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A FINITE METHOD FOR GLOBALLY MINIMIZING
CONCAVE FUNCTIONS OVER UNBOUNDED
POLYHEDRAL CONVEX SETS AND ITS APPLICATIONS

TRAN VU THIEU

1. INTRODUCTION

We shall be concerned with the following concave programming problem:
Globally minimize f(x), subject to x € D, )
where f: RR——> Risa real—_value function, concave and finite on R2, D is a

polyhedral, not necessarily bounded, convex set in R™, Usually. Dis given expli-
citly by a finite system of linear equalities and (cr) inequalities of the form

(ai,x)»{—bi:O, igl®

(@,z)+b, <0 iel”
with af being n—-dimensional vectors,lbi real numbers and I° I finite sets
of indices. .

For the case where the constraint set D is bounded, i.e. D is a polytope,
this problem was lirst studied by H. Tuy in [8] and subsequently by a number
of researchers. Recently, some authors have also been interested in the case
where D may be unbounded (see [1], [9], [14]) and, as far as we know, the
most general problem of globally minimizing a conecave function over an ar-
bitrary closed, convex, set was investigated for the first time in [13] (see also
[10], [11]). The algorithm presented in [9], [14] are of the branch and bound
type and proceed according to the cone splitting scheme and the cone bisec-
tion scheme worked out in Tuy [8] and in Thoai and Tuy [6] respectively.
However, both these algorithms are in general infinite (though surely conver-
gent) and require solving a linear subproblem at’each step. The recent algo-
rithm of V.T.Ban [1] which is a further development of the basic ideas proposed
In [6], [8] — solves the proble n in finitely many steps by exploiting the linear
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structurc of the constraint set. However, in the applications we often have to
treat a sequence of linearly constrained concave minimizatior problems each
of which differs from the previous one oniy, by one additional consiraint. This
occurs for inslance in the context of outer ap proximation procedures or decom-
position schemes. It is thetefore of interest to have an algorithm which could
take advantage of this property. One such algorithm was given in [4] for the
case of bounded polyhedral convex constraint sets.

The purpose of the present paper is to extend the results in [4] o the
general case of arbitrary polyhedral convex consiraint sets.

The paper consists of 6 sections. After the Introduction, we shall present
in Section 2 a practical and relatively simple technique for determining the
vertices and the extreme directions of a polyhedral convex set that is obtained
by adding a mew linear constraint to a polyhedral convex set with known
vertices and extreme directions. This technique can be regarded as a further
development of the technique given in [4] for the case where the polyhedral
convex set is bounded. Then, in Section 3 we shall develop a finite algorithm
for globally minimizing a concave function over an arbitrary pelyhedral
convex set. This algorithm proceeds according to the same scheme as
that presented in [4], namely: starting from a relazed problem whose
consiraint set is a simple polyhedral convex set (e. g. the non negative
orthant), we gradually add the constraints one by one at each iteration until
4n oplimal solution of the current relaxed problem becomes feasible (and
hence, solyes the original problem). Our algorithm is quite different from
that of V.T. Ban [1] and, as will be shown in the sequel, it offers the
advantage of being particularly suitable for solving a sequence of problems
each of which differs from the previous one just by one additional cons-
traint. In Section 4 we shall discuss several particular fealures of applica-
tions of the present algorithm to the bilinear programming, the linear
complementarity problems and concave minimizalion problems with special
structure. In Section 5 a two—dimensional example is presented to illustrate
how the algorithm works in practice. Finally, in Section 6 some preliminary
computational experience is reported.

4

2. AN AUXILIARY PROBLEM 4

We begin with the following auxiliary problem: given a polyhedral
convex set whose vertices and extreme directions are known, how to determine
the vertices and extreme directions of a polyhedral convex set obtained
from the previous one by adjoining just a new constraint ? The main results,
which will play a basic role in the solution of problem (1), may also have
an independent interest.

To state this auxiliary problem precisely, let there be given a polyhedral
convex set M defined by a system of linear inequality constraints

g; @ = @, x + b <0 i=1.,m, @)

174



where a’ are n—dimensional vectors, b, are real numbers, m > n. Suppose

we already know the set 7 of vertices and the set V of extreme directions of
M, so that

M = co U 4 cone V.

