LOCAL CONTROLLABILITY FOR LIPSCHITZIAN DISCRETE-TIME SYSTEMS

NGUYEN DONG YEN

1. INTRODUCTION

Given a subset Ω of the Euclidean space R^m and mappings $f_k: R^n \times R^n \to R^n$ (k = 0, 1, 2,...), let us consider the discrete-time system

$$\begin{cases} x_{k+1} = f_k(x_k, u_k), \\ x_k \in R^n, u_k \in \Omega \ (k = 0, 1, 2, ...) \end{cases}$$
 (9)

and suppose that

$$0 \in \operatorname{int} \Omega$$
, (1)

$$f_k(0,0) = 0$$
 (2)

The aim of this paper is to give some sufficient conditions for local reachability and local controllability of this system under the assumption that \boldsymbol{f}_k are locally Lipschitzian.

When the mappings f_k are continuously differentiable, the controllability problem was studied by L. Weiss [1]. Our results extend Theorem 2 of that paper. The reader is referred to [2] and the references there in for the development of the theory of controllability of discrete-time systems during the last twenty years.

Our main result is Theorem 3 formulated in Section 2 and proved in Section 3. Some corollaries including the mentioned above theorem of Weiss are given in Section 4.

Throughout the paper, the following notations will be used: N(x): the collection of all neighbourhoods of x,

 $B(x, \delta)$: the open ball around x with radius δ ,

 A^* : the conjugate operator of A (or, the transposed matrix of A if A is a matrix),

int M: the interior of M.

Consider the system (\mathfrak{D}) and suppose that the conditions (1) and (2) are satisfied. As in [1], if u_0 , u_1 ,..., u_{M-1} are some vectors (controls) in Ω , $x_0=a$, $x_M=b$ and $x_1, x_2,..., x_M$ are defined by (\mathfrak{D}) with the chosen vectors $u_0, u_1,..., u_{M-1}$, then we denote the fact by the symbol

$$a \xrightarrow{u_0, u_1, \dots, u_{M-1}} b.$$

DEFINITION 1. System (D) is said to be locally reachable (from the origin) after M steps if there exists a neighbourhood $U \in N(0)$ with the property that for every $x \in U$, there are M vectors u_0 , $u_1,...$, $u_{M-1} \in \Omega$ such that

$$0 \xrightarrow{u_0, u_1, \dots, u_{M-1}} x.$$

DEFINITION 2. System (D) is said to be locally controllable (into the origin) after M steps if one can find a neighbourhood $U \in N(\theta)$ with the property that for $x \in U$, there are M vectors $u_0, u_1, \ldots, u_{M-1} \in \Omega$ such that

$$x \xrightarrow{(\mathfrak{D})} 0.$$

Recall that a mapping f from R^p into R^q is called locally Lipschitzian at $\overline{x} \in R^p$ if there exist a neighbourhood $U \in N(\overline{x})$ and a number L > 0 such that $||f(x_1) - f(x_2)|| \le L ||x_1 - x_2||$, for every $x_1, x_2 \in U$.

As usual, the set of linear operators from R^p into R^q is denoted by $L(R^p, R^q)$. Every element of this set can be identified with a $m \times n$ — matrix.

DEFINITION 3. A closed convex set $\Delta \subset L(R^p, R^q)$ is called a shield for the mapping f at $\overline{x} \in R^q$ if, for any $\varepsilon > 0$, there exists $U \in N(\overline{x})$ such that: whenever $x_1, x_2 \in U$, there is an element $A \in \Delta$ satisfying

$$|| f(x_1) - f(x_2) - A(x_1 - x_2) || \leqslant \varepsilon || x_1 - x_2 ||.$$

This definition of shield is equivalent to the original version given in [3]. Now let us state two known results.

THEOREM 1. Suppose that f is a mapping from an open set $E \subset R^p$ into R^q . If $\Delta \subset L(R^p, R^q)$ is a compact shield for f at $\overline{x} \in E$ and every $A \in \Delta$ is surjective, then $f(\overline{x}) \in int f(U)$ for every $U \in N(\overline{x})$.

