1,
Then Py may be generaled by forms of degree < T,, <0,

Let iy, denoje the regulurity index of Hy,ie
= inf {t, H (t) =s}.

The proof of Proposition 2.1 is baned on the following degree bounds for the
generators of pxln terms of ry

LEMM4 2.2. [G—M]. For any X, p, may be generated by form: of degree "
ry + 1,
LEMMA 2.3 {M — V). Let X be in general position, If 'y <rg for every subset
Y of s —n+ 1 poinis of X, » Py May be generated by forms of degree Lory.
If X is in H—uniform position, any upper bound for Tx in terms of Hy (1)
may be also used to estimate ry for every subset Y of s —n 4 1 points-of X
because Y is also in H—uniform position and H y () is known, Now the prohlem

is to find an appropriate bound for ry. Flrst, we obse_rve that the Hilbert

function of X obeys certain rule,

LEMMA 24. Let X be in H — uniform position: Let {1, be any -system of
not necessarily distinc!  positive inlegers such thali = 4w+t <
[ ; r

< ry . Then

]

T
Hy (> ZUx ) =D+ 1
i= :

Proof. This was already proved for r = 2 [H, Corollary 3. 5} For.r > 2, |
use induction,



For all t = 0, definé ,
Py = inf {f> K ¢, =< a[.}.
COROLLARY 2.5. Let X be as in. Proposition 2. 1. Then
Promc If ry > fb + 0,y by Lemma 2.4.
HX(ib1+9t)>bt(a; 1)+(apr—1)+1>s,"

a contradiction because the Hilbert Function of a Cohen-—Macaulay ring is non-
decreasing.

Praof of Proposition 2. 1 If e, > p, » the statement follows from Lemma 2.2
and Corollary 2.5. If =, -<pI , we have ¢, + 1 = p, because by Lemma 2.4,

a +1 ag -.-a1—1_a 4 n = c. HencebyLemma22 we may assume
t t

that ry = tb “+ o, - According to Corollary 2.5, rY tb ¢ (< ry for every '
suhsetY of s—I + 1 points of X.Hence the statement lollows from Lemma 2.3.

3. THE RELATIONSHIP BETWEEN THE BOUNDS

T~

Using this represen:tation of]i{, itis easy to check that 7, =]—S—l To compare
n n

. - First we note that

];—s—'[with the other 7, s We noté that by Lemma 2.4, a, - t(a1 — 1) 4 1 =in{1,
1t ‘
Then z, g] {by the following

[ b{ {a, — In

L
s T — 1 .
LEMMA 3.1, |—1> T, + for all t > 0,
. n R

Il 3
" Proof. We have '
,s_-zb:, (a‘t — 1.) + ¢, + 1

K >0, (at'—1)+ aa[—-j’l‘ n

>b‘tn f‘bt(a,«-tn—j)-l- e, n+ 1.

Hence

[.s" 1] bt+s+{b (a In—1)
: n . : n .

1 -

which implies the slalement.
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_forms of degree <

b (1, —in—1)) .
; Jcan be very large. To see this we consider the cage V
n .

not lying on any hypersurface of degree f of P;:-I. For ¢ = 2 (res . { = 3). Maroscia
and Vogel [M — V] showed that if V is an arithmelically Cohen — Macaulay
variety of codimension 2 and degree large enough, Py may be generated by

i “2" ? ] (res.[s ; ! ] — 2). It was nol apparent why they

got these bounds. Using Theorem 1.1 and Lemma 3.1 we can mot ~only give an
explanation for this result but also show that these bounds still hold for varie-
ties of higher codimension and arbitrary degree.

PROPOSITION 3.2. Let V be an ari thmettcalfy Cohen-M acaulay variety not lymg
on eny hypersurface of degreel. Then py may be generated by forms of de-

gree < }i[—--tﬁ—;-'-i)—ifn>2or if n=2and s > t(t + 3) + 1.
It

£ . 3

(nt+7)..(n+1

Proof. We have a, = " - Write a, —tn—1 = nF(n). Then
F(n) is a polynomlal of the form cc[nf b n— mo wuh oc > 0 for [ =
= 1 ., t. Since F(n)is a strictly increasing functmn with

E@-—tt=1
4
=1 (47 _ tit—1
F(3)= ! >
FQ 5 —
we ¢an conclude that
bea, —in—1) _ b F () > =D
n 2

ifn>2orifn=23ndbt>2, i.e. s>1(({ + 3) + 1. By Theorem 1.1 and
Lemma 3. 1, this implies the stalement.