Suppose that U = (M has at least one vertex), while V may be empty
(M is a polytope). Consider an dffine function

h(z) = (c,.x) + d
with ¢ being an n — dimensional non-zero vector, d a real number Define
the polyhedral convex set
M=Mn{xeR": hz)<0} (3)

We wish to compute the set I’ of vertices and the set V' of extreme directions
of M,

Let us denote
Um={uel: muy<0}, Utr={uel: h(u)>0} 4
Vo={veV: () <0}, Vt={veV: (c,0) >0} (5)
H = {ze R" : h(z) = 0}.
PROPOSITION 1. If U+ = V+ = ¢ then M’ = M, f.e. U' = U and V* == V.
Proof. From the hypotheses A(u)<{0 for all uel and (c,v) <0 for all

veV. Every 2 € M can be expressed in the form

r= 23 o, i+ X B,v
u€l nsyV

with @ 20,8 >0 and X« =1, hence h(z)=Za, h(u)-[—-“‘B (c,0) <

This means that r ¢ M’ and therefore, ¥ — M’. The converse inclusion is
obvious. Thus M* = M, as was to be proved.

PBOPOSITIQN 2. Suppose U-=V- =g
Q) IfUr =Uthen M’ =¢, ie. U =V =4,
b) Otherwise, U = U\ U+ and V' = ANV A

Proof. a) Ut = U and V- =¢ mean that h (z) > 0 forall u e U and(c 0y >0
for all v e V. Therefore, we have for every z € M
hx)= Z o M) + X B, (cv) >0
uel vEV
(note that there exists al leasi one @, > 0). So, M’ = ¢.

b) U~ =V~ =¢ mean that h(z)>0 for allu U and (c,v) > O0forallveV,
Therefore, A(x) > 0 for all ¥ € M and hence, M C {x: h(z) > 0}. So we have
M=Mn{x:h(zx)=0=MnH%¢
(since U\ (U+wU~) = U\U+ =+ ¢). This shows that M’ is a face of 3. There-
fore, each vertex (extreme direction) of M’ is also a vertex (an extreme direc-
tion) of M. Thus U’ = U\U+ and V’  V\V+. The converse inclusions being
obvions, the Proposition is pIOVBd
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PROPOSITION 3. Suppose U+ v V+ LoandlU- UV~ = B.
L a) U AU == UNU, |
b) any vertex w € U™\U musl be the intersection of the hyperplane H with

an edge of M connecting a verlex u~ & U~ with a vertex ut & U+, or emanating
from a vertex u e U~ (or U+) in a direction v €V+ (or V-, resp.).

Proof. a) For any ue '+ we have u¢ 3" and hence, u ¢ U" (since h(u) > 0).
On the other hand, eervy u € UN\U* belongs to M’ (since h(u) <C 0), hence is a
vertex of M. So UNU+ = U'nU (this relation holds even if O \U+ = ¢).

] b) Let w € U\ U. Denote by F(w) the smallest face of M containing w. Since

w¢ U we must have F(w)= {w} and hence, dim F(w) > 1. If dim Fw) > 1
then F(w) would have in common with H a line segment containing w in its
relative interior. This would conflict with w being a vertex of M’. Therefore,
dim F(w) = 1 and F(w) is an edge (bounded or unbounded) of M. Let us distin-
guish two cases:

CASE 1: F(w) is a bounded edge of M, For example, F(w) = [u,v] with u. v U
Thenw = tu+ (1—#)v for some f: 0<"t<'1, This implies h(u) = 0,
h(v) # 0. From the relation

h(w) = t.h(u) 4 (1 — 1).h(p) = 0
it follows that A(u).h(v) << 0. '

CASE 2: F(w) is an unbounded edge of M. For example, F(w) = {u + 6v:0 >0}

with u € U/, ve V. Then w=u v for some { > 0. This implies A(u) = O,

(c, V) + 0, Since ' |
'_ h(w) = h(u) + L{c, )= 0

we must have k(u).{c, v) <0, completing the proof,

PROPOSITION 4. Under the same hypotheses as in Proposition 3 :
b) any exireme direction v € V'\V satisfies (¢, v)= 0 and is of the form

v=2Ap + Mg with A, L > 0, (p, q) € V— X V+ defining a two-dimensional face of
the recession cone of M,

Proof. a) Let K and K’ denote the recession cone of M and M’ respectively, It
follows from (2), (3) that

K=cone V={xe R (d, )0, i=1,.., m},
K’= cone V' =K n {z ¢ R": (¢, ) < 0}.
This shows that VA\V+ =V’ A V.,

b) Let now » € V'\\V. Since v € V" there are among the constraints defining
K' (p-1) linearly indepz2ndent constraints binding tor ». Further, since » ¢V,one
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of these n-1 binding c¢onstraints must be (¢, v) = 0. Let J denote the index set
of the remaining n-2 binding constraints: J C {1,.., m}, | J | = n-2. Then

Z@y={xeK:(a/, 2)=0, jeJ}
is the smallest face of K containing the ray {fv : ¢ > 0}. Certainly,
Z(v) 5 {iv : { > O}, for otherwise v would be an extreme direction of ¥, i. e.
v ¢ V. Therefore, dim Z(v) =2 and hence, Z(v) is a two-dimensional cone de-
fined, for instance, by two extreme directions p and g belonging to V. We thus
have '

v = Ap + Hg with some A, i >0,
This implies (¢, p) == 0, (¢, g) == 0. From the relation

(c; )= A, p)+ K ) =0

it follows that (¢, p).(c, g} <0, completing the proof.

