MAREMARK ON CLARKE'S TANGENT CONE

PHAM HUY DIEN and NGUYEN DONG YEN

Consider a multivalued mapping F from a normed space X into another Y, and denote by $T_{\Omega}(z_0)$ the Clarke's tangent cone to the set $\Omega = \text{graph } F$ at $z_0 = (x_0, y_0) \in \Omega$. The aim of this paper is to describe a relation between the cone $T_{\Omega}(z_0)$ and the set $F(x_0)$. Namely we shall establish the following equality.

$$T_{F(x_0)}(y_0) = \{y \colon (0, y) \in T_{\Omega}(z_0)\}$$
 (1)

Before proving this result let us recall some definitions.

DEFINITION 1. Let Z be a normed space, let $\Omega \subset Z$ and $z_0 \in \Omega$. The Clarke's tangent cone to Ω at z_0 , denoted by $T_{\Omega}(z_0)$, is the set of all $z \in Z$ with the following property: For every $\varepsilon > 0$ there exist $\lambda > 0$ and $\delta > 0$ such that

$$[z'+t(z+B_Z(0,\varepsilon)] \wedge \Omega \neq \phi,$$

for all $t \in (0, \lambda)$ and all $z' \in [z_0 + B_Z(0, \delta)] \cap \Omega$, where $B_Z(0, \alpha)$ denotes the closed ball in Z with radius α around z = 0 and ϕ stands for the empty set.

This definition is due to R. T. Rockafellar [1]. It is equivalent to the original definition of F. H. Clarke in [2].

As is well-known ([1], Theorem 1), $T_{\Omega}(z_0)$ is a nonempty closed convex cone. In addition, it has been shown in [3] that if Ω is convex, then $T_{\Omega}(z_0)$ coincides with the tangent cone in the sense of Convex Analysis, that is

$$T_{\Omega}(z_0) = \overline{\operatorname{con}} \, (\Omega - z_0),$$

where con A indicates the closure of the cone generated by A.

In the sequel, the product space Z of the spaces X and Y will be equipped with the norm

$$||z|| = \sqrt{||x||^2 + ||y||^2}$$
 $(z = (x, y) \in Z)_0$

Let us associate to the multivalued mapping F the sets

$$\Omega = \operatorname{graph} F = \{(x, y) : x \in X, y \in F(x)\},\$$
$$\operatorname{dom} F = \{x \in X : F(x) \neq \emptyset\}.$$

DEFINITION 2. The mapping F is lower semicontinuous at x_0 , if for any $y_0 \in F(x_0)$ and $\varepsilon > 0$, there exists $\delta > 0$ such that $F(x) \wedge (y_0 + B_Y(0, \varepsilon)) \neq \phi$ whenever $x \in [x_0 + B_X(0, \delta)] \wedge \text{dom } F$.

DEFINITION 3. The mapping F is locally Lipschitz at x_0 if there exist a neighbourhood U of x_0 and a positive real number α such that $F(x) \in F(x') + \|x - x'\| B_Y(0, \alpha)$ for every pair x, $x' \in U$.

Now, fix an arbitrary point $z_0 = (x_0, y_0) \in \Omega$ and consider the cone $T_{\Omega}(z_0)$.

PROPOSITION 1. Let F be lower semicontinuous at x_0 and F(x) be convex for all x in a neighbourhood of x_0 . Then

$$T_{F(x_0)}(y_0) \subseteq \{y : (0,y) \in T_{\Omega}(x_0, y_0)\}$$
 (2)

Proof. Without loss of generality, we can assume that $x_0 = 0$ and $y_0 = 0$.

Let $y_1 \in F(0)$, $y_1 \neq 0$. We must prove that

$$(0, y_1) \in T_{\Omega}(z_0).$$

To this end we fix an arbitrary $\varepsilon > 0$. Since F is lower semicontinuous at x_0 , there is $\delta \in (0, \varepsilon)$ such that

$$\left(y_1 + B_Y\left(0, \frac{\varepsilon}{3}\right)\right) \wedge F(x') \neq \emptyset$$
 (3)

whenever $x' \in B_X(0, \delta) \cap \text{dom } F$.

