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THE DISC CONDITION AND
. THE LOCAL MAXIMUM PRINCIPLE

LE MAU HAI

INTRODUCTION

The continuous principle or the disc condition is one of the imporiant
geometrical properties of the complex spaces. An interesting problem in the
complex analysis is to study Steiness ol the complex spaces by considering the
continuous principle.

In the case of the Riemann domains over the Stein manifold this problem
has been solved by Oka [11], Norguet [10} and Bremmermann [2] by considering
the plurisubharmonicity of the boundary distant function. Recently, Fornaess
[6] has shown that there exist open sets in a Stein space satisfying the
continmous principle which are however not Stein.

On ihe other hand, as is well-known, one can say that the continuous
principle is sufficiently good for the study of certain problems in the complex
analysis, for example, for the extension problem of the holomorphic maps [13].
In ‘his paper, we study the realization of this principle for a family of the
Riemann domains over (2. In some special cases these results have been
obtained in [15]. '

In section 1, we prove that for an 1-dimensional parametric family of the
Riemanu domains over ¢*, the disc condilion and the plurisubharmonicity of
the boundary distant function are equivalent. In particular, when the family
is an open set in C", the result has been established by Slodkowski [15]. We
also consider the real atio 1 of the disc condition for open sets constructed -
from the spectram of hoiomorphic operator functions.

According to Shiffman’s results [13] we establishin section 2 the equivalence

beetwen the disc condition and the extension of the holomorphic maps for the
open sets of the complex manifolds satisfying the disc condition.
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Finally, in section 3 we prove the equivaience of the Steiness and the ma-

vimum local principle fos the Riemann domainsover C%. When n= 2 the result
has been proved by Slodkowski [15] and Wermer [16].

DISC CONDITION EOR A FAMILY OF STEIN SPACES

We shall use the following notations: _
A={zeC:{z]< 1}
={zeCrelz|=<1} with some r < 1.
For a complex space X, @ (A, X), denotes the space of all holomorphic
maps from A into X equipped with the compact open iopology.
1.1. DEFINITION

We say that the complex space X satisfies the disc condition if for all sequence
{r, yin @ (A, X), {f_} converges to a map f € O (A, X) whenever the sequence

{fn | Aﬂ} converges in O (Ad , X) for some r < 1 (cf. [13]).

Eor this definition we first give some examples.

1.2. By maximum modulus principle, C* satisfies the disc condition and
“hence any Stein space does.

1.3. Let G be a complex Lie group. Then by f8] there existsa biholomorphic
map from G onto I' X §, where I is a commutative complex Lie group and
Sis a Stein space. Let L be the tangent space of I" at unit clement, Since T' is
commutative the map exp: L — I" is a holomorphic convering map and hence
by [13] I' satisfies the disc condition. Thus G salisfics also the disc condition.

1.4, Considering the sequence f :A — CP defined by f () =(2%z% : 1) it
follows that CP does not satlsfy the disc condition.
Let p:Y —» C? be a Riemann domain over C? , Denote by dy (x) the
boundary distance function on Y.
dy(x) = sup {e > ¢ : there exists a connected neighbourhood U
containing x such that p; : U =2 A (p(x, <)

Where A(p (z), £) denotes the polvdisc with center p(z) and radius =. Let

X be a complex space, ¥ be a Riemann domain over C? , For any open set
QCXXY,Q =@ X )nQandd(z, aQ )=dg (2) for any z & _
. xr

1.5. DEFINITION
Let Q be as above. Then  is said to sattsfy the boundary condition if aQ =
= a2 (:c X Y) for every = « X.
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1.6. THEOREM : Lel Q, X, ¥ be as above. Then!