THEOREM 2. Suppose that f is a mapping from an open set $E \subset \mathbb{R}^p \times \mathbb{R}^q$ into \mathbb{R}^p and $f(\overline{x}, \overline{y}) = 0$, where $(\overline{x}, \overline{y}) \in E$. Let Δ be a compact shield for f at $(\overline{x}, \overline{y})$ such that for every $C \in \Delta$ the operator $A = pr_x C$ is nonsingular. Then, there exist $U \in N(\overline{x})$, $V \in N(\overline{y})$ and a locally Lipschitzian mapping $\varphi: V \to U$ such that: for every $(x, y) \in U \times V$, f(x, y) = 0 if and only if $x = \varphi(y)$.

Here, $(pr_x C)(h) := C(h, 0)$ for every $h \in \mathbb{R}^p$.

Theorems 1 and 2 are due to A. D. loffe [4] and P.H. Dien [5]. Some extensions of these results can be found in [8] and [9].

Before going further, let us recall Clarke's concept of Generalized Jacobian of a mapping f from R^p into \tilde{R}^q which is locally Lipschitzian at \overline{x} : the Generalized Jacobian of f at \overline{x} , denoted ∂f (\overline{x}) , is the convex hull of the set of all the limits of the form $A = \lim_{x_k \to \overline{x}} f'(x_k)$, where $f'(x_k)$ is the Fréchet derivative $x_k \to \overline{x}$

of f at x_k . It is known from [6] that $\partial f(\overline{x})$ is a compact shield for f at \overline{x} .

Suppose the mappings f_k are locally Lipschitzian at $(0,0) \in R^n \times R^m$. Denote by Δ_k the Generalized Jacobian of f_k at (0,0) and define the following sets (called the Partial Generalized Jacobians of f_k at (0,0): Δ_k , $x = \{\operatorname{pr}_x C: C \in \Delta_k\}$, Δ_k , $u = \{\operatorname{pr}_u C: C \in \Delta_k\}$, where $(\operatorname{pr}_u C)(v): = C(0,v)$ for all $v \in R^m$.

We are now in a position to state the main result of the paper.

THEOREM 3. Assume that the conditions (1) and (2) are satisfied and f_k ($k=0,1,2,\ldots$) are locally Lipschitzian at (0,0). If there exist $P_0,P_1,\ldots,P_{M-1}\in L(\mathbb{R}^n,\mathbb{R}^m)$ such that the convex hull of the set

$$\Sigma = \{ A_{M-1} \dots A_1 B_0 P_0 + A_{M-1} \dots A_2 B_1 P_1 + \dots + B_{M-1} P_{M-1} : A_k \in \Delta_k, x \quad (k = 1, 2, \dots, M-1), B_k \in \Delta_k, x \quad (k = 0, 1, \dots, M-1) \}$$
consists only of nonsingular operators, then (D) is locally reachable and locally controllable after M steps.

3. PROOF OF THEOREM 3

Let $P_0, P_1, \ldots, P_{M-1}$ be operators such that the convex hull of Σ consists only of nonsingular operators.

Proof of reachability. For every $v \in \mathbb{R}^n$ let us set

$$\begin{cases} x_{1}(v) = f_{0}(0, P_{0}, v), \\ x_{2}(v) = f_{1}(x_{1}(v), P_{1}v), \\ \dots \\ x_{M}(v) = f_{M-1}(x_{M-1}(v), P_{M-1}v). \end{cases}$$

$$(4)$$

Since $0 \in \text{int } \Omega$ and P_k v (k = 0, 1, ..., M - 1) are continuous mappings, we can find a real number $\sigma > 0$ such that $P_k v \in \Omega$ for every $v \in B$ $(0, \overline{\sigma})$ and every $k \in \{0, 1, ..., M - 1\}$. Define $\varphi(v) = x_M(v)$ $(v \in \mathbb{R}^n)$. According to (2) and (4) we have $\varphi(0) = 0$. Hence, to prove the local reachability of system (\mathfrak{D}) , it remains to show that

$$0 \in \operatorname{int} \varphi(U),$$
 (5)

for every $U \in N(0)$.