On the bgéic of Propositions 3, 4 one can determine the new. vertices of
M’ (i.e. the members of U’\U) and the new extreme directions of M’ (i.e. the
members of V'\ V) in the case U+UV+ == ¢ and U~ vV~ == ¢, as follows:

RULE A (for finding the new vertices of M): ,
a) For any pair (u—, u*)& U~ X U+ determine the point
w=tu" + (1 — Hu*, where I = h(u*) 7(B(u™) — h(u™).
b) For any pair (&, v) & {U~ X V+}u{U+ X V—} determine the point
- w = u -+ tv, where t = —h(u),/(c, v).

For each w defined By a) or b) denote by I(w) the index set of the cons-
fraints of form (2) that define M and are binding for w:

| Iw)y={i: g(w)__{)z...l . I},
It can be seen that in the case a)
Iwy={i: g, (@) = g,(@) =0, i=1,., m}
and in the case b) ‘ '
Iw) = {i : (@) = (@, v) =0, i =1,..., m}.
' Then, as can easily be verified '
Fw)={rxeM: g; (@) =0, ieI(w)}

is the smallest face of ¥ centaining w. Theréfore, if [I[(w)| <r — 1 or if there
exists a vertex z e U\ {u~, ut} (in the case a)) or ze ' /{u! (in the case b),
such that g, (z) =0 for all i e I(w? (i.e. z € F(w) n'U), then dim F(w) > 1 and

hence, by Proposition 3, w cannot be a vertex of X°: w ¢ U’. Otherwise, dim
F(w)==1 and w is a vertex of 3’: w e ",

RULE B (for finding the new extreme directions of #’):
For any pair (p, ) € V" x V¥ determine the peoint 7 = (¢, ¢)p — (¢, P) ¢-
{t is easily seen that v ¢ K and (¢, v) = 0, Let J(v) = {j: (@, v) =0
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j=1, w, mh Clearly J@)={,: (@/, py=(«/, @) =0, j= 1, .., m}. Then, as
can easily be verified,
Zw)={zeK: (a/, x) =0, je J(¥)}

is the smallest face of K conlaining the ray {{»: ¢ >> O}. Therefore, if IJ(v)| <<n—2
or if there is at least one zeV \ {p, q} such that (@, z)= 0 for all j e J(v)
(i.e. z € Z(v) ~ K), then dim Z(v) > 2 and hence, by Proposition 4, v cannot be
an extreme direction of M’: v ¢ V', Otherwise, dim Z(v) = 2 and » iz an
extreme direction of M : v eV, '

We have thus established the rules for determining the vertices and the
_exireme direclions of a polyhedral convex set M' of the form (3), once the
vertices and the extreme directions of the polyhedral convex set M are known.

The above results can also be applied to the case where 3’ is defined by
M =M n{xeR": hx) = (c, x) +d =10} (6)
i.e. M’ is obtained from M by adding a linear equality constraint. Actually,
since one equality constraint is equivalent to a system ol two opposite
inequality constraints, we can draw from Propositions 1 — 4 the following.

COROLLARY 1. Lef there be given a polyhedral convex set M with verlex sei U
and exireme direction set V. Let M’ be defined by (6), and let U' and V”’ be the
vertex sel and the extreme direction set of M respectwely Let U™, U+, V=, V+
be as before (see (4), (5)).

a) Suppose Ut ==Vt = ¢. If U~ =U then M’ =¢, t.e. U’ =V’ =¢. Otherwise,

=IN\U-, V'=V\V-.

b) Suppose U=~ =V—-=¢. If U+ =U fben M =¢,i.e. U"=V'=d¢. Other-
wise, " = I\ U+, V' =V\V+,

¢) Suppose Ut U V+ ppand U~V V™ = ¢. Then U’ nU =U N\ {U+ v U},
V' AnV=V\ {V+vV-} Furthermore, any vertex we U’ U must be the
intersection of the hyperplanc h () = 0 with a bounded edge [u, W] of M, such
that h(u).h(w’) <0, or an unbounded edge {u-6v- ¢>>0} of M such thal
h(u). (¢, v) < 0. Any exireme direction v & V'~V salisfies (¢, v) =0 and is of
the form v =ip -+ Nq with A, 1>0,(p, Qe V— x 'Vt defmmg a two-dimen-
sional face of the recession cone of M.

