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IMPLICIT FUNCTION THEOR EVIS FOR SET-VALUE" MAPS
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Let P be a topological space, X and V' be Banach spaces, and F: P XY
be a set-valiied map. Then the set-valued map G: P -» X

G(p):={x|0€& F(p, z)}
will be called the impHcit map definel by the inciusion 0 € F(p, a:) The pur-
pose of this paper is to study the behaviour of G(.) near a given point (p,, %, )

satisfying the condition 0 &€ F{po, T, To this end, we shall use some results
from P, H. Sach’s theory of prederivati.es of set-valued maps as developed in [9].

In the first part of the paper we are concerned with the lowsr semiconti-
nuity property of implicit maps which is closely related to the stability of a
system of inequalities (see for example [7]). From Theorem 2. 1 to be proved in
this part we recover a result established by H. Methlouthi [6] This theorem is
also near to the implicit fanctioa theorem of S.M. Robinson [7], but does not
imply the latter.

In the second part of the paper we are interested in the pseudo——Llpschxtz
property of set-valued maps infroduced in [1]. This property was cstablished in_
[1] and [2] for the inverse of sel-valued maps laking values in a finite-dimen-
sional space. Our result (Theorem 3, 1) differs from {1, 2finthat it is derived for
Banach spaces by using prederivatives [9] i.stead of the Clarke tangent cones .
to the graphs of set-valued ma_s. Moreover, a sufficient condition for the pseudo-

- Lipschitz property of Imphmt maps will be obtained. As a by-product, we shall

also have a resuit on the stability of perturbed noasmooth inequalities which
can be interpreted as the stability of the feasible set of a nonsmooth mathema-
tical programming problem,

1. PREL] MI.NARIES

1. Given a set-valued map F: X — Y from a topological space X into a
B.nach space Y, we denoe its graph and support function by gr F and
cr W) respeuuvely Récall that gr F: = {(x, y)e X X Y |y € F(z)},
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Cri(y* &) 1= sup < g% y> |y < F(z)}, where y* belongs to the dnal space
Y*ol ¥ and < y*, y > denotes the canonical pairing between Y and Y+,

In what follows, the symbols d [a, M}, B (a, d) and N(a) will denocte the
distance from a point a to a set M, the closed ball with radius & centered at a
and the collection of all open neighbourhoods of g, respectively

DEFINITION 1. 1, [3]. We say that F is Jower semicontinuous {l.s.c.) atag e X
if for every Yo € F (x,) and every ¢ > 0 there exists U ¢ N (ry) such (hat
VzeligyeP(x) satisfying [|g—y, Il <<e.Fis upper semicontinuous (u.s.c.)
at Z, € X if forevery ¢ > 0 there exists Ue ‘\’(a:o) such that F(ux) & Fx,) -
+ EEY 6, 1) forallxe U. F is w.s.c.(resp. Ls.c.) onaset A = X if it iz u.s.c.
(resp. I.s.c.) at every. point of 4. When X is a Banach space we say that I is
positively homogeneous if F(A @) = % F(z) for any A >» 0 andax e X.

2. Now é:uppo;se that both X and ¥ are Banach spaces and denote by £ the
collection of all set-valued maps f: X — ¥ that are positively homogeneous and
u.s.c. on X (9], '

DEFINITION 1.2, [9]. The Banach constant of a f ¢ £ is the number ‘

- p(ty: = — sup inf ¢, (4", x), (1.1)
yres” a:EBX(O,I)

~

where §* is the unit sphere in Y* and ¢, 5 x) = sup {<y*, y>1lys f{x)}.

Remark 1.1. p(f) is a finite real number whit:h coinecides with the ordinary
Banach constant C({} of f if ¢ is a bounded linear map. If { is generated by a
convex compact set A of bhounded linear operators from X into ¥ (so that
i(h) ={Ah] Ae A}), then p(f) = inf {C(4) | 4 € A}, '

DEE&NITION 1-3. [9]. A map ¢ € £ is called a prederivative of a set-valued map
F:X—Yata point Zg=(x;, Y} € gr F if for every ¢ >0 there exists
Ue N(xo) such that: ¥x e U 3y € F(z) satisfying

_ <YLY = Yo >—c (e —xy) Selle — x| (1.2)
for all y* from the unit ball B* of Y*,

Remark 1.2. Assume thal F'is single~valued, then a linear continuous maplis
a prederivative of F at (a:o , F(a:g ) iff it is the Frechet derivative.of F at ay.