To this end we shall prove that, for every $\epsilon > 0$, there is a real $\sigma > 0$ such that, if $v, v' \in B$ (0, σ), then there exists $R \in \Sigma$ satisfying

$$\parallel \varphi(v) - \varphi(v') - R(v - v') \parallel \leqslant \varepsilon \parallel v - v' \parallel. \tag{6}$$

Given a positive number ε , we set $x_0(v) = 0$ and pick a positive number s_1 such that

$$\varepsilon_1 < \frac{\varepsilon}{M(M+2) K^{2M+1}}, \tag{7}$$

where

$$K = \max_{k=0,1,..., \ M-1} \{1, \ \max_{k=1,2,..., \ M-1} \|P_k\|, \ \sup_{k=1,2,..., \ M-1} \|A_k\|, \ \sup_{k=0,1,... \ M-1} \|B_k\|\}. \tag{8}$$

Notice that $K < \infty$ because $\Delta_{k,x}$ and $\Delta_{k,n}$ are compact sets (see Section 2). By assumption, the mappings f_k (k=0,1,...,M-1) are continuous in a neighbourhood of $(0,0) \in R^n \times R^m$. Further, $x_k(0) = 0$. Then we can find $\sigma > 0$ such that for every pair $v,v' \in B(0,\sigma)$ and every $k \in \{0,1,...,M-1\}$ there is $C_k \in \Delta_k$ satisfying

Hence, by setting $A_k = \operatorname{pr}_x C_k$, $B_k = \operatorname{pr}_u C_k$ (see Section 2) we get $f_k(x_k(v), P_k v) - f_k(x_k(v'), P_k v') - A_k(x_k(v) - x_k(v')) - B_k(P_k v - P_k v')$ $= (\| x_k(v) - x_k(v') \| + \| P_k v - P_k v' \|)_{w_k}$ (10_k) for some $w_k \in B(0, \varepsilon_1)$.

For any $k \in \{1,2...,M\}$ combining $(10_{k-1}),...,(10_0)$ yields $x_k(v) - x_k(v') = A_{k-1} \dots A_1 B_0 (P_0 v - P_0 v') + \dots + A_{k-1} B_{k-2} (P_{k-2} v') - P_{k-1} v') + \|P_0 v - P_0 v'\| A_{k-1} \dots A_1 \omega_0 + P_{k-1} v') + \|P_0 v - P_0 v'\| A_{k-1} \dots A_1 \omega_0 + P_0 v'\| A_{k-1} \dots A_2 \omega_1 + \dots + P_1 v'\| A_2 \dots A_2 \omega_1 + \dots + P_1$

Consequently, in view of (8) we have

$$\| x_{k}(v) - x_{k}(v') \| \leq MK^{M+1} \| v - v' \| + M\varepsilon_{1}K^{M} \| v - v' \|$$

$$+ \varepsilon K^{M}(\| x_{0}(v) - x_{0}(v') \| + \dots + \| x_{k-1}(v) - x_{k-1}(v') \|).$$

$$(12_{k})$$

From (12_k) (k=1, 2, ..., M) and (7) it is easy to see that

$$\|x_k(v) - x_k(v')\| \le (M+1)K^{M+1} \|v - v'\|,$$
 (13_k)

for every $k \in \{1, 2, ..., M\}$.

Therefore, taking (11_M) , (13_k) (k = 1, 2,..., M) and (7) into account we have

$$\parallel x_{M}(v) - x_{M}(v') - R(v - v') \parallel \leq M \varepsilon_{1} K^{M} \parallel v - v' \parallel +$$

$$\begin{split} & \varepsilon_1 K^M(\parallel x_0(v) - x_0(v') \parallel + \ldots + \parallel x_{M-1}(v) - x_{M-1}(v') \parallel) \leqslant \varepsilon \parallel v - v' \parallel, \\ & \text{where } R = A_{M-1} \ldots A_1 B_0 P_0 + \ldots + A_{M-1} B_{M-2} P_{M-2} + B_{M-1} P_{M-1} \in \Sigma. \end{split}$$

Thus, the assertion (6) holds. Consequently, co Σ (the convex hull of Σ) is a shield for φ at $0 \in \mathbb{R}^n$. Since $\Delta_{k,x}$, $\Delta_{k,u}$ (k=0,1,...,M-1) are compact sets it follows that co Σ is a compact shield. On the other hand, every operator from co Σ is nonsingular. Then, by virtue of Theorem 1 we have (5). This completes the proof of the local reachability of system (9).