In the case ¢) the method for detérmining the new vertices of A (i,e. the
members of '\ U) and the new extreme directions of M’ (i,e. the members of
V'\\V) is exactly the same as in the case where M’ is of the form (3)

Furthermore, if M is a polytope (i.e, V = ¢) then, of course, M’ is a polytope
too and the determination of the vertex set U’ of M’ is a relatively easy task.
Namely, we get

COROLLARY 2 (Inequality consiraint case) Let M be a polylope with vertex set
U and let M be defined by (3). Lel U’ be the vertex sel of M’ and let U=, U+ be
defined by (4):

a) If U+ = ¢ then M = M, ie, U =U.

BYIfU~ =g¢then M =¢,i.e. U"=¢, when U+ =U and U'=U\U* when U+ =T,
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) If Ut = ¢, U™ 4=¢ then U' AU = UNU* and any verlex e U I mus!
be the interseclion of the hyperplane h(z) = 0 with some edge of M connecting a
vertex ue U— with a vertex v ¢ U+,

We thus recover in this special case the results of [4].

COROLLARY 3. (Equality consiraint case). Let M be a polytope with vertex set U
and let M’ be defined by (6). Let U’ be the verlex set of M’ and let U—, U+ be
defined by (4):
a) Stfzppose Ut w= ¢ If U= = U then M’ = [’ =¢. Otherwise, U’ == U\U".
by Suppose U~ = ¢. If Ut = U then M’ = U’ = ¢. Otherwise, U’ = UN\I/+.
¢) If Ut£¢ and U~ #¢ then ' nU =U\{U+ v U~} and any vertex

-well’\U must be the iniersection of the hyperplane h(x) =0 with some edge of
M connecling a vertex us U~ wih a vertex pel+.

In the case c) of Corollaries 2,3 to determine the new vertices of 1" (i.e. the
members of U\ U) one can apply Rule A as before (but w = tu + (1 — #)v with
u€ U=, velUt should be examined).

Remark 1, It can easily be verified that the above results still hold even if A is
given by a finite mixed system of linear equality and inequality constraints,

Remark 2. When 3 is a simplex the intersection of the hyperplane A(z) = 0
with any edge of 4/ connecting a vertex u ¢ U~ with a vertex v & U+ is exaclly &
vertex of M, so the determination of the new vertices of A/’ in this case is quite

easy.

Remark 3. By repeated application of the above resulis, one can compute all
the vertices and all the extreme directions of a polyhedral convex set D of

fhe form

D={z eR{: (d, )+ bR, 0, i=1l,., m} with R, being one of the rela-
tions = , <, >». Indeed, one can siart from SO = RY which obviously has only
one vertex 0 — the origin of coordinates, and n extreme directions el _the jth

unit vector in R (j = 1,..., n).

3. FINITE METHOD FOR CONCAVE MINIMIZATION UNDER
LINEAR CONSTRAINTS

Let us turn now to the main problem we are concerned with in this paper,
namely :

- Minimize f(x) subject to (D
(@, ©)+b5,<0, isl ., m (8)
ml> 0: J - 1’ vee s I (9)
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where f : R® — B is a concave function, defined throughout R" (hence conlin-
uou.s), a' are n-dimensional vectors and bi are real numbers. As previously,
denote by D the set of all points x satisfying (8), (9). :

We first observe the following properties. '
LEMMA 1. Let M be any convex sel in R", If f is unbounded below on some

ray contained in M with direction w, then f is also unbounded below on any ray
contained in M wilh the same direction w.

Proof. Let f(x) be continnous and unbounded below over the ray I,

= { u -+ Aw: A >0} and let r, = {v + Aw: ?L>0}C M. Suppose that f(a:)
is bounded below over Ly, i.e. flx) > v for aH T e F » Define B = min { v,
f(u)} Since f(x) is unbounded below over r, there is A, > 0 such that
flu + A w) < B. By virtue of the continnity of f on ', there exists a ball 5%
around u - 'n\. w such that f(:r) <Bforallxe M n W, Conmder any point

x=a0—5~(1—a)u+ljw=u+;\1w—|—rx(v——a),0<u<1.

For « small enough, x ¢ ¥ n W and hence f(x) <B. But we also have
, v
f@) =1 (04 - w) + (1~ 9y 0)

A ]
>af(v+—§—w)+(1-—a)f<u)x
> ey + (1 — a)f (u) > B.