(i) If Q is relatively compact, Q salisfies boundary conditicn ife projection
pri @ of Q onio the first componenl salisfies the disc condition and the map
@(x, z): =-—log d((z,312 ) is plarisubharmonic on , then £ salisfies the disc
condifion. ,

(i) If 2 satisfies the disc condition, then @(x, z} is plurisubharmonic on L,

Proof. (iy Let {fn} be a sequence im OA, ) which converges to f in
O(AH. Q) for some r <1, and r, = inf { 0 << s < 1: f is extended on As1 }
‘First we show that r; = 0. Assume the contrary that r; > 0. Consider the
holomorphic envelop Y of ¥. Then ¥ satisfies the disc condition. Hence
Pr; Q X Y satisfies the disc condition, too. For the canonical map g: Q —
- Pry Q x Y, let fn:gf .+ Then {nfn} converges to | = g.f uniformly on
every cor:ﬁpact set of Ar;‘ Sinece Pr; Q x Y satisfies the dise condition {f;}con-

verges then to f in O(A, .Prl Q x Y). Let ¢, be arbitrary point of A with [#]=
= ry. Write f(tu) — (zy 2)ePr,QX Y. Letf (o) = (a: )z ) co f () =

= gf, (f)—-(’v . z o) Since T L) — f(fo) we have £ — Zo ~n — % On the
other hand, since Q is relatively compact we can assume that (z , 7, ) conver-
ges 10 (x,, Z,) € 0. First we suppose that (xp %) € Q. By assumption ft) =

= (%, Zp). Then gf(ty) = (:1:0, Zg) = f (t). Take a compact mneighbourhood
W ,, ©of t such that f (W ) is contained in V(xo,?o) where

Vize, 7o) is a mneighbourhood of (x, zo) such that g¢71.
: . V(x.,, zo)
is biholomorphic onto a neighbourhood V(zo %o) of (ry ). Then

~

;E'n — fon W, Thus g 1f — g—lf on W, Obviously, g '11? = f  and

A 4 =TF. This shows that f can be extended holomorphxcally on
o ry
W[ Covering the circle |z] = ry by such neighbourhoods W, with #, € A
tt,] = r, we infer that f is extended holomorphically on 4 , w1th r* < ry. This
contradicts the choice of ry. Hence r; =0 and f is extended holomorphically
on AN{0} Obviously the sequence {f } uniformly converges to f on every
compact set of A\ {0}. As above, for {, = 0 we can prove that f is extended

holomorphically on.A and the sequence {f } converges to fin 0.(4, Q).

Thus it suffices=to skow that (z, zo) € Q. Indeed, assume that (g, Z) € L.
Then (@, %) € 0. Since;Q satisfies the boundary condition, it follows that
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v € 9%, . By plurisubharmonicity of ¢.f, we have sap ¢.f (A)

neEN
[A —1] e
= sgup cp.'fn (2) = ¢ <C + oo for s 3-8 sufficiently small,
neN
P —fp =&

Thus £p..fn (fy) < c. Hence d(zn, anu) > e~ 0,

Take 0 << 26 < e™° ThenA(z , 28) = {z e Qe : d(z, z )< 20} is relatively
compact in Oz for every n. For every z e A(z, 8) we have d(z, z,) <
< d(z20) 4 d(20 2,) < 8+ d(z, 2)). Thus d(z, 2 ) < 25 for sufficiently
large n. Since X (z , 28) C Qz and & -» zy, i* follows that A(zo, 8) C ﬁ%.
This is impossible, since z, € BQ%. Hence (i) is proved.

(ii) By [9] without loss of generality we may assume that X is a complex
manifold, Suppose ¢ being not plurisubharmonic at u, = (¥, z) € &. Then
there exists a disc A={uy+2 #1121 <1}, A C Q and a holomorphic function
f over ¢ such thato(u, + A u) < Ref (A),|A]=1 We may assume that
¢ {ug) = max (U 4+ A u)) and ¢ (1) > Be f(0). Wrile uy 4 2 u, = (x5 + Ay
2 + hzp). Then —log d{zy + Az, 80 4o ) SKRef (M) :jdl=1

—log d (25, 30z ) > Re f (0)
and —log d(z,, aﬂmo) > —log d(zy -+ Az, anOH_xI) with | A |1

Since —log d (Zq, aﬂxu) > Re f(0), lhen d(z,, 00, ) < e~ Ref(0) —
[9)
M . Note that p; < 1.
[ =T |