. Remark 1:3.A linear continuous map A is a prederivative of a set-valued map

¥at @, go)iﬁ' Ais a lower—deri'yatiVe of F at (a:o, yo) in the sense of H.
Methlouthi [6]. In this case we simply call A a lineasr prederivative of F at
(5 Yg)-

DEF‘INITIOI\{T 1.4.{8]. A positively homogeneousiupper semicontinuous fanction
g : ¥ — Ris an upper e-approximation of a functionf : X — Rl ata point x; e X

(if there is U e N o).‘s‘ﬁé‘ﬁﬂhat
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@)~ f(zy) < g(x = 7)) +ellz —z, |
forall z e U. ' '

The following Lwo lemmas will play a fundamental role in onr proofs.

LEMMA. 1.1, [9]. Assume that F: X —» Y is a sel-valued map, and i e Lisa
prederivative of F at zy = (z,, y,) < gr F. Suppose ihat the norin-f unctional in
Y is Frechet differentiable ai every point dif ferenl from the origin, Let there be
given a point y* ¢ F(x, ) such that y, s the closest point to y’ in F(x ). Denote

by ;;* the Frechel derivalive ai y* — y, of the norm-functional in Y. Then, for
I - ’
each ¢ = 0, the function c, (y*...) is an upper s-approximation of f(.). =

dly’, F()) at

LEMMA 1.2. [5)]. Let V be a complele meiric space, f: VB, v {-t-oo} be alower
semicontinitous real valued function. For every point x, eV satisfying f( r,)<e

and every A = 0 there exists a point x € V such that f(z) < f(x,) d(x, To) < h

and f(z) < (=) + TS d(x, x) for every x's V.

2. LOWER SEMICONTINUITY OF IMPLICIT SET-VALUED MAPS

Let P be a topological spéce, X and Y be lwo Banach spaces and F P XX->Y
be a set-valued map. Assume that the norm-functional in ¥ is Frechet differen-
tiable at every point different from the origin. Throughout this section we
suppose that O e F(po, 9:0) and, for amny (p, ) €.P X X, there is a point

y & F(p, =) satisfying || y || = d[0, F(p, x)].

THEOREM 2.1. Suppose the following: ‘

(a) For every x ¢ X the map F (.,x) is L. s. ¢. on P and for every pe P the
map F(p,.) isu, s.c.on X;

.(b) There exist neighbourhoods A dnd B of p, and x, , respectively, such
that for each w = (p, x, y) & gr F, where (p, x) € A X B, ‘the map F(p,.) has a
prederivative i, at (z, y) and pt } > v, for some v > 0.

Then, there exist neighbourhoods U and V of Py and x, , respeclively,
such that

1. Gp): = {x €V |0¢ F(p, z)} \ (2.1
is nonempty for all p s U; : )
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2. The map G .U -»Visl.sc onU. (2.2
Besides, if F is l.s.c. al (po, x,), then there are neighbourhoods U « I\-"(po).

V e N¢ x, ) such that

3. dfz, G(p)] <—i d[0, F(p, =), @3

where (p, T) € Ux V and G(p) ={x X |0 e F(p, a,i)}

Proof. Select a number & = (0 such that ?(xo, 8 C B, S{nce 0B (Do 20)
and F(., To) is L s. ¢. on P there is 4, € N(po) such that: ¥p & 4, 3 y, € F(p,

z,) satisfying ” g, ” =< Y4.