Proof of controllability. For every $(h, v) \in \mathbb{R}^n \times \mathbb{R}^n$ let us define

$$\begin{cases} x_1(h, v) = f_0(h, P_0 v), \\ x_2(h, v) = f_1(x_1(h, v), P_1 v), \\ \dots \\ x_M(h, v) = f_{M-1}(x_{M-1}(h, v), P_{M-1} v). \end{cases}$$

and consider the mappings $\varphi(h, v) = x_M(h, v)$. By an argument similar to the previous one, we can prove that the convex hull of the set

$$\begin{split} \widetilde{\Sigma} &= \{ \; [A_{M-1} \; ... \; A_1 \; A_0, \; A_{M-1} \; ... \; A_1 \; B_0 \; P_0 \; + \; ... \; + \; A_{M-1} \; B_{M-2} \; P_{M-2} \; + \\ &+ \; B_{M-1} \; P_{M-1}] \colon \; A_k \in \Delta_{k,x}, \; B_k \in \Delta_{k,n} \; (k=0,1 \; ..., \; M-1) \} \end{split}$$

is a compact shield for φ at $(0,0) \in \mathbb{R}^n \times \mathbb{R}^n$. Here, for any $A,B \in L(\mathbb{R}^n,\mathbb{R}^n)$ the operator $[A,B] \in L(\mathbb{R}^n \times \mathbb{R}^n,\mathbb{R}^n)$ is defined by

$$[A, B](h,v) = Ah + Bv$$

for every $(h, v) \in \mathbb{R}^n \times \mathbb{R}^n$. By virtue of Theorem 2, we can find two neighbourhoods $U, V \in N(0)$ and a locally Lipschitzian mapping Ψ from V into U such that, for every $(h, v) \in U \times V$, the equality $\varphi(h, v) = 0$ holds if and only if $v = \Psi(h)$. Since $\Psi(0) = 0$ and $0 \in \operatorname{int} \Omega$ it follows from the continuity of Ψ that there exists $U_1 \in N(0)$ such that $P_k \Psi(h) \in \Omega$ for $k \in \{0,1,...,M-1\}$ and $h \in U_1$. Without loss of generality we can assume that $U_1 \subset U$. Hence, for every $h \in U_1$, the vectors

$$u_0 = P_0 \ \Psi(h), ..., u_{M-1} = P_{M-1} \ \Psi(h)$$

satisfy the condition

$$h \xrightarrow{u_0, u_1, \dots, u_{M-1}} 0.$$

According to Definition 2, system (\mathfrak{D}) is locally controllable after M steps.

4. COROLLARIES

In this section we shall consider system (9) under the assumption that conditions (1) and (2) are satisfied. We also assume that the mappings f_k are locally Lipschitzian at $(0,0) \in \mathbb{R}^n \times \mathbb{R}^m$ and denote by $\Delta_{k,x}$ and $\Delta_{k,u}$ their Partial Generalized Jacobians (see Section 2).

Given 2M-1 operators $\overline{A}_k \in \Delta_{k,x}$ $(k=1,2,...,M-1), \overline{B}_k \in \Delta_{k,u}$ (k=0,1,...,M-1), we define

$$P_{0} = (\overline{A}_{M-1} \dots \overline{A}_{1} \overline{B}_{0})^{*}, P_{1} = (\overline{A}_{M-1} \dots \overline{A}_{2} \overline{B}_{1})^{*}, \dots, P_{M-1} = \overline{B}_{M-1}^{*},$$
(14)

$$\overline{R} = \overline{A}_{M-1} \dots \overline{A}_1 \overline{B}_0 P_0 + \overline{A}_{M-1} \dots \overline{A}_2 \overline{B}_1 P_1 + \dots + \overline{B}_{M-1} P_M, \qquad (15)$$

and

$$\rho_{M} = \max \left\{ \sup_{k \in \Delta_{k, x}} \|A_{k} - \overline{A}_{k}\|, \sup_{k \in \Delta_{k, u}} \|B_{k} - \overline{B}_{k}\| \right\}. \tag{17}$$

$$A_{k} \in \Delta_{k, x} \qquad B_{k} \in \Delta_{k, u}$$

$$k = 1, 2, ..., M - 1 \qquad k = 0, 1, ..., M - 1$$

Ϋ́

7

Note that every element of $L(\mathbb{R}^n, \mathbb{R}^m)$ can be identified with a $m \times n$ — matrix. Thus, the matrix defined by (16) contains M blocks, each of which is a $n \times m$ — matrix.