Remark. In general, by comparing b, F(n) with a given polynomial g(f), ome
can find a number n, anda functlonso (1) such that p, may be generated by

forms of degree <J 5 [q gtyit n > > 1L, or ifs>s (t)
n

Using Proposition 3.2 wecan also improve the result of Garamita mertion-
ed in- Section 1.

COROLLARY 3.3. Lel V bean arithmetically Cohen-Macaulay variety, Then Py
may be generaied by forms of degree >l { if one of the following conditions
n
is salisfied
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(i) n > 3 and V lie on no quadric hypersurface,
(iiyn > 2and V lie oﬁ no more than one eubic hypersurface. '

Proof, We may assume that V does not lie on any quadric hypersurface,
Bv Fr0position 3.2, py may be generated by forms of degree < ]—E—[ if n>> 3
or if n = 2'and s > 11, It remains to consider the case n =2 ans < 11. Re-
plaée V by aset X'of points in H-ﬁnifcrm position in Pi arising as a gemneric
section of V. Since X lies on no more than one cubie, ag >89, Hence, using Lem-

ma 2.4, one can show thata, = s (s could be9 or 10 only). By Lemma 2.2 and

L.emma 2.3, p, and therefore p, may be generated by forms of degree < § :]-S—]
n

Finally, we show that the bound T, may be replaced by a simpler bound
which depends only on s, n, and a, . For all ¢ > 0, define

ct+ 1
‘E; = fbl +J [.

Note that T° = l-s—[ = T;.
1 n
LEMMA 3. 4. 1:; > Ty

Pmof. Using Lemma 3.4 we can show that'ct +1>a, _ ;+N02>¢ n4-1.
‘ 1

§

1 : '
cf+ [>Et+1' : ‘ ;

n

Hence ]

which implies the statement.

4. PROOF OF THEOREM 1.2.
b

Let X — P: be a set of s points in' H-uniform position arising as a generic

section of the variety V with a linear subspace of P;:' defined by d linear
forms L, ,.,L,,d = m —n[G— H, (213)]. As we have seen in the preceding
sections, one knows much about the defining ideal p, of X. We shallluse this

knowledge to prove Theorem 1.2, For that we may repiace p, by the radical
ideal p of (pv ’ L] ,..‘., Ld ), the definin,g ideal of X as a set of 'points in PIT.

LEMMA {.1. P is the unmixed part of (py , Ly oy Lg ):

. e




\
Proof. We will work over the field k(u), where u == {u. ; i=1,,., d and

!-
g
J= 0w m} is a set of indeterminates over k. Set H i0X0+ o X
I Mie
i=1, .. d Then (Pys Hys #,)="P nQ, where P is a prime ideal and @

an (XO, vevs Xm) — primary ideal of i(u) [X] [Tg1]. Thus, (Xo’ . Xm)rp <
< (py» Hyy o Hd) for some positive integer !. If one specializes Hf’ vees Hd
to Lys e Ly then p is the specializatiom of P [Tg2}. Therefore,
(Xgo oo X )
APy Ly e Ly ,
" COROLLARY 4.2. Let V be an arithmetically Buchsbaum variely. T hen
(Xgs w00 XIS (oo Lo o Ly ) '

Proof. This is a sfandard property of the graded Buchsbaum ring

K[X)/py [S—V]

The proof of Theorem 1.2 consists of two parts, and in both parts we shall
need Corollary 4.2.

pE(py Ly, -+ Ly). Hence p i3 te unmixed part of
)

First, the case i(A) > 1 of Theorem 1.2 is a consequence of the following
stronger result. A

PROPOSITIONS 4.3. Let V be an arithmelically Buchsbaum variety. Then p, may

be generated by forms of degree < ]-S—:—-]-’r[ + 2
n

For the proof of Proposition 4. 3 we shall need the notalion of the reduc-
tion exponeni of a graded ring [Tg3]. Let « be an (d + 1) — dimensional
homogeneous ideal of k[X]. The reduction exponent r(S) of the graded ring
§ == k[X]/a is defined to be the least integer { for which there exist d - 1 linear
forms L, ..., L, , such that all forms of degree t 1 of k{X| belong to the

ideal (o, L, ..., Ld+1)'

j LEMMA 44. [Tg3]. Let S be o qgraded Buchsbaum ring. Then a may be generated
by forms of degree < r (S) + 1. :