Take a uait vector a & C" such that:

d (% aQ.xﬂ) = d(Zo % + pg el® ., e7 /) g,
Since 1y + A u; €Q,

(i1 + Ay, g-hup - p B O L or| e T

= d{zy BQ%) < d{gg + Az, agxo‘f‘?\-m) for every [A]<C1 and 0 < p < g

=1e 1@ |. Put p, =

Therefore o + Aty + p . €% . e 9 q ¢ Q. Thus for 0 < p< p; we may define
the maps f  : A~ Qand f, : AN{0} - 2 by

fo) =+ 2uto. el e-1(0) g,

fP1 (A) =+ ru 4 o4 &%, o=f10) a.
Obviously, fp () converges to fpi (A) as p = p,in O (AN {0}, Q). Since Q satisfies
the disc condition, ffil (0) € Q, This contradicts the condition that fpi ©0) =

= u, + p, €. e=/19) g & 3Q. The prool of the theorem is complete,

in the case where X is an one-dimensional complex space, we have the
following result.
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17. THEOREM. Let X be an 1-dimensional complex space, ¥ and <& salisfy
the condition of Theorem 1.6 such that Pr, Q is not compact. Then Q satisfies
the disc condition if and only if the function ¢ (z, 2) = —log d(z, BQI)
is plurisubharmonic,

Proof. By Theorem 1.6 it is enough to prove thatif {f } C @ (A, @) and
{f,} converges D04, 0 to f for some r;> 0, then {f } converges to f in

0 (A, Q). As in 'lueorem 1.6, it suffices to show that if f{;e A for |1y |==r,
then f can be extended holomorphically on a neighbourhood of #,. Since Pr, Q
is not compact and dim Pr;Q = 1, Pr;Q is Stein by [7]. Hence Pr;Q satisfies

the disc condition. Using the notations of Theorem 1.6, it.-follows that {f;}

converges to f uniformly on every compact set of A. Put f )= (x,, z,)

Since Q is relatively compact, (v, z ) has a limit point (@, z5). As in the

proof .of Theorem 1.6, g(®q zp) = (%g, Zo)» We may assume that (ax,, zo) €0 Q.
Pat f = (fi, fﬁ). Then fi(to) ~ T, Take a neighbourhood U/ of =, in Pry @
such that (U,9, A) is an analytic covering, where A is an open disc in
C with the center at zero and 6-! (0) = x,. Note that {efi} converges to 8 f?
uniformly on every compact set of A and B‘fi(tc',) — 6 f (0) = 0. Applying
Hurwitz’s theorem, without loss of generality we may assume that for every n,

. ' 1
there exists an A, € A such that A —~ 1, and 0 fo(d) =0. Thus f (A )=

= [@o» fi (2,)) and fi (J\H) — Zg %o € B_QIOQ. This contradicts the following
fact: ‘ .
0_°>sup(pf(7t) 1irnq>fn (A) = limg (wo.fi A=

nelN n>N n n_>N

h—t (=¢
— lim log d(fi ()9 Q%) = oa,

The prool of the Theorem is complete,

Remark : When X =Y = C, Theorem 1.7 has heen proved by Slodkowski
{15]. In Theorems 1.6 and 1.7 the disc condition for open sets @ C X X Y are
considered. Concerning the special case where sets Q are constructed from the
spectrum of holomorphic operator, we have the following theorem..

1.8. THEOREM : Let X bea complex space safisfying the disc condition, B a Banach
algebra and T : X — B a holomorphic map, Then the open set:
, Qr={(@)eX XC:2e6T (@)}
sattsfnes the disc condltlon



