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AN IMPLICIT SPACE COVERING METHOD.
" WITH APPLICATIONS TO
FIXED POINT AND GLOBAL OPTIMIZATION PROBLEuS
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I. INTRODUCYION

We shall be concerned with the following problem: -

(P) Let there he given in R" a convex set ' with nonempty interior and an
{arbitrary) set D.

Find an element of the intersection € A D.

This problem is frequently encountered in numerical analiysis. In fact, pro-
blems such as: finding a fixe | point of a mapping, solving;a nonlinear equation,

-finding the global optimum of a function over 2 set, can all be reduced to pro-

blem (P) with suitable C and D.

Unless the set D is also convex, this problem iz computationally very
difficult. In the most general case, it is essentially intractable. As far as deter-
ministic methods are concernéd, there seems to be no other way for solving
this problem than by an exhaustive search throughout the set C,

In the sequel, however, we shall show that under suitable assumptions, it
is possible, by systematically exploiting the convexity of the set C, to construct
an implicit space covering method which is gnaraniéed to produce a solutiom
after finitely many sieps when the problem is solvable, |

2, BASIC ASSUMPTIONS

We shall make the following assumptions:
{1) A point w is available such that .
| w & (int €) \ D; ! (1)
. (I The set € N D is bounded: for any given point 1 € 3C = the boundary
of C, one can compule a supporting hyperplane to { at u.
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(HI} For apy » « " one can determine wkether an element of C A D exists

in tie hailline from w through z and compute such an element if it exists.

Assumption () iz quite natural: let w be any interior point of CC; if weD
the proble n is solved, otherwise it satisfies (1). Assumption (II) is self-explana-
tory. If we denote by I'(z) the intersection of € with the halfline from w through

_ % then Assumplion {III) means that for any z € R” one can solve the one-di-
mensional ¢ section » of problem (Py of I'(z), namely :find an element of I'(z) N D
or else establish its emptiness. Though this Assumption does restrict the class
of problems undey consideration, it is fulfilled in many cases of interest, If, as

it often happens, the set D is given by a function g: R — R such that
B ={z:g) >0}, ’ @

then it is easily seen that Assumption (IIT) will be fulfilled in each of the
following cases :

1} g is convex (so that the set D is complementary conves, i.. is the com-
plement fo an open coavex sef); - C

2) g is the poimtwise minimum of a finite family of convex and coneave
functions (D is the 'intersection of a finite number of convex and complementary
convex sets); '

3) g is piece-wise affine;
4)gisa d‘._ ¢. function, i. e, a function of the form g(x) = 9,4x) — ng
where both 9;-8, are convex, ‘

Aside from the above resirictive agsumptions, we shall have to make two
more technical ones:

(IV) The set C is strictly éonvem, in the sense that its boundary 3C contains
no line segmeni with distinct endpoints;

(V)'The set D is robust, by which we Lﬁgah that
D clint D), - | 3)
i. e, every point of D is the limit of a sequence of interior points of D.

In actual practice these last two assumptions can be enforeed by a small

perturbation of the data of the original problem. Indeed, if B denotes theé unit
ball around the origin 0 and ¢ a posilive number, then for any set D the set
D + <B is robust, When

;"C={'x:f(w)£9}, ' - @)
‘where f(x) is a convex function, while I is defined by (2), then to make ¢ and

D satisly Assumptions (IV) and (V) it suffices to add the termc |z | ? to each
of the functions f(x), g(x).
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3, SOLUTION METHOD

A funclion p : R" — R is called a separator for C, with respect to D, if

1) p(x) = O for & € C and whenever z¥ -» z & al, FeCIE) A D= ¢
then p(z") — 0;

2) For any bounded sequence z° , p(z¥) — 0 implies d(z*, €) — 0, where
d(x, Cy denotes the distance from x to C.

v

Exsmples of separators:

If C and D are given by (4) and (2) resp., where f(v) is a convex and g(z)
is a continaous fuancfion, it is easy to \renfy that each of the following func-
tlons can serve as a separator:

I. ofz) = d(x, C) (obvwious).
IL plx)y=lz — a(x)ll {x ¢ €), where, for x ¢ C, u(x) denotes the

intersection of aC with the halfline {rom w through x (obvious).