COROLLARY 1. Assume there exist 2M-1 operators $\overline{A}_k \in \Delta_k$, (k=1,2,...,M-1), $\overline{B}_k \in \Delta_k$, (k=0,1,...,M-1) such that the convex hull of the set (3) with $P_0, P_1,..., P_{M-1}$ defined by (14) consists only of nonsingular operators. Then the conclusion of Theorem 3 holds.

COROLLARY 2. Suppose there exist 2M-1 operators $A_k \in \Delta_{k, x}$ (k=1,2,...M-1), $\overline{B}_k \in \Delta_{k, x}$ (k=0,1,..., M-1) such that the matrix \bigwedge defined by (16) has maximal rank and

$$\rho_M < \frac{1}{2M K^{2M-1} \|\overline{R}^{-1}\|}$$

where K is the same as in (8). Then the conclusion of Theorem 3 holds.

Proof. According to (15) and (16) we have $\overline{R} = \Lambda \cdot \Lambda^*$. Since Λ has maximal rank, R is nonsingular. Using (17), (18) together with Theorem 4 in [7, Chap. IV, Section 5], we deduce that every element of the set co Σ is a nonsingular operator. Hence our result follows immediately from Corollary 1.

Now suppose that f_k are continuously differentiable in a neighbourhood of (0,0) and denote by A_k (resp., B_k) their partial derivative with respect to x (resp., u) at (0,0). As is known, such mappings are locally Lipschitzian at (0,0). Evidently $\Delta_{k,x} = \{A_k\}$ and $\Delta_{k,u} = \{B_k\}$.

The following result is due to L. Weiss ([1], Theorem 2).

COROLLARY 3. Assume that f_k (k=0,1,2,...) are continuously differentiable in a neighbourhood of (0,0). Let A_k , B_k be defined as above. If there exists an integer M such that the matrix Λ in (16) has maximal rank, then system (\mathfrak{D}) is locally reachable and locally controllable after M steps.

The proof is immediate from Corollary 2, because in this case $\rho_M=0$ and (18) holds automatically.

Acknowledgement. The author wishes to thank Dr. N.K. Son, Dr. V.N. Phat and Dr. P.H. Dien for many helpful remarks.

REFERENCES

- [1] L. Weiss, Controllability, realization and stability of discrete-time systems, SIAM J. Control, 10(1972), 230 251.
- [2] N.K. Son, Controllability of linear discrete-time systems with constrained controls in Banach spaces, Control and Cybernetics 10(1981), 5 16.
- [3] T.H. Sweetzer, A minimal sel-valued strong derivative for vector-valued Lipschitz functions, JOTA 23(1977), 549 562.
- [4] A.D. Ioffe, Différentielles généralisées d'une application localement Lipschitzienne d'un espace de Banach dans un autre, C.R. Acad. Sci. Paris 289 (1979), 637 640.
- [5] P.H. Dien, Some results on locally Lipschitzian mappings, Acta Math. Vietnamica 6 (1981), 97 - 105.
- [6] F.H. Clarke, On the inverse function theorem, Pacific J. Math. 64 (1976), 97-102.
- [7] A.N. Kolmogorov and S.V. Fomin, Foundations of the theory of functions and functional analysis. Moscow, 1968, (in Russian).
- [8] P.H. Sach, Differentiability of set-valued maps in Banach spaces, Preprint 13, Institute of Math., Hanoi (1984).
- [9] N.D. Yen. Implicit multivalued mappings and stable points of nonsmooth inequalities. Submitted to Acta Math. Vietnamica.

Received December 15, 1984

INSTITUTE OF MATHEMATICS, P.O. BOX 631, BO HO, 10 000 HANOI, VIETNAM