This contradiction completes the proof,

LEMMA 2. Let M be any convex sef in R". It f is bounded below on every
extreme ray of M then f is also bounded below on'any ray contained in M,

Proof. From the hypotheses it follows that f attains its minimum "over M.
If I is a ray contained in M then obvmusly inf {f@@):zeTl} > int {f(x)"
zeM} > —~ oo

Denote now by S _the orthant R, Let U, be the vertex sef and ¥V be the ex-
treme direction set of S_. Obviously U, = {0 }, v, = - {el, ..., e}, where e/ is
the j—th unit vector in R*(j=1, .., n). Let I = {m<4-1,.., m+n} be the
index set of the consiraints defining So (the index m 4 j corresponds to the

consiraint x; > 0}

ITERATION & = 0,1, ..., m. At this iteration we already have a polyhedral
convex set Sk = D along with the set Uk of verfices, the set Vk of exfreme
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directions of S!: (generally, U, is non-empty, but :Vk may be emply), and the

index set I, of the constraints defining S;: I, C {1, .., m+n} LetJ, =
= {1, m}{\I;.

sTEP 1. It is known fhat a concave function which is bounded below over
a ray attains its minimum at the origin of this ray (see e. g. [2]). Therefore, if
there exist » € V, and 6 > 0 such that f(8.v) = f(C), then f is unbounded be-

low over the ray {iv : { >> 0} and hence, by Lemma 1, f is unbounded below
over any ray emanating from some point of Sk in the direction ». Compute

o =irréaJxk{(a ‘ N I)) }. ‘ (10)

a)If « << 0,i.e. (af ,v) 0 foralli=1,.., m,stop: either D = ¢ or the -
problem has no finite optimal solution and » is a direction of recession of D
over which f(2) is unbounded below. .
b) Otherwise, select , ]
[, = arg max {(a',v):iel], } (11)
and go to step 3:

STEP 2. If no exireme direction v as in Step 1 is discovered then the mini-
mum of f(x) over S, is attained in at least one vertex of S, . So we select

7 wk = arg min {f(u):ue U}
(it there are several candidates, take any one of them). Compute

g = max {(a!, wi)4 b, }. (12)
ze.lk

RO i, e (af, W)+ b, <L Oloralli=1, ..., m, stop: wk is an
optimal solution ol problem (7) — (9.
b) Otherwise, select ]
z'k=argmax{(ai,wk)—l—bi:ieJk} (13)
and go to Step 3.
STEP 3. Form the new polyhedral convex set

S pq=58.n {r @, D+ bik< 0} 14)

Ik-i—%szv{lk}'
Determine the set U of vertices and the set V + of extreme direc-
k41 ; k 1

tions of § using the techmique described in Section 2 (see Propositions

k&1
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{ — 4, Rule A and Rule B). It 5, , 1= 9 is discovered then D=¢ and stop.
Otherwise, set k «<— k.-+-1 and go to iteration k 4 1.

PROPOSITION 5. The above algorithin stc)ps'after at most m iterations.

Proof. Sinee at each iteration the current polyhedral convex set S \ 18 obtained
from the previous one, S Ppups by adding just one new constraint, since all these

Constraints are taken from the system (8), it is easily seen that the above
algorithm stops after at most m iterations. :

Remark 4. If step 2 occurs at some iteration k then by Lemma 2 it will occur
at any iteration 2 > k. Therefore, at each iteration h>> k, having found the

set of vertices and extreme directions of Sb-[-i’ one could return directly

to step 2. Specifically, for the case where I) is bounded, i.e. D is a polytope,
each iteration of the algorithm consists only of steps 2 and 3, and the algorithm
in this case reduces to the one developed in [4].

Remark 5. For convenience, we have restricted ourselves to Jproblems
with linear inequality constraints only, but with minor modifications the
above algorithm also applies to the case of linear equality constrainis. Indeed,
it instead of (8) we have

@, 2 + b =0 iecl, S ®
@,z +b <0, icl

with I ={1, .., r} and I- = {r 4 1, ..., m}, then (10) — (13) should be
replaced by (10%) — (13°) respectively.