Il p(xr) = max {f(x), 0}. Indeed, the propeltles 1) and 2) of a separaior
easily follow from the Lipschitz property of f on a bounded set.

The above functions do not depend upon D. They are in fact separators
--for ( with respect to any subset of D) (in particular the empty sei). The next
functlions are more proper separators for C with respect to D,

V. p(x) = tg+(x) + f(x) (z ¢ C), where { >> 0 is a constant and gt(x) = max

{O, g(x)}. To check 1) observe that whenever ¥ — z € 3C and lim g+(z¥) = 0,
then it foilows from the continuity of g that ¢(z) > 0, and hence, for v large

enough, r(z") ~n D = ¢ On the other hand, since g+(‘,’.’11 == 0, 'ii" p(z"?) —~ 0O
then f(z') — ¢ and property 2) {follows.
V. p{z) = maz {g(x), f(x)}, assuming that g(x) is convex. Just as in case IV,

it suffices to observe that ¥ — z g BC and lim g(z*) > 0 imply I'(z") " D = ¢
for v large enouzh.

We now describe the proposed methed for solving (P).

Denote by D the-umbra of D relative to w:

D= { (1—)w-+ D).

t > 1

Algorithm A

N

Select a separator p, and a polytope §, containing C N D, such that no
vertex of S, lies on the boundary of C. Compule V,, the set of vertices of Sy,
 Set'k =1, '
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Step k=1, 2, ..t Find

2% ¢ arg max {p(z):z € V }. . o - (5}

Compute an element of r(z¥) A D: if such an element exists, t' e problem (P)

is solved; otherwise, find the point uX = u(zF) (for any =z, u(z, denotes, as
previously, the intersection of 3aC with the halfline from w through 2).

Construct a supporting halfspace to C at uX :

L = {r:l() <0} (6)
Set 8, , =S8, nL, compute V 13> the set of verticgs of §,,,, and go o
Step k 4 1.

Remark 1. §, ,, is obtained by adjoining one additional linear constraint
o §,. This enables us to derive the veriex set V, . of 5, from Vv, using the

scheme developed e.g. in [6}. Clearly the cumulation of consiraints as the
algorithm proceeds constitutes the majer drawback of this kind of outer
approximation methods, though several constraint dropping techniques can be
applied to partially circamvent this difficulty (see. e.g. [10]). !

Remark 2. If C is given in the form (4) with f being a convex function,
_ then a supporting halfspace to C at uk is obtained Ey calculating a s{ihgradient,

p* of f(xy at u* and setting lk(é)'= (p*, & —ak ) (pF # 0 because (1) implies

0 > min {f(z): 2 ¢ R*}).

4, CONYERGENGE

We shall first prove some lemmas.
Suppese the Algorithm A is infinite,
LEMMA 1. Any cluster point z of the sequence {zF} belongs to 3C.

Proof. Observe that d(z®, Lk) tends to,0 as k — oo, Indeed, otherwise

) . k ' k,
there woald exist an ¢ > 0 and an infinite subsequence z ° such that d(z Y,

: P ' _ ky Ky
L, )>e. Since, obyiously, z° € Ln for h <k, we would have d(z *, z "} >
v ' .