Foreach pesli: =4 n Ay, consider the restriction of the function
vp(:c):d[(}, ‘F(p, x)] to the ball B(x,, §). From the wu. s, ¢. property of
F (p, .) it follows that v, (.) is a lower semicontinuous real valued fupction.
Besides-, vp(a:) =+ 0 and Dp(xo) = d[0, F(p, z))] < “ o ” < v 6.A Hence,
2,(Fo) << y’d for some y* € (0, v ). We set ¢ = v — 7", By Lemma 2.2 there is

a point 2z & B(xy, O) such that

p,@ < (@) 1T—2, 1<, e

PV @) v I 2 —F 0, ¥z e Bz, , 6). @5

We now show that vp(:i:) =0, i.e. 0 €F(p, 7). Indee_d, otherwise we could

find a point y € F(p, x) such that 0 5 || y [ = d[0, F(p x)]. By assumption (b)
there is a prederivative ¢ of F(p,.) at (z, y) such that

o o= ' . (28

According to Lemma 2.1, if we denote by ;7* the Frechet derivative of the

norm-functional in Y at 'y__then ct(y‘f,.)‘ is an upper Z— — approximation of
up(;r:) at x, Hence, using (2.4), for sufficiently small £ > 0 we have
B@, 1) < B(z,, d) and | |
v (@< @)+ 6@ e —T)+ % fe =2 @.7)
for all z € Bix, M. ' -
Combining (2.5) with {2.7) yields
c Ay ,e—z) -t (v—{-%—) lr— 2z I >0(FzeB(z 1y | (2.8
Deviding hoth sides ol (2.8) by |2 — x [ and taking account of the fact that ! is
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£

-porsitively homogeneous, we get ¢, (y%, 2) -i- (T’ -} 2“) > 0, for every x from _

the unit sphere & of X,
Then

| inf fe, (%, ) + (‘r' + —8-) >0 @9

Noting that 7 y* € 5% and that the inclusion z ¢ BK(O 1) ‘in (1 1) can be replaced
byx € S, we obtain from {2.6) )

¢ >7 L inf €, (g s ). (2.10)
x€S . .

Upon adding (2.9) and (2.10) we then have 1° + — >»v, which is a contradiction,.

We have thus proved that for each p < U there is a point z such that
I :r—-:c << & and 0 € F(p, 7). Now it is clear that (2.1) holds if we set

V= {:ve X z—x [ <b}.
L To prove (2.2) we take arbitrary pe ¥, z e (Gv(p)-We have to show that, for

every t>0, there exists {”eN(p) such that; Vel 3re G(p) satisfying || 2’ —x ||
KT. Pick &'e (0, 1) such that H(x, & )"B(m ,0). Argaing as above one can find

U'eN(p) such that: ¥'pel” 3 2° ¢ B(xo, 0" satisfying 0 ¢ E(p » »’).From this it

follows that x'c 5(p’) and ]l. Tr'—uz i <T.
Turning to the _proof of (2.3) we note that by the lower semicontinuity of

E at (p,+x,) there exist nezghhourhoods Ue N(p,), Ve N(:c ) such that ¥/ ¢ U,
O
Ve B( » 2) and df0, F(p, )] <— (F (pya) e U V). @10
leen any (p,x) & U X V we set « == d|o, F(p, x)]. All we have to show is that
diz, G(p)] < = . (2.12)
Y _ _
. v6 L 20, - :
Since a <C 5 by (2.11) we can pick Ae (—6— ,y) . Defining v (z) = d[0, F(p,n)}
for all ze X, one has v (;r:) = a < T Repeating the proof of (2.1) with z and
,;\ T playing the role of z, and &, we find x X such tha
e — 7| < -;i and 0 ¢ F(p, 7).
This means that @ ¢ G(p), since
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= - 5
o= T <o =zl +iz - F | = o+ <&

Therefore, d [z, G (p)] < |z —x || < — . By letting A'~ y we obtain (2.12).

il

A

This completes the proof of the theorem.
The following proposition is a ¢ local version» of Theorem 2.1.

THEOREM 2.2. The conclusions of Theorem 2.1 still hold if we replace condition
(b) by the following one _
(c) The map F is Ls.c at (p, »®, ) and there existsy > 0 such that, for
every w = (p, x, y) € gr F in some neighbourhood of ( p, >, +0), onecan find
a prederivative L of F (p,.)at (x,y) such that p (t,) > v

We shall further need \

DEFINITION 2. 1. For t, ,t, & £ the excess of t, over t, is the number

"2
d [a, ty (x)]
e (ly ,1, )=sup sup ——
0 a & 11 (o) el -

We say that a préderivative (reSp. a linear prederivative) f of F (p,,.) at (xo py)
has properly (C) if for every ¢ > 0 there is a neighibourhood W of (ps o o)
such that for every (p, o, y) € W N gr F therc exists a prederivative (resp.
a linear prederivative) ¢’ of F (p,.) at (x, y) satisfying ¢ (', ) < =.