Proof. For each b € B as ussal, 6(b) denotes the spectrum of b. Suppose
that f € O(A, Q7) and {f } converges in O 4,.9)tofe0 (4. Q). Sin-
ce X X C satisfies the disc condition, it follows that f € O (A, X X ¢) and
if .} converges to f in O(A, X X C). Thus it sulfices to show that f(A) Q. As
in Theorem 1.6, it remains to prove that for every t,€ O, |t)| = r there existsa

neighbourhood Wio of { such that f(W,) < W . Write f, in the form f =

= (f1,f?)and f=(f!, f?). Then, since X satisfies the disc condition, fZ converges
r'n n
to f1 in O(A,X). Put z,=lim fi (t,) and take a Stein neighbourhood U

of z . We may suppose that U CA™, where A™ is an open polydise in O™ for
some m. By Cartan-Bungart’s theorem [3], 7 can be extended to a holomorphic

map T: A™ — B. Consider Qjp = {(z, 2)eA™ x B: z € 6T(x)}. Since U is an

analytic set in A™ | it is casy to see that QT is an analytic set in Q?. Consider-

ing a sufficiently small neighbourhood V, of t,» we infer that fnconverges to
o

finOW, n4,, aly ¢ oV, n 4. gz'i) Let ¢(x,7) = —log d(z,aﬂf%) . By
: ‘

the results of Soldkowski [15], ¢(x,2) is- plurisubharmonic on Q. Hence for a
¥

sufficiently small positive number & such that {A:jA—t 1 < 8} ¢ V,, we have
a

€ = sup of (M) < oo
At (<& "

put W = (@, z)eo. L (, 4)<Cgand£\(’ ={hilh—t <)

Then (pf (M) << C for every A € A, %, Henee f (A(’ )) C W for every n>»1;

implying ij (A(t )) C W.If (z, £) € Wthen ¢ (x, z)= —log d{z, 3 QN( ))<_ O
n=1
Hence d(z, 300 ) > ¢ €> 0, Take0 < & < ¢ C, then Az 8)={z e C
T(x)
i . . o
P Q,\, .Let z = lim f‘? (()recC. Then |z —2z | «<—,
| 6} C T(L) 4] > oo n O) ] 2
A 6cﬂm P ) € W. Pat
Z ~ or every (z, z) € W. Put:
( e 2) T(x) y
W, =@z et:lzmz 5
i = ] € . “ “o 1 < _2- M

3 2 = — ) .t1 2 T =
Since fn“o)_’”o and f (! )=, (;a(io), fn(fo ) € W, it follows tihat

It
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z e Pr,W. We may assume that fn(A(t")) C W, and f(A(ro)\ {0}) ¢ W, Let

x & Pr; W, and z_ & C such that (z, z_) e Q? and |z, — 7,1 < 2 . Then

. . m
A (zo ) %) C Alz s 3 Q;( ) Thus we may define holomorphic maps H and
= R

G on Pr, W with values in GL(A(F(zO , g), B), where A(AB)  denotes

the Banach algebra of all continuous maps from ‘A into B, holomorphic in A
by the formulas:

H(z)(z) =T(z) ~ 2.

G(z)(z) = (T(x) - z)~ L.,
By Benke-Zome:’s Theorem, I and G can be extended to holomorphic maps 7
and G respectively on a neighbourhood of f1(B) containing z, . Since HG=GH=
= id on Pr,W,, we have 11 G = G H = id. This implies that (:r:o, z'o) £ ‘QT and
hence f(W,) ¢ Qp for some neighbourhood W, of {,. The proof of the

0 L]

theorem is complete.

When X is Stein, we have the following

1.9. COROLLARY. Let X be a Stein space and- T: X — B be a holomorphie
map. Then O, = {(%,2) € X X C : z € 6 T(x)} is Stein.

Proof. First, s-uppoaei that X is emhbedded in C* with some n, Consider
the diagram : I :

X i@@n
T 1, —
B‘(/ :F

By Cartan-Bungart Theorem [3] T can be extended to a holomorphic map

7. C" - B. By Theorem 1.8, Q%, satisfies the disc condition. Hence Q,I.: is
Stein. Since QT is an analjttic subset of Q,i: ) QT is also Ste:m. In general,
consider the commutative diagram:

~ %

X > X

A

s oro—i |
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-~ ~ —_
where 8: ¥ — X is the normalizalion of X. Let §:Q_ - Q. (z, z) =
T

(o, zy= (z, ¢ be the map induced by 0. Since 6 is finite, proper and
surjective, by [9] it suffices to prove that & is Stein, Let X=11W,, where
r Jer