@ == max max {i@d ., o) ts max {(at, v) } .
i€ nI A i €J, NI . (107
{, = arg max max {1, v }» max i@, v)}? ar)
ieq NI i€ 7, NI ’
p= maxs max  {|.af,wk) ¢+ b1}, max {(a', wh) 4+ b, }f (127
: (iel ,NI° Sl NI
{, =argmax| max 0{[((1" »WEY b [}, max  {(a’, wh)4 bi}f‘ (134

iEka\I z'Eka\I_

Also, if i, € 1% (14) sho ild be replaced by

Wl 'i
Sees = Senfer @k 9+, o), B

4
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Remark 6. The proposed algorithm can be started {rom any polyhedral convesx
setS, O [, provided its vertices and extreme directions are kmown (or can

casily be compuied). We have chosen S, = R”? but this is not necessary. The
. P + Iy

algorithm still works, if f(2) is continuous relative to S, only.

4. APPLICATIONS

In this section we shall apply the above algorithm to some important
problems ol mathematical programming,

I, THE BILINEAR PROGRAMMING PROBLEM

Minimize F(z,y) = clx+2T QTy+dTy
subject to xeD={zeR": Ax >a, x>0},
yeE={yeR” : BTy >b, y >0},.
where A is an m by n matrix, BT an i’ by n’ matrix, Q7 an n by n' maitrix;
a, b, c and d are m, m’, n, n’ — vectors respectively.

This problem has been cxtensively studied in the literature during the last
ten years. Most ol the solution methods up to now developed for it require
assumption about the boundedness of both D and E. In the sequel we shall
assume only that the set E is bounded (the case of bounded D is similar).
Our method is based upon the observation that the bilinear -programiming
problem can be converted into a concave minimization problem (see [3]).

Namely, let
f(x) = min{ F(x, y) ryekb} =¢'x 4+ min {(d—]—Q:c)Ty :yekE}
. = clo +max{bTu:Bu < d+- Qr,u>0), ' (15)
where the last equality follows from the Duality Theory in linear programming.

Then f(x) isa concave function delined throughout R and the bilinear program-
ming problem now reduces to minimizing f over D. Since for every = the value
of f (x) can easily be computed by solving a linear program (depending upon
x) over the polytope E, the algorithm developed in the prevmus sections
applies and yields a finite procedure for solving the bilinear programming

problem.
Note that in this case the checking of whether f is unbounded below over
a ray emanating from a given point Te Sk in an extreme direction v of Sk

(with §, D D as described in the above algorithm) i§ a relatively easy task.

Indeed, from (15} we have
f@+ooy=c @+ov)+max{d? u:Bu < d+ Q (@ + ), u> 0}
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To determine the largest value of 6 for which f (z —]— BD) >f (.r), it suf-
fices to solve the linear program

(L (v)): Maximize 6 subject to
bl o+bT u>f@ — L
—0Qv -+ Bu < d + Qx.
0>0,u>0

Let 0 be the optimal value in this program, If b= o», [ () attains its minimum
over the ray {Z - 0v:0 >0} at m, i. e. f is bounded below on this ray; if
not (§ < <), then by a well-known property of concave functions, [ is unbo-
unded below on this ray.

Note that at each given iteration, the linear programs (L (v)) associated
with different v < Sk differ from one another just by the column coefficient

of the variable 6. This property should be exploited by using reoptimization
techniques in solving these linear programs (L (v)).

II. THE LINEAR COMPLEMENTARITY PROBLEM

Find an n-vector x, an n- vector y and a p-vector z satisfying

- Arx + By 4+ Cz +b =0,
Ty:O;Q’:,!]:Z}G,ﬁ (16)

-

where A, B are m by n matrices, C is an m by p matrix, b is an m-vector.

As was shown [3], (z, 9, z) is a solution of (16). if and only if (, ¥, 2)
is an optimal solution of the following problem '

n
min { ! {x, y, z) = Z min (xi,yi):Ax+By+Cz+b=Q,

i=
‘ x, Yy, z >0} (17)
with I (z, ¥, 2) = 0.
Since the objective function of (17) is clearly a concave function, (17) is a

concave programming problem under linear constraints. Thus, instead of
solving the linear complementarity problem (16), we can solve the corresponding
concave minimization problem (17). If an optimal solution (x, E, 7) exists such
that ! (x, y, 2) =0, it is a solution to the lincar complementarity problem;
otherwise the linear complementarity problem has no solution.

The jidea of solving complemenlarity problems via concave programming
was first implemented in [7}, [9], [14]. However, since at that time algorithms
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for concave minimization were available only for problems with bounded con-
straint sets, the authors of [7], [9], [14] bad to overcome this boundedress
assnmption which, of course, does not hold for tie concave program equivalent
to the original complementarity problem, Actually, it was the extension of the
method in [7], [9], [14] that led to a general algorithm for concave minimization
over arbitrary {possibly unbounded) closed convex sets (see [13]).