It can easily be proved that p (,) < p (tr) + e (i1, &)

In the remainder of this section we suppose that F has compact values
inY.

REMARK 2.1. It is a simple matter to show that condition (b) of.Theorem 2-
1 can be replaced by any one of the following conditions:
"~ (by)F is n.s.c. at { Dos o) and for every y & F(p,, x,) there is a prederivative
t of F(py,.) at (@, y) having property (C) and satisfying the ineguality p(t) > 0.

(bg) F is u.s.c. at (py, xy) and for every yeF(p,, x,) there iz a surjective
li rear map which is a prederivative of F(p,,.) at (%o, ¢) having property (C).

(bs) F is uw.s.c. at (py, z,) and for e ery ysF(py o) there is a linear
prederivative { of F(p,,.) at (@, y) having property (C). la addition, the map

0

where wy = (py, . 0), is invertible aad iit, 1

W= (Pos Tos ) Y < F( o, ap).

Obviously, (bs) = (b,) = (b;), The implicit function theorem given in [6] is
proved under assumptions (a) and (bs), It should be noted that the argument
used in the proof of Methlouthi [6] requires the upper semicontinuity of F at
{ Pos %u), but this condition was not formulated in [6].

{.Ui —t ]| <1 for each-
w g

Remark 2.2. Condition (c) may be replaced by the following one:
(¢ The map F is Lac. at (p,, x,) and there is a predecivative { of F(po,.)
at (@y, 0) having property (C) aad satisfying tae inequality p(f) = 0.
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3. PSEUDO- LIPSCHITZ PROPERTY OF IMPLICIT BIAPS

Before going further we recall the notion of pseuds-Lipschitz maps.

DEFINITION 3.1, [1]. A set-valued map G : X — Y is said to be pseudo--
Lipschitz around (;vo, ya) € gr G with modulus & > 0 if there exist a necigh-
bourhood U of z, and neighbourhoods V,V, of g, such that G(z) n V is

nonempty for allme {/ and _
G(:c)f\‘./{:G(a:)/\V+k|lx-—xilb(0 1) (3.1)
for all x, :L"eU

PROPOSITION 3. 1. If G is pseudo— Lipschitz around (®,sy,) € gr G then
there are neighbourhoods U and V of w, and y,, respeclively, suek that

G(.):=G(.)nVislsc. onl.
‘Proof. Since G is pseudo — Lipschitz, there are U € N(z,), VeN(y, , k>0

such that G(x) is nonempty for all z € U and (3. 1) holds with V, =Y. Let

G be defined as above. Take a point (z, )¢ gr G. Given = = 0. we select 8 >0
such that k& < ¢ and B (y, k3) V. Now, for every ¢ Bz, 8 n U we have
from (3. 1) that y & G(x) —i—~1{{|t — T B (0, 1). Thus, there is y e G (z)
such that 7

yey+ kija—a | BO, Dyt kd B, 1.
From this it implies that y € G(z) A V,{|y —y || < . Hence G is ILs.c. on U.

The main result of this section deals with the pseudo—Lipschitz property
of implicit maps. Since this property is stronger than lower semicoatinuity, to
outain it we have to impose an additional requirement on the map F(p, x) under
consideration. Namely, we shall suppose this map to be locally Lipschitz with
respect to the first variable. Let us state the result.’

Given Bamnach spaces P,' X, Y and a set-valped map F: P X X-—» ¥ sﬁ_éh
that for every (p, ) € P X X thereis ¥, € F(p, ) satisfying | yp | =
{0, F(p, x)]. As in the previous section we assume 0 € F(p,,x,) and the
norm-functional in Y has Frechet derivative at every point different from the
origin. -

THEOREM 3.1, Suppose that

(a) For every p e P, F(p,.) is usc. on X;

(b) There are ¥ > 0 and a neighbourhood A X B of (p,.x, ) suchthai for

every w=(p, &, y) € (A X B X Y) n gr F there is a prederivative {, of F(p,.)
at (z, y) with p(t ) > v
(c) There is I = 0 such that

F(p, x) S F(p,x) +1lp—p.BOL  (3.2)
for all p, p € A and x € B, :

¥
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o+ respectively, such

Then, there are neighbourhoods U and V of py and x
that 6('p) c={xeV|0ek(p, x)} is nonempty for all p e U and G: U-— V
is pseado-Lipschiiz around (py» x,) with modulus k = 2 .