W . are irreducible branches of X. Then Q  =1]1Q. , where T = T
J
T jer T, ; v

Since W is normal and irreduacible, it can be embedded into C™ I for some mJ1

by [7]. Hence Q. is Stein for every j > 1. Thus Q. = [ Q__ is also Stein.
Tf - . T Jjer Tj
By Theorem 1.8, the following example shows that the disc condition and
the boundary condition are independent :
1.10. Ea:ample: we consider the Banach algebra B = [_ = {(hn).‘
tA_eC sup | A, | < oo }.
Obvmusly, 6 (f) = {A } for every f= (A,) € B. Now take two sequences (2, 3

and (B,) such that:

T =t s <1<

N
B ={z: 121< 5}

Put A = {z: 1z] < 1), Consider the map f: A — B given by f(}) =
= (g, Mys g> MByomvanstys ABpsen). Then 6 (f)= AU R=4, DB, where
. 2 .
oA ={a,} and ® = {Ap, | Since |28, | < [} it follows that BBy,

Take an increasing sequence of the positive number {} }, &, — —é_ as k — oo.

Consider {lk. Bn}. We have [A,. B, | < —i— | A | <—§—. For each k; take zk‘

_ 2 1 1 - —

such that —3-7\k < 1z 1< -3—aﬂd T indir Then 6 f(2,) = -’fkuz_ IU{AR- Bt
3 ’ .

Since z, ¢ &; and z & {A, . B} we have z, '€ 6/ (A,). Obviously (A, z, )}~

3 .

1
(%, -;—) and %E an}". Thus Sl, does not satisfy the houndary condition.

In tke Example 1.10, B = l.. is not an algebla of holomorphlc anctlon
For such algebra we have the following theorem,
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1.11. THEOREM. Lel D be an open, relatively compact{set in C, B= (D) be
the algebra of the holomorphic in D and continuous en D functions, Z be a complex
space and T: Z — B be a holomorphic map. Then the set

Qr = {(x,z) e XX C:z5 6 T(x)} .
satisfies the boundary condition.
Proof. Suppose that QT does not satisfy the boundary condition. Then there
exists (v, z,) € @, such that (z, z ) converges to (x), Zg) € 0y but z,

€ 3Q7°. Thusz, e Int 6 T(z,). Puta, =Tz € B, a = T(sco)'e B,a=T(x,) e B.

Nole that 6(a) = @ (M ). Obviously, @(M ) = a(D) = a(D). Since e

“0
Int 6(a) = Int a(D)), there exists we D: a(w) =z, . We may assume z,=0therefore
a(w)=0. Since 0 ¢ Int 6(c)and dim D = 1, we have » € D. Take a neighbourhood
U of w such that ' ¢ D and consiier the analytic set V(a) = {G_I(O)} in U.
Since a== 0, we can assume V(a) n U = {o}. .

Consider the sequence {f } = {z, — a,} < A(D). Since {f } converges to f
uniformly on all compact sets in U, wheref = —a, and a{w) = 0, by
Hurwit’s Theorem there exis!s a number N such that n > N, V(fn) NUZ$.
Thus V(fn) N D # ¢. This contradicts the éondition z, € 6((1“). The theorem
is proved.

2. ‘PISC CONDITION AND HCLOMORPHIC EXTENSION

First we recall some definilions.

21. DEFINITION. Let X be a complex space. We say that X saiisfies the
Hartogs extension condition if every holomorphic map f: H(r) — X, where
H ()= { zenk: Lz, 1 <1, 1<j <k—1lor|z |>1—r} can be exiended
holomorphically on Ak (cf. [13]). _

2.2. DEFINITIONs Lef X be a complex Space, Q an open set in X. We suy that

Q. is a local Stein if for every p € 3 there exists a neighbourhood U of p such
that @ N U is Stein. (cf. [5)). :

In this section we prove the following theorem.

9.3. THEOREM. Let X be a compler manifold satisfying the disc condition,
an open set in X. Then the following conditions are equivalent :.