-k .
> d(zk", Lk ) >¢ for all K > v Thus, z V., v =1, 2,... form an infinite set of
v .
poinis contained in SI and mutually at least ¢ apart. This conflicts with the
compactness of S, . Therefore, diz%, L, ) — 0. Since, by (1), intC = (J, we may
suppose [, () =< @, & >+ B with ] a* || = 1,hence I, (z¥) = d(zX, L)) — 0.
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Now let 7 = lim,z . From lk(uk) = () we have B = —< ak, 2* > , there:
fore, by taking subsejuences if necessary, we may suppose ak - a, B, —> Bs

" - ueaC. Then I, () —lx) =< a,x > +f for every » and [Z) = lim
. Ky ]

lkv(zkv) =0, l(u) = lim lkv(uk") = (. But for every x ¢ ¢l € we have ! (x) =
= lim lf"v(:t) < 0. This togethgr with the facts w e int € and [(x) $’70 {as a = 0)
iuiplies l(w) < 0. Noting that a lies in fhe line segmenl joining w with z and
I(z) = () = 0, while ¥w) <0, we then conclude 7 = u & aC. .
LEMMA 2. We have . '
ki S, CelC. %))
Proof, Let 7 be any cluster point of the sequence zX. By the previous
Lemma, 'z € 9C and since T(zk) n D = ¢ (as Step k -+ 1 is performed), it
follows frem the property 1) of a separator that p(z%) — 0, Therefo;'e, by (5),
| max {p(2);zeV, } -0,
Ia particular, if =¥ ¢ arg max {d(z, C): z & Vk} then p (?"‘) — 0 and hence,
in view of the property 2) of a separator, d(?", C)—0, i e.
max {d(z, C}: z&V,} - 0.
The convexity of the distance function then ixﬁplies
) max {d(z, C): z& S, } = 0,
proving (7),
Thaus, foughly speaking the .r‘xested‘ éequence of polytopes S, tends to‘
S1 N (el €) a8 k — oo . The next proposition goes in the converse direciion of
,Lemma 1, '

LEMMA 3.. dny poinl 7 & S, naC is a cluster point of the sequence { z*},

Proof. By construction of S, no vertex of S,lies on 3C. Hence z is not a

vertex of S and there is a line segment A contained in §, with midpoint z. From
the strict convexity of C it follows that at least one endpoint of A, say ¢, along

A with all points of A between c and z, except z, do not belong to C. That is,

one can pick a sequence y¥ — = such that y'e S, \ cIC. The relation (7) then

: &
implies the existence for each v of a k. such that y¥e Sk —1 \ Sk,,i.e.such

that{, (") > 0. We may assume that the sequence z¥ v tends to some z¥, while,
v
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28 in the proof of Lemmal, I, (;r:) — 1 (z) ¥z, with i(x) 2 0 and [(T) <O for

afl z ¢ ¢l C. Since both 7 and z* belong to 3C (Z by hypothesis, <* By virtue of
Lemma 1), it follows that /{z) < 0 and I(z') 0. But y¥— 7z and {, (y") >0

impl'y; I(z) 2> 0, hence I(z) = 0, On the other hand, by construction of I, we
. “\9

k., k :
have Ik\,(g \_) > 0, hence, as z ¥ — z% (") > 0 and consequently, {[(z* )= 0

This, together with the relation { (7) = 0 implies /(z) = 0, i.e. 2 & 8C, for allz ~

in the line segment [2,z*]. In view of the strict convexity of C this may occur
only if z = 7% 1. e. 7z = lim zXy, as was to be proved,

Finally, before establishing the convergence theorem, we nole the
following

LEMMA 4. The robusiness condition (3) implies

C N (int D) == ¢ < (int C) N D =4. :

Proof. Suppose there is 2 € C N (int D). Then some neighbourhood U of
a is entirely contained in D. Since C is convex and has nonempty interiors U
must intersect int G, i. e. (int C) n D 7 . Conversely, if there isx s(int &) A D,
then since D is robust, (int C) n (int D) # ¢ and hence, C N (int Dy = ¢.
~ We are now in a position to prove

THEOREM. If (int C A D = gS, Algorithm A finds a poini of C ~n D ajtep
finitely many sieps.

Proof. By the previous Lemma there is an & € C A (int D) and by slightly
moving x if necessary, we may assume T e(int Oy N (mt D). Let " be a neigh-
bourhood of z entirely contained in (mt )y n D. Let z be the point where oC

meets the halfline from w through = . Thenz & € N D c S, n 8C and by

-, .. k
Lemma 3, if the Algorithm is infinite 7 is the limit-of some subsequence {27V}
Therefore, for large enough v, the halfline from w throngh z Y intersects

Uc (int O)n D,i.e. T(z ") N D # ¢, and the Algorithm must have stopped

at step k.
" Thus, Algorithm A can be infinite only if (int €) n D = ¢.