‘With our approach the afgo vithm in Section 3 can be applied to the problem
(17) directly. Let us mention some particular feature of the algorithm when
applied to this problem.

a) Since I(z, y, z) > 0 for all points (z, y, z) & Ri’”’P and since S, (poly-
hedral convex set containing the constraint set D of (17) at iieration k of the

algorithm) is contained in Ri“"’P, I(z. y, z) is bounded below on every ray

of §,. Therefore, in solving the problem (17) by our algorithm step 1 has never
to be execuled (even though Sk is unbounded). By Remark 4, each iteration
will then consist only of steps 2 and 3. i
b) If at some iteration k
min { [z, ¥, 2): (@, ¥, 2) e U, } >0
(where, it will be recalled, Uk is the vertex set of Sk }, then
min { =z, y, 2) : (z, y,'7) & D}
> min { [ (x, y,z):(x,y,z)esk}
= min 4 [ (z, y, 2) : (x, y.2)e U, } >0,

which implies that the linear complementarity problem (16) has no solution. In
this case we stop the algorithm at iteration k.

An important special case of the problem (16) is when m = n, B = —E (E
is a unit matrix) and € = 0. Then the problem (16) becomes: Find x & R7 |
y € R™ such that | -

g=Az +b>0,x>0, 2Ty =0, (18)

It is offen in this form that the linear complementarity problem has been
treated in the literature. However, as mentioned in [14], most of the existing
methods solve the problem under some additional assamptions about the matrix
A. By contrast our algorithm can be applied in all cases where the problem is
solvable. The concave minimization problem equivalent to (18) is:

Minimize f(@), s.t. Az + b >0, > 0, - (19)
where- '

i=

fx) = }n___,"‘ min { ; , :ni a2+ b; | (20}
J= }
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If an optimal solution z exists such that f(&) = 0, it is a solutien to the linear
complementarity problem (18); otherwise (18) has no solution.

In sol\.ring problem (19) by our algorithm, the operation of checking
whethier f is unbounded below on a ray emanating from a given point z in a
direction v, can be performed as follows. We have from (20)

n

n . L .
flut o) = 3 minfy, 1 o, E a,u;+ b+ 0 E a,v;}

i
= 2 min{u, 4 oy, o+ 08, ),

J

where &; = : G[.juj_}__ b, B, = }j : a.v;. Therelore, for alI_ i = 1,..,
n with large enough 8 we havye |

; +ﬂvi if vt<Bi,or
min{ui—}—evi,ai—}-egi}: o, = p,and u, < e,
o; 1 6@, otherwise,

Hence, for large enough .

f(uton)= L2 +0v,) +%§(ui + 0B, ) =2 - 8,
i K

ek
where K = { t:p, < B orv, =B, , u <a pA= 3T u + ¥ e
ickK.- i¢K
and b = 577 v, + % B; . Therefore, if X < 0 then f (@ + 80) —> — oo
i€ K itk

8  —— o=} otherwise f is hounded from below over the ray {u-4-6v: 6 > 0}. -

III. CONCAVE MINIMIZATION WITH SPECIAL STRUCTURE

In a recent work [12] H, Tuy has developed a decomposition method for

solving the following class of concave minimization problems under linear
consiraints '

minimize f(x), sudject to ' E (21)
Az 4 By + ¢ < 0, : (22)
reX, y€y, | - (23)

where X, Y are polyhedral convex sets in RP , RY respectively, A an m by p
matrix, B an m by ¢ matrix, ¢ an m-veector and f(z) a continous concave
function over X. Here p is assumed to be small as compaired to n=p 4 g¢.

The basic idea of the methed is to reduce the original problem (21) — (23)
to.a finite sequence of linearly constrained concave minimization subproblems
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in the variable @, such that each subproblem is obtained from the previons
one by adding just a new linear constraint. Therefore, to solve these problems
our algorithm could be osed advantageously,

5. A SIMPLE ILLUSTRATIVE EXAMPLE

Here a two-dimensional example will illustrate how the algorithm might
perform on problems with unbounded constraint set,

We consider the problem :
Ty x

Minimize f(z) = —
Ty tE, T; + Ty

005 (x, — x, ) ?

subject to
——33:1 + z, -1 0 (1)

—3% ——5.1'2 + 230 ()
T, — ki, — 20 (8)
-z, + x2—~5a~g0 (1)
x; > 0
Ty > 0

Fig. 1 depicts the constraint set D (note that f(x) is a concave function,

defined and continuous on Rﬁ_ o D).