(i) Every sequence {fﬂ} < O, ) converging in O(ANO, X) converges in
(A, Q).
(ii) © satisfies Hartogs extension condition,
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(iif) @ is locally Stein.
(iv) The restriction map O (M, Q) O (M, Q) is surjective for every
Riemann domain M over a Siein manifold.

Proof We prove the theorem in the following scheme :

(i) —~ (ii) — (iii) —(i) and (ii) «—— (iv).

(i) - (i). It is known by [13] that if Q satisfies the hypothesis (i) then &
satisfies Levi extension condition and hence Q satisfies Iartogs extension
condition.

(i) — (iii). Let p ¢ 9. Take a Stein neighbou'rhood V of p. By Docquier-
Grauert’s Theorem, it suffices to prove that Q@ n Vis Hartoos convex. Consider
a holomorphic embedding ¢: H, (r) ~ 2 n V. '

Since V is Stein, ¢ can be exlended holomorphically to ¢;: Ak - V. On
the other hand, since © satisfies Hartogs extension condition, ¢ can be extended
helomorphically to ¢,: AKX _, Q. By uniqueness we have ¢, =@, Thus ¢ is
extended holomorphically to 111 AF - VAL and hence V AQis Hartogs couvex.

(iii) — (i), Let {f.} eO(A, @) such that {f } converges to some f in,
0 (AN{0}, @). Since X satisties the disc condition f eO A, X) and {f,t con-

verges to f in @ (A, X). We shall prove that £ (0) € Q. Obviously, f(0) Q. Since
Q is locally Stein there exisls a nelghhomhood V of f(0) such that V n Q is
Stein. Take a sufficiently small neighbourhood A of 0 such that for n = N,

f (B;) TV nQ Sinee V n Q satisfies the disc condition, f e @ (A;, V. n Q)
Heace f (B0 € Q.
Finally, (ii) and (iv) are equivalent by [13].

2.5. Remark. J. E, Fornaess and R. Narasimhan [5] have consiructed a
Stein space X with ‘'dim X > 2 such that U\{a:o } satisfies the disc condition

for every Stein neighbourhood U of x, in X. Since dim X > 2t follows that
X\{z,} is not locally Stein at x. '

2.6. THEOREM. There exislsa complex manifold X which is an increasing union
of Stein open sets and does not satisfy, the disc condition.

- Proof. As in [6] for each natural r we put:

3 n 1
an (Z,w,'l’])GC:wnﬂpn(z,pn(z)=r—! (:_._._._)E.
. k=1 %

Obviously, ¥ , are closed submanifold of ¢ . Hence M , are Stein, For each n,

i et . . M
consider the map: v : ¥ — Mo

el
g
D



(z,w,'n)—>(z,w, n(z-— n—lf-l))'

Clearly, v, is biholomorphic from M, onto M, , \ }

K sz. Thus we

can define M = _lim (Mn s ¥, ). We shall prove that M does not satisfy the disc
condition, Let f_ € O{A, M) be a function defined by '
1 -
=M= ——.», ®)-
Thenf (8)C M, ,. We prove that {f } converges 0 (AN\{0}, ¥). For each

k, consider ff ce0(A g r M) defined by ;

——
¥

k+1
1 P (M)
R FE W N S LeA g
* ’ 1 ’ g
n -+ \ 1 . et 1
n+41
where A 1 g
k1’
Note thatf €0 ( __1__ . M ) For every n > k, {fﬁ} converges in
k17 ' X
0 (A 1 » M )to the funciion fk given by fk(a) — (;\, A __pk ( ))_
et h

On the other hand, since the diagram

AN t

> nM.

\ /1.7 e

is commutative, we have Vg e Ypr fP = f?, where p, q are natural numhers

with p < ¢. Thus we can define a map f : AN{0} — ¥ by setting f(2)= fk (2)

for z e A 1 " Since
1’
M) to f. Now suppose that M satisfies the disc condition. Then {f } converges

to f e O, M) in (A, M). Consider AE ={rjzigeh, O<e < L.