Let us set

$$\lambda = \frac{\varepsilon}{3 \| \mathbf{v}_1 \|}. \tag{4}$$

Assume that z' and t satisfy the following condition:

$$z' = (x', y') \in B_{\mathbf{Z}}(0, \delta) \wedge \Omega, t \in (0, \lambda).$$
 (5)

According to (3), there is $y'' \in F(x')$ such that

$$||y_1-y''||\leqslant \frac{\varepsilon}{3}.$$

If we set

$$\bar{x} = x',$$

$$\bar{y} = \frac{1}{1+t} y' + \frac{t}{1+t} y''.$$

then clearly $(\overline{x}, \overline{y}) \in \Omega$, because y', y" $\in F(x')$ and F(x') is convex-

From (3) through (6) it follows that

$$\begin{split} & \| (x',y') + t(0,y_1) - (\bar{x},\bar{y}) \| = \\ & = \frac{1}{1+t} \| ty' + t^2y_1 + t(y_1 - y'') \| \\ & \leq t(\|y'\| + t\|y_1\| + \|y_1 - y'\|) \\ & \leq t(\delta + \lambda \|y_1\| + \frac{\varepsilon}{3}) \leq t\varepsilon. \end{split}$$

Hence,

$$(x', y') + t(0, y_1) \in \Omega + tB_Z(0, \varepsilon),$$

that is

$$[(x', y') + t((0, y_1) + B_z(0, \varepsilon))] \cap \Omega \neq \emptyset.$$
 (7)

Therefore, for every $\varepsilon > 0$ we can find $\lambda = 0$ and $\delta > 0$ such that (7) holds for every pair (z', t) satisfying (3). This means that $(0, y_1) \in T_{\Omega}(z_0)$.

In the case where $y_1 \in F(0)$, $y_1 = 0$, the last inclusion is obvious. Since $T_{F(0)}(0) = \frac{1}{\cos r} F(0)$ and $T_{\Omega}(z_0)$ is a closed convex cone, the proof is thus complete.

The following proposition shows the conditions under which the converse of inclusion (2) is true.

PROPOSITION 2. If F is locally Lipschitz at x_0 and for all x in a neighbourhood of x_0 , F(x) is convex, then the converse of inclusion (2) holds.

Proof. Assume again that $x_0 = 0$, $y_0 = 0$. Because of the convexity of $F(x_0)$ we get

$$T_{F(x_0)}(y_0) = \overline{\operatorname{con}} F(0).$$

To prove the desired inclusion, we have to show that $\overline{y} \notin \operatorname{con} F(0)$ implies $(0, \overline{y}) \notin T_{\Omega}(z_0)$. Indeed, if $\overline{y} \notin \operatorname{con} F(0)$, there is $\eta > 0$ such that, for all $t \geqslant 0$,

$$\left\{t\overline{y} + \frac{t}{2}B_{Y}(0,\eta)\right\} \wedge \left\{F(0) + \frac{t}{2}B_{Y}(0,\eta)\right\} = \phi. \tag{8}$$

Since F is locally Lipschitz at 0, one can find a convex neighbourhood U of 0 and a positive real number α such that, for every $x \in U$,

$$F(x) \subset F(0) + ||x|| \cdot B_{\gamma}(0, \alpha). \tag{9}$$

Let us set
$$W_1 = U_1 \times V_1$$
, where $U_1 = U \cap B_X\left(0, \frac{\eta}{2\alpha}\right)$ and $V_1 = B_Y\left(0, \frac{\eta}{2}\right)$.

To prove the condition $(0, \overline{y}) \notin T_{\Omega}(z_0)$, it suffices to show that, for any $\lambda > 0$ and any neighbourhood $W' = U' \times V'$ of zero, there exist $t \in (0, \lambda)$ and $(x', y') \in W' \cap \Omega$ satisfying

$$[(x', y') + t((0, \overline{y}) + W_1)] \wedge \Omega = \emptyset.$$
(10)

indeed, putting $t = \min\left(\frac{\lambda}{2}, 1\right)$, x' = 0, y' = 0 and taking account of (8), one has

$$y' + t (\overline{y} + y) \notin F(0) + \frac{t}{2} B_{Y}(0, \eta)$$
(11)

for all $y \in V_1$.

On the other hand, from (9) it follows that

$$F(x' + tx) \subset F(0) + \frac{t}{2} B_Y(0, \eta)$$
 (12)

for all $x \in U_1$

Combining (11) and (12) yields $y' + t(\overline{y} + y) \notin F(x' + tx)$, whenever $x \in U_1$ and $y \in V_1$. This means that the condition (10) holds

O.E.D.

As a consequence of Propositions 1 and 2 we have

THEOREM. Let X, Y be normed spaces and F a multivalued mapping from X to Y which is locally Lipschitz at x_0 and takes convex values in a neighbourhood of x_0 . Then, for every $y_0 \in F(x_0)$, the inclusion (1) holds.

Acknowledgement: We would like to express our gratitude to Prof. Pham Huu Sach for his encouragement and advices.

REFERENCES

- [1] R.T. Rockafellar, Clarke's tangent cone and the boundaries of closed sets in Rⁿ, Nonlinear Analysis 3(1979), 145-154.
- [2] F.H. Clarke, Generalized gradients and applications, Trans. A.M.S. 205 (1975), 247-262.
- [3] R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math., Vol. XXXII, No. 2 (1980), 257-280.

Received February, 12, 1984

INSTITUTE OF MATHEMATICS, P.O. BOX 631. BOHO, 10.000 HANOI, VIETNAM