Y

Proof. Choose & = 0, I/ ¢ N(po) such that E(xa, 8 B and diam U: =

sup {Lp—p Il | p P’ o’:‘U}<=Tb SettmgV {x 1 lo — =, [| < I8} we shall

showthatUand V are the desired neighbourioods. Observe that if the inequality

dlz, G < kllp — pi (3.3)
helds for'arbitr.ary p, p € U and x € Z?(p) N V,;, where V, =

| le—=

lf g, then the theorem follows. Indeed, irom (3.3) we have

G AV, C G(p) AV + kilp — p BO), for all p, p' € U. Besides, the
proof of Theorem 2.1 shows that G(p) A V_, is nonemply for all p in a
nelghbourhood U’ U of Py

To prove (3.3), we consider the function

v(z) = dl0, F(p, 2l +-¢ ]l e — .

Since diam U = T—f we can take = such that

2lp—p1 7

-l g = —,

) 2
Cleariy, the lunction »(.) is lower semicont nuous because F(p’ ) is us.c. Let
«=v(x) =d[0, F(p’, x)]. By (3.2) we get

o = d[0, F(p', x)J_dm F(ps x)] — d[0, F(p, )] <l p— p'll < 0
Lemma 1.2 shows that there is z e B(xo, 8I) such thai
(@) < ofz),
F-z)< 2,
_ 2 _
] o(x) Lo(z) e |z ==, ¥ zeBlzy Sl
whieh implies S . :
flz)+ellz~20 < f(z), (3.4)
17—y <&, B
F) <f(z)+-2 e =2l VreB(zmy, 81), 8.6)

where f() = dio, F(p,.)].
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Sinte, |7 —ZH|<x—2a| -+ lii?'—-voll<l—5+~2£~:fé we COfi-

clude that 0 & F (p', x). Indecd, suppose the conirary, Then there is 7 & F (p’, x)
such that 0 == ||y |l= d [0, F'(p’, :) |. For W= (v, x 'l]) there is a prederivative
tof F(p',.)at (x, ) with p(t) > 7. Let y denote the Frechet derivative of the

norm — functiopal in ¥ at g According to Lemma 1.1 the function ¢, (y*, .) is
an upper (% — € ) — approximation of fatz. Sincef @ — ay || <16 we

find It > O such that B (x, !} < B(vy, d1) and /
f2), <A e G e = + (F— ) 112 ~ &1
for all ze B (x, 1) Combmmo’ this with (3.6) we have l
¢, (5% 1 — D+ ( + ) Iz ~Z|>0

for all z & B(x, 1), which implies

- inf ¢, G, )+ (3 +¢) >0,
z€8 2 .
where § denotes the unit sphere in ¥, We have thus arrived at a contradiction
' Y

because p(f) > v and ¢ < 5" Hence T & G (p’). Using (3. 4) we obtain

- 1 1 . , 1
I~ ej<—. f(x)=;{d [0, £(p’, @) ] — d[0, F (p, )]} < —lp=pl

Letting € — _;L we have (3.3), as desired.

Remark 3.1. Theorem 3.1 still holds if instead of (b) we suppose the follow-
ing conditions : The map Fis Ls.c. at (p,, xo) and for each w=(p, z, y) ¢
gr /¥ near (p,, &y, 0) one can finda prederivative { of F (p,.) at (x, y) such that
p(tw) >y for some v = 0. - ‘

) Suppose F : X ~» Y is a set—valued map such that for every (xypyeXxY
ihercis a point g e F (x) satisfying || g -yl =d [y, F(x)]

- ]

" THEOREM 3. 2. (Inverse function the -rem). 4ssumne ihgf I is continuous on X
andy &F (x ). Let the following condition be satisfied: There exists v ~ 0

such that for every w = (x, y) € gr F ne-ar (xo, y,) onecan find a prederiva-
tive t of F af (x, y) satisfying p (t,) > v. Then, there are neighbourhoods

U,.ﬂ[?:of w_ and V of y, such that

1. Ef(y).-: {zelU |y e F(xz)} is nonempty forall ye V,

v
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2. The map G isl. s.c. on V and d [x: G (y)] g-j- dly, F (x)] for every
: ¥ .