1 : 0, the sequence {f | convergesin O(A\{O}

Since {f } uniformly converges onA , it follows that u f (A ) is compact;
n=

Since M = k\iiMk, M!: - Mk+1 and Mk is open in M for eyery k> 1; there
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P ® ) ror

B oo — (ko).
exists an ko such that . fﬂ (8, CMffo' Hence f (_7\)‘ = (l,?t, =

n=
all A € Aa\{O}. Thi_ls, f¥ (1) can be exitended holomorphically into A_. This
is impossible, because pko(O) =+ 0. Hence i does not satisfy the disc condition.
The theorem is proved. | |

2.7. Remark :Let M, be open sets satisfying the Hartogs extension condition

i o0
and M, C M, , for i=1,2,.. Then M = M, satisfies the Hartogs
i=1
exlension condition.

Proof : Assume that f: H (r) — M is a holomorphic map. Let us set
T -e)pk = frenk: |z, | <1—¢ 1 <i<Kk), Foranys <1, we denote:
Hkgs(r)z{ze ARilz | <r<L1<i<k—1, ]z, ;<s}u
_ u{zeA":[zki;-s—rf_
Take ' << r and ¢ > 0 sufficiently smail such that: ¢ —;— r’ << r. Then
(I—E)H ) c P ().
By co'mpact‘ness of f [ (7= S)Hk (r’)] there exists n satisfying

(1-¢) , }
o o f[ Hy (r) | & My,
By hypothesis, f can be extended uniquely to a holomorphic map. f, :

(1—%) ’ ~
k > M., Thus zfei defines a holomorphic map f: Ak — M which is an

extension of f.

3. DISC CONDITION AND LOCAL MAXIMUM PRINCIPLR

3.1. DEFINITION [15]: We say that an atgebra A of continuous functions on a
locally compact space X is a macimum modulus algebra if for every f e A, and
for every relatively compact open set N C X; we have:;

max | f [ =max | [ ]| 5\ n:

A connection’ between the Steinness of the open sets in Cﬂ and the loecal
maximum principle is cstablished in the following theorem.

32. THEOREM. Lef Q be.an open set in Cn, Then the following three condilions
are equivalent:
(i) Q is Stein,
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(ii) For every analytic set Z (C C" with dim Z 2> 2, the algebra of all polyno-
mials restricted to Z \ Z n Q is ¢ maximum medulus algebra. ‘

(iii) For every analytic set Z . C® with dim Z > 2 and for every plurisubhar-
monic funetion ¢ or a neighbourhood of V, -which is relatively open and relati-
vely compact in Z \ Z n Q, the following relafion helds :

max (pﬁ; = max (PIE\V' (%)
Proof : (ii) — (iii). Since (iil) bas local property we may assume that Vis
contained in an open polydisc U of C? and ¢ is plurisnbharmonic on . Let

P (/) denote the set of plurisubharmonic [unciions on U satisfying (x). Then
it is easy to check that:

a) For every f € O(U), |f| e ).
by If {f, } C O(U) and ¢, are constant, then sup (c, logf,) s C}(L)

¢) It {$,} © P(U) and ¥;| ¥, then © < P ().

Since every plurisubharmonic function en U is the limit of a decreasing
sequence of the continuous plurisubharmonic functions (see [12]) and every
continuous plurisubharmonic function on U can be represented as in b) (see
[14]), it fellows that () holds for .

(iii) — (i). We shall prove this implication by induction on n. If n =2,
‘this has been proved by Slodkowski [15]. Assume now that the implication

has been proved for C™with m < nand n > 2.

We shall prove the statement (i) for C". For z e o, we write z =
=@, e X ¢r1, and put Q =0n (a: e C"_I), zePrQ,
By Theorem 1.6, it suffices to prove that the function ¢(z, z)y=— logd (z, an)

is plurisubharmonic. By [5] it remains to show that the reslrig:tion of ¢ on
every complex line is subharmonic.

First consider the case L =={x} X C" "1, Then by inductive hypothesis
—log d(z, o Qm) i Q.NL is subharmonic.