5 APPLI‘CATIONiTO €LOBAL OPTIMIZATION PROBLEMS

_Consider the global minimization problem

min f(z) subject to g@@) > 0, (8)
f: Rt - R is a strictly convex Iunchon wnth "bounded level oCxS and
L

where
g: R*—~Risa continuous function.

LY
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Following the approach adopted in [12}, in order to find an @ - optim il |
solution to (3) (i. e. a point x satis[ying the constraint g{x} > 0 and such that
f(z) < fzx) - aforall satisfying this constrainl), we perform a sequence of
cycles of computations consisting each of {wo phases: a local phase, waere,
starting from the current feasible solution, say yo, we use local optimi-

‘zation techniques to find a local minimizer 2% (or a feasible solution x0 close

to alocal minimizer) such that f(x°) < f(y°); then- a global phase, where,
starting' from the current local minimizer z° (resulting from the local phase) we
atiempt to find a feasible solution y! 'such that f (yY) < f (2% — «. The latter
problem, which constitutes the erux of the whole scheme, is thus 2 problem of
type (P), with ‘

C=_{x:f(x)<f(m°)—a}  D={x:g@>0h
As a point w satisfying (i) we can always choose a point such that
gw) < 0; f () < min f (D) —« P ()

(provided, of course, the c.nstraint g(x) >0 is essential and « is appmpriaté)-
For any z denote by = (<) the element of I' (z) A D that is nearest to w. In

view of (9) and the convexity of f it follows that

m(z eargmin {f (@) :zeT ()N D).
Let us assume that the set D is bounded and robust in the sense (3) and

that for any z ¢ R"one can deler : ine whether or mot I () A D = ¢ and
compute = (2} if I' (2} A D # ¢. Then, since C is strictly convexz, all conditions
(I) through (V) are satisfied, Therefore, under the specified assumptions Algo-
rithm A can be applied in the global phase to find after finitely many steps a
feasible solution y* such that f (y) < f (29) — e. This procedure is infinite
only if ‘a® is already ard «- optimalsolution, Note, however, that the Algorilbm
is unable to recognize &n « - optimal solution in a finite number of steps.

Clearly, the efficiency of the procedure depends upon various factors, In

‘particular, the ~choise of an appropriate separator may be crucial. With

p (z) = f (%) the method was first proposed by Ng. V. Thuong in his disser-
tation (see [14]), for minimizing a convex function subject to. reverse convex
constraints. Preliminary computational experiments have showa its practicability
for problems of small size (the method is not sensitive to the number of cons-
traints). It seems, however, that the method could perform better with

p @) =lgt (@) 4 f (@)

- Convex minimization under reverse convex constraints {or reverse convex
programmiryg, following a now established terminology) has been the subject
of an increasing number of researches in recent years, due to itsimportance in
many applications (see e.g. [1, 2, 3, 5, 11—<15]). Previously published methods



for dealing with these problems either use cuis in a complicated manner which
can be practical only for small numbers of constraints and often are not gua.
ranteed to converge, or require additional variables in order to reduce pro blems
with many reserse ¢onvex constraints to the case of one single reverse convex
constraint. Furthermore, when applied to problems with piecewise affine (but
peither convex nor concave) constraints, or d.c. constraints, these methods?
require the knowledge of an effective represeniation of the constraint functions
" as differences of convex functions.