(., y) el XV, . -
3. The map G (y) = {rxeX | g el (x)} is pseudo—Lipschitz around (Yor )

with modulus k = 2 . '
J , .

The proof is Immedlate by applying Theorem 3. 1 and Remark 3.1 to
the map . -
' Fpz):=F@—p, * (peV)

Remark 3. 2. The resulfs obtained in Section 2 and 3 stil]l hold if instead of
£ we take the class of locally Lipschitz set-valued maps. The Banach constant
is then defined as in (8. ‘

The following simple example shows that Theorem 3. 2 is useful even in
the case the corresponding results of (1] and (2] fail.
ar if x>0
pr if <0
where xr € R and § = o >0, Using Theorem 3. 2 and the fact that

(hy:={rh | kelx B} (¥ h & R)
is & prederivative of E at (0,0), we can verify that the inverse set-valmed map

Ezxample. Let F (1) = ;

is pseudo-Lipschitz around (0, 0) with modulus —%-

=4
i

f&. APPLICATION : STABILITY OF INEQUALITIES

Given a closed convex cone K in a Banach space ¥ we ‘shall write y< 0

if —y e K. Let Q be an open subset of P % Y, where P is a topological space.

and X is a Banach space. Assume that
f(Po: x(}) % 0 . .
*where f: @ — ¥ is a single-valued map. We say that (Por xo) is a stable point

of the inequality : ,
, f(p, < * 4.1
1f to any ¢ > 0 we can associate a nelghhourhood I/ of p, such that

¥pel 31 € X satisfying f(p, xp)go,
p, = ) e and Hx —z, fl<e

Here the variable p plays the role of parameter, We shall suppose thay

K, ={gek | |y < 1} is a compact subset of Y. Theorem 2.1 applied

to the map F(p, ) : = f(p, z) +- K| ((p, ¥) & Q) yields the following
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COROLLARY 4.1. I f iscoatin ous and there s a neiyibour..cod 1> B of(po s 330 )
suen Lhat for every {p, )& A X Bwecan find a prederivative of f(p,.) at (x, f(p, )
salisfying p(t) = v for some v > 0, then (p; ,x,)is a stable point of (4. 1)

Remark 4.1. Under the assumptlon that for every (p, x) the map f(p, ) is
Trectiet differentiable in x, its derivative f.“xf(p, x) is coniinuous at (pgs xo) and

\'_?]f(po, @,) is an invertible map, H. Me!blou hi [7] proved a similar result. In
this case we have cnly to assame vr_f Po. Tg) to be surjective.

We now suppoce that X = R, ¥ = R™ and f(p,.) is locally Lipschitz on
X. Denote by A _f(p, xo) the generalized: Jacobian [4} of f(p,.)in=z at" xo. If

we set

thy ={Ah| A€ A_ f(p, zo)}, (hEX)

then fis a prederivative of f(p,.) at (g, f(p, %)) Using this fact and Corollary 4.1
we obtain ?

' COROLLARY 4.2 Suppose that f is a continious map. If; there exisls v > 0
such that for every. (p, z) in a neighbourhood of (po, %) we have inf
{C() 1 dea_[(p, x)} >« them (py, %) is a slable point of (4.1).

Remark 4.2. We can use the results of the previous Sections to derive
sufficient conditions for lower semicontinuity and Lipschitz property of the
solation set of (4.1).

Examples Let P=R,X =Y =R?, K= {(g,, y,) € R® [y; > 0, y, >0},
[(ps ®;> ) = (P 1z, [ +29, @+ 1p1)x;+pla, 1) Then (4.1) reduces to

the following system of nonsmooth inequalities

Ple 1+, <0

I p?signa 1
.Aa: ]f‘(p. :17) — P gn 1 B
2410pl p sign x,

: s
if z, 2-,—0

We have

From Corollary 42 it follows that (PO’ T, ) == (0, 0) is a’ stable point,
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