Now consider L = {(A, ak + 0): A € C, @, becr 1y,

o(r, ak 4 b) = — log d(ad + ,0Qy) = —log min { @ — ah —bf:

meaﬂh}=logmax{|}w-—-ah—bl]——I:weBQA}.

Then LNAQ = { (A, ak +4 b) : ak + -be Q). PutU={reC:
ak - be 2y} and B(A) = max low—akh— b 1. For each a ¢ C and each

polynomial p(L), consider the fanction ¥ on U defined by :

¥ (A) = | exp p(A) | exp | e { B(A), A € U,
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By Cole’s Lemma {1} anid Hado's Théorem [i], it i8 choligh to prove thai v nas
local maximum property. Take »“¢ [ and consider an open \polydisc D in
C containing 3 and D  U. Put V = C?*\QnA (DX C"~ 7). Then V is relati-
vely open in CP\& . Obviously V\V C (@D x ¢®™ 1) n (€™ ). Then the

funciion 8 (A, w) = | exp p{A)| exp le“?\ 1" T(Aw) (where v (A, ) _
lw —aa — & | _1) is plurisubharmonic on a neighbourhood of V By (ii)
we have

w(k*)mmax 8(2* , w) < max __ 8§ (A, w) = max 8§ <

(O = BQ?\‘* (7\, w)EV . v \ L4

max 8 | BDXCr—1) [} (C? Q) == max ¥ | 3D, Thus ¥ has the local mazimum
property on U. Hence q)jLnQis subharmonic., By Theorem 1.6, Q is Stein.

(iif) - (ii) is trivial.
(i) — (ii). Let Z be an analytic set in C" with dimZ > 2. Put Q , = Q n Z;
Then Q,, is Stein. Hence there exist a strongly plurisubharmonic exhaution
fanction 8 on ©, by [5}. For every ¢ > 0, put QZ" == {a: (€ 2, 8x) < ch
Then Qg is relativeiy compact in . First we prove (x) for QZC. IetV be a
relatively open setin Z \ Z N Q; and @ be a plurisubharmonic function
on a peighbourhood of V. Then ¢ -+ -z- — @ as n — oo and p - —i— is strongly
plurisubharmonic on a neighbourhood of V. Obviously, if (%) holds for évery
¢ -+ -i—, then () also holds for ¢. Thus we may suppose ¢ is strongly pluri-
subhamonic. Let @ be a strongly plurisubharmonic extension of § og a

neighbourhood O of QZ in ", By [12] such an exitension exists. Put

Yy

QO ={z « fi:’b’(a:)<c}.

[ . . . v
Then anc N Z= BQZ. Let max Py =9 (z0)- By maxlmum p_rmcnple-ior plu-
risubharmonie functions z, € aV. But aV — (V\V) U Vn OQ;). If zy V\V
the theorem is proved. Consider the case z, € V N aQ;. Then z; & 38 . Since
/ [

fic is stromgly pseudo-cenvex, there exists a polynomial P(z;, Zgees 2,) and
a ball B(za, r) such that

Bz 1) 1 O, A V(P) = {z,}

217



where V (P) denotes a zerc-set of the polynomial P (Cf. .[7]. Take a neigh-
bourhoecd W' of z, sufficienlly small such that W B (zo, 1) N V(P). Then

WA Qc = ¢. Hence W C Z\QZ. Sinee V C A’\QE and V is also aneighbour-
hood of z, we may take W such that W C V, Then max PrwAvP) A Z T
= (z,). Since dim (W A V(P) A Z)>1, ¢is constant on W N V(P) n Z.
This contradicts the strong plurisubharmonicity of ¢. In general case, let V be
a relatively open set in Z\ZAnQ, ¢ be a plorisubharmonic function on a

neighbourhood of V. For each n take Vv, a relatively open set V in Z\QZ

+50 . . .

such that V. O Vn—l—l and V= n V_. We may assume that ¢ Is pluari-
n=1

subharmonic on VH for every n > 1., Then max ¢ = lim maxz g | *1;"

= lim max ¢ | vy, T maxe ! ¥\v. The proof of the theorem is complete.
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