The above proposed method, based on Algorithm A, is free from these limi-
tations. Also, it could equally be applied to problems with convex constraint
and nonconvex objactive function. For instance, problems of the form (3),
where  is nonconvex but g is concave, can be treated in an analogous manner
by taking :

| C—{z:g(zy>0} D={r:[(x)<f()—ah

6. APPLICATION TO FIXED POINT PROBLEMS

‘it has long been noticed that finding a fixed point of:a  m pping
E:Q C R?— R" can be viewed as a nonlinear optimization problem:
min || F(x) — x || subject to x & Q. . (10)

But, to the best of our knowledge, so far no serious attempt “has been made to
solve fized pfﬁnt problems by this approach (though some work has been done
ip the converse direction): In fact, the global optimization problem (10) to which
the fixed point problem has been reduced is itself inherently difficult and can~
not be bandled by local optimizalion {comvex optimization) methods which
have been the main concern’ of optimization theory over the past decades. -

Let C be a compact strictly convex set containing © in its interior. Sefting
p={r e Q: I F(x) — x|l < e}, where ¢ > 0 is a given tolerance, it is easily
scen that {inding an c-approximate fixed point of Fis a problem of type (P).

+ If F is continuous and O is robust in the sense (3) then D is vobust too.

Let w be an intertor point of C which does not belong to D (see (1)) and denote
as previously by I'(z) the intersection of ¢ with the halfline from w through z.

Suppose that

(*y For any = &€ R one can find a point & in the line segment r(z) such
that x € &, [ F{®) — % | <&, or else establish that no such point exists.

Then all conditions (1) through (V) as stated in Section 2 are tulfilled, There-
fore, applyingﬁlgorithm A with these data will produce an g-aprroximate fixed
point of F after finitcly many steps, provided the mapping F has a fized point.
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Sometimes it may be useful to generate not just one approximate fixed

points with a prescribed accuracy, but a sequence of points converging to a fixed

point. We may then proceed as follows.
Apply Algorithm A with D = £ but at ecach Step ¥ compnute
xk g arg minﬂ[F(m)-—xll:.-r eNzZyn Q},
and record -
| Tk g arg min { | Ry~ :i=1 .k}
Moreover, stop the Algorithm only when ¥ is a fixed point of F.

PROPOSITION. Any cluster point x of the generated sequence 2k achieves the
minimum of ¢(x) =i F(z) — x || over Q,

Proof, Let o* ¢ arg min {g(z) 1z ¢ Q } and let z= he the point jwhere aC
intersects the halfline from w through z*. For any ¢ = 0, since™z* ¢ Q and Q is
robust, there exists an inferior point x’ of Q such that (P(x) < o(z*) + ¢/2. Let
U be a neighbourhocd of x’ entirely contained in Q such that ¢(z) < o(x’) +
+ e/2 < ¢(a*) + < for all x € U. Denote by z’ the intersection of 3¢ with the
halfline from w through a’. By Lemma 3, there exists'a subsequence z%v — 2,
Observe that x’ € int C. Therefore, for'v largé enough the halfline from iy

through :*v will meet U. This implies o(z*) < @(x*) + ¢, and henve, oz ) <
< (¥ ) << o(x*)+ = Since £ > 0 is arbitrary and the sequence ®(z* ) is nonin-
creasing, we conclude o (xk) - ¢(z"), proving the Proposition,

Therefore, if F has a flxed point, any cIuster point of the sequence ¥ must

‘be such a fixed point.

The same. method could be used to find the global minimum {or magimum)
of an (arbilrary) continuous function ¢(x) over a compact robust set Q — R~
Needless to say, if no further information is given on the structure of ¢ and Q,
the algorithm can be practical only for small problems. In the genetral case
while being far better than the rudimentary grid search method, it would still
require a prohibitive amount of computations and storage. Nevertheless, there.
are instances, e.g. in design calculations, where the models contain only smail
numbers of variables but are highly nonlinear, In other circumstances, though
the models are large only a few variables are highly nonlinear. In such cases
the above presented method, either used in a direct way or combined with other
existing methods (including heuristic ones), could help to effectively solve a
number of problems which otherwise are intractable,

Also it should be emphasized that the purpose of any deterministic globaj
optimization technique is not so much to solve the problem to the end as to
provide a procedure for iranscending local optimality. 3
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