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0 "A-REMARK ON CLARKE'S TANGENT CONE -

" PHAM HUY DIEN ang NGUYEN DONG YEN -

Consider a multivalued mapping F from a normed space X into another ¥,
and denole by T,(z,) the Clarke’s tangent come to the set Q= graph F at
Zo = (T, Yo) €. The aim of this papér is to describe a r&lation between the
cone T5(z5) and the set F(x,). Namely we shall establish the following
equality. ' _ '
) T gy ) = {y: (0, y) € To(2)) ’ (1)

Before proving this result let us recall some definitions,

DEFINITION 1. Let Z be a normed space, let 2 ¢ Z and Zo € Q. The Clarke’s
tangent cone {o  al zo, denoled by T(zy), is the set of all z € Z with the follow-
ing property: For every ¢ > 0 lhere exist » = 0 and & > 0 such that

, [z’—{—t(z+BZ(o,s)]r\ﬂ+¢,
for all t e (0, &) and all z’ € [z, + B (0, 8)] n Q, where B,,(0,«) denotes the closed
ball in Z with radius o around z = 0 and ¢ siands for the empty set.

This definition is due to R. T. Rockafellar [1]. It is equivalent to the
original definition of F. H. Clarke in [2].)

As is well-known ([1}, Theorem 1), Ty(z.) is a nonempty closed convex
cone. In addition, it has been shown in [3] that if Q is convex, then T,(z0)
coincides with the tangent cone in the sense of Convex Analysis, that is

| Tozo) = con (Q — zy), f
Wwhere con A indicates the closure of the cone generated by A.

In the sequel, the product space Z of the spaces X and Y will be equipped
with the norm h

tzi=Y1z12 g1 =(a g <2,
Let us associate to the multivalned mapping F the sets
Q=graph F={(z,y): 2z X,y e F(z)},
dom F = {z ¢ X: F(x) = ¢}.
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DEFINITION 2. The mapping F is lower semicontinuous at o, if for uny
Yo € F(xg) and € >0, there exisis & > 0 such that F(x) n (g -+ By (0, =) & ¢
whenever @ & [z + By (0, 8)] N dom I,

DEFINITION 3. The mapping F is locally Lipschifz af xy if there exist a
neighbourhood U of x, and a positive real number o such that F(x) C F(x) +
+llx —a |l By (0, q) for every pairxz ,z’ & U. N
Now, fix an arbiirary point z, = (@p Y,) € ¢ and consider the core

T o (Zo)

PROPOSITION 1. Let F be lower semicontinuous at x, and F(x) be convex for
all  in a neighbourhood of xo. Then

T (g) 0) S {y: (0.y) & Ty (%0 §o)} | _ @

Proof. Without loss of generality, we can assume that x, = 0 and yo=0. '
Let y; & F(0), y; = 0. We must prove that '
: O, y1) & Talzg)-

To this end we fix an arbitrary ¢ > 0. Since F is lower semicontinuous at
x,, there is 8 (0, ) such that '

(52 + B¢ (0 =) ~F@) + b @)
whenever &’ € By (0, 3) n dom F,
Let’us set ' ‘
e
BEGA @

Assume ihat z’ and ¢ satisfy the following condition:
7 =(z" y)e B, (0, 8) N t&(0 1) )

According to (3), there is ¥y’ € F(z’) such that

£
hyi— g i< —5- (6) .
If we set
| 5-':38'9
p 1 v »”
y__1+i +1+z ?

then clearly (x, y) € Q. because ¥y, 4™ € F(x") and F(x") is convex.
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From &) thlough (6) it follows that
I =, y)—[—i"O Hl) — (@, y) fl =

1 2 —— LR]
=ix I iy +fy1—i—t(yl AeY
<Ngi+eiyl+ln—yn
<ﬂ6+lwd+—ﬂ te. |

'Hence,
' @ ) + 10, ) €+ tB (0, <),

that js .
' (@, ")+ £((0, 1) +- B_(0, eN] N Q £, @

Therefore, for every ¢ = 0 we can find A .- 0 and & > 0 such that (7} holds for
every pair (z°, ) satisfying (3). Thls means that (0 41) €T ().

In the case where y, e F(0), y, =0, the Iast inclusion is obvious. Since
TF(O)(O)=E;T.“F(O) and T (%) is a closed convex cone, the proof is thus
complete, ‘ 7

* The following proposition shows the conditions under which the converse
of inclusion (2)is true. :

PROPOSITION 2. If F is locally Lipschitz at xo and for all x in a neighbourhood
of x, F(x) is convex, then the converse of inclusion (2). holds.

Proof. Assume again that z, =0, y,= 0. Because of the convemty of F(xy)
we get

F(:r )(y(}) ‘“COﬁ‘F(O)

To prove the desired mclusmn, we have to show thaty ¢ con F (0) xmphes~

0, ) § Tq (zo). Indeed, if y ¢ con F(0), there is 7 > 0 such that, for all £ >> 0,

‘ )z? + 5 B 0.9 A [ FO + L By, =4 @

Since F is Iocally Llpschltz at 0, one can find a convex nelgbbourhood Uof 0
and a positive real number « such that, for every x ¢ U, .

F(z) CFQ) + iz [l By, a). | 9
Let us set “71= U1 X Va.’ where Ui =U N BX (09 ‘zp"‘) and Vl ﬂBY (Os :‘;]—)-
; Ak

To prove the condition (0, y) ¢ To(z,), it suffices to show that, for any A0

and any neighbourhood W’'=U"X V’ of zero, there exist te (0, A) and
(z, 7'y € W’ n Q satisfying |

(@, 9)+ 10y + W)lnQ=@g. - o)
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" fndeed, putting { = min (-7;: , 1) , 2’ = 0, g’ = 0 and taking acount of (8),
one has - 1 : )
g 1 G+ g €FO) + 5 Byl0:m) o oan
for aliye Vi _ ‘

On the other hand, from (9) it follows that

F@' + ) C F(0) + —;— By (0, m a4y

_for allz e U, .

Combining (11) and (12) yields y’ + iy + y) ¢ F(z* -+ ix), whenever x € Uy
and y € V,. This means that the condition (10) holds ' :
‘ ' ' | Q.E.D.

As a consequence of Propositions 1 and 2 we have

. THEOREM. Let X, Y be normed spaces and F a multivalued mapping fro}n Xio

Y which is locally Lipschitz at z, and takes convex values in a neighbourhood of
w,. Then, for every yo & F(wy), the inclusion (1) holds.
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