. Proof of Proposition 4.3, Set § = KX]/py. By Lemma 4.4, it suffices to show
that 7(S) < ]S'—:—fl + 1. Set T = K[X)(py» Ly, s Ly) and T = KX}ip. 1t is

_easily seen that r(8) < r(T) On the other hand, since all forms of degree (T )
“belong to the ideal (p, d—i—:t) for some linear form L, ,, all forms of degree
r(T) + 1 belong to (Pys Lys os Ld-!—l) by applying Corollary 4. 2. Therefore,
r(T) < r(T) + 1. Since T is a Cohen—Macaulay ring, r(T) is just the regularity

: ' 19



s —1
n

ndex ry of Hy [Sch]. Hence r (T) < by +¢] = }

§ —

Summingrup we gel r(S) < ] { + 1, as required.

It remains to prove the case i(4) = 1 of Theorem 12, Nolc that there is the
‘ollowing formula [S—V, Theorem 2] '

i(A) = (d) [(HE(4)),

where HI:I(A) denotes the ith local cohomology module of 4 with respect to the

maximali ideal m, Thus, if i(4) = 1, HI;(A)'*_—» 0 for i = 0,..., d — 1, i.e. depth
(A) = d. Hence the case i(4)==1 of Theorem 1.2 is a consequence of the
followin: resulf. '

_ PROPOSITION 4.5. Let V be an arithmetically. Buchsbaum variety wish depth
(4)=d.Then 3 may be generated by forms of degre. < ] [ + 1.

Proof. Let F be a form of a minimal basis of p,. Suppose that ¢ = deg
(F) }] {—'— 2. Since p, C pandpreay be gencrated by forms of degree < l%[,

F e(Xy, 0 X )2p Thus, nsing Coroilary 4.2 we may write F = G + G, L, +
4+ . + G, L, for some form G belongmg to the ideal oenerated by the forms
of degree <t of py. Since depth(A) =d, L, .. L form a 1egu1a1 seéquence
of the ring k[ X]/p,. I‘herefore,(‘de(pv, gr s Ly 1) :L 4= Py v Ly 4)-
Hence we can omit the term G, in the above ‘presenhtwn of F. Proceeding
like that, we can successively omit the terms GyL,s v Gy L, . That mears r
belonging to the ideal generated by the forms of degree < tof py, a confra-
dlctlon (ct. the proof of [Tg3, Proposmon 4,11,

Remark, We could not find an anthmehcally Buchsbaum variety V whick

neceds a defining equanon of degreec > } [—}— 1.

, .
Finally, we point out that there is no similar version of Theorem 1.1 for

arithmetically Buchsbaum varieties. The redson is that the Hilbert function of

aset X [‘” arising as a generic section of V can not be compuled in terms

of the one of V. lowever, some consequences of Treorem 1.1 may be extended
to arithmeticaily Buchsbaum varieties, _ -

170
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PROPOSITON 4.6. Lef V be an arithmelically Buchsbaum variety which lies on
no more than n hypersurfaces of degree t 4- 1. Then p, may be g nerated by

forms Of degree Li] — {— t——(fz—j) + min {2, { (A))} if n > 2orif n= 2 and
S>3+ 1 TR | ' |

Proof. The proof is similar to the above proof of Theorem 1.2. It is based’

on Proposition 3.2. The key is the fact that X lies on po hypersurface of degree

t of PE. To prove that we may asSump that L, = X;H—i s woy Ly= X . Suppose:

that p contains a form F of degree {, Then X )F, ..., X Fe(py, X L4 -0 Xm)
by Corollary 4.2. Set X, F = F modulo (X, 1z e X ) for some F'. & py, i ="
=0, ..., n. It is easily seen that F,, .., F _ are linearly independent over
k, a contradiction. -

Acknowledgement. The first author would like to thank Consiglio Nazionale
delle Ricerche and the University of Genova for partially support and hospita-
lity during the preparation of this paper.

Added in proof, Using the idea developed in the first part of this paper,
the authors are abie to describe arithmetically Cohen-Macaulay varieties which

need a defining equation of degree J = [ It turns out that these varieties are
n

closely related to the Casteinuovo varieties reecently studied by J. Harris. The
result of the second part of this paper has been improved by P. Maroscia and
W. Vogel.
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