Xg

12

Fig. 1. The constraint set D
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The algorithm starts from S, = Ri with vertex setU = {ui} and extre-

_me direction set Vo={vi , v? 1}, where ul = (0, 0) with Feu? )

=, 0) and v? = (0, 1).

ITERATION O. On the ray {z = twl =, 0:t> 0} we have

f(x) = — 0.05t —— — o0 a8 ! —— —} oo,
i, g.f is unbounded below over this ray. According to (10) we compute

‘e = max {—3, =3, 1, —-1}__1>0
and selecti = 3. Thus

SI:S r\{:x: :c1~—4x — 2 L 0},

g- = {ul}, UF=¢, V- =}, 77 = {o1}.
Applying Rule A, the pair (uI, v1)eli-xV+ gencrales a new

0,

vertex

= (2,0) with f(u?)=—0.1, Applymg Rule B, the pair (2, p1ye V- x V+

generates a new extreme direction v3 = (4,1). So we have, by Proposition 3,

U, m{ui, u?} and, by Proposition 4, V, = {02, 03},
ITERATION 1. On the ray {:L' = tvd = (41, D:it> O} we have

42 0.05 x 9t~
- 5t

i.e. f(x) attains its minimnm atthe origin of this ray.

071t—>c>oasf.—>oo

fl@) =

On the ray {x = tv? =(0,t):1 >0} we have
f(x) = —0.05f — — oo as { — - oo,
i.e. f(x) is unbounded below on this ray. Compute
«=max {1, -5, 1}=1)0.
We select i;=1 Thus

U= ui, WY, Ur=¢, V-= v}, V= {2}
!

The pair ui, v2yelU~xV+ generates a new veriex ud = (0,1) with
P g

f(u3) = — 0.05, while (u?, »?)eU~ x V+ generates no vertex and @®,v?)eV "xV+

gives a new extreme direction #* = (1. 3). So we have

U2={u u?, u*} V, = {03, u""'}.
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ITERATION 2. { x) is bounded on the rays {t° it>0tand {tv* :t >0L
So we nave ' :

min {f(z): z €S, } = min {f@’), f@u?), fu3)} =
= min {0, — 0.1, —0.05 }=—0.1
and w? = u? = (2,0). According to (12) we compute
B=max {17,—7}=17>0.
Zelect z’2 = 2 and
S, =258, n{xz: -3z, — b2, + 230 }.
Um=¢,U+={nl, u?, u3},V-={0%, ot} V+ =y,
(u?, v3)eU+ X V™ gives a new verlex ut = (6,1) with f(u*) — 0.67857143

and (u%, v*)eU+ X V= gives a new verlex u% = (1,4) with f(u’)=0.71 (the other
pairs in U+ x V— give no vertex). We thus have

Ug={u, u’}and Vo= {03, v}

ITERATION 3. There is no extreme ray of S, over which f(x) is unbounded
below, so :

min {f(z):2eS, } = min { f(u*), f(us) }&= 0.67857143

and w’= a* =(6, 1). According to (12)

Hence, the optimal solution u* = (6,1) is found with the objective function
value f(u?)=0,67857143. -

L

6. COMPUTATIONAL EXPERIENCE

The above algorithm was coded in FORTRAN IV ‘and has been run on a
IBM 360/50. It was tested on a number of concave minimization problems
with boanded constraint sets and with negative quadratic, piecewise linear
concave, linear fixed-charge and exponential objective functions, The largest
problem so far treated using this algorithm .is a 16-variable, 14-constraint
problem having a linear fixed-charge objeclive function. The algorithm solves
the problem after three iterations having generated 497 vertices. The computer
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time was 6.11 minutes. Preliminary resuits presented below show that the
average number of iterations required lor obtaining an oplimal solution is
about m/2 (m is the number of linear equality and inequality constraints, not
including non-negativity constraints). Therefore this is a viable method for
concave minimization problems with a moderate size. Some other computational
experiments carried out by Ng. V. Thoai [5] also demonstrated the efficiency
of this algorithm when applied to the decomposition method developed in J12].
Additional computational experience for problems with unbounded constraint
set will be reported in a subsequent paper.

Maximal
Size Objective - Number of number of C,PU
Problem of A function iterations  generated time
' vertices (Minute)
1 4X2 Quadratic 2 4 0.01
2 4 X2 _— 2 . 5 0.02
3 §xX2 — 3 & 0.02
4 5X3 — 5 8 0.02
5 9X3 —_ 5 10 0.05
6 2x4 — b1 8 0.02
7 4X5 — 4 24 T0.04
8 4X8 —_ i 25 0.03
9 6X8 -— 3 46 0.07
10 6X38 Piecewise 3 48 0.10
linear econcave

11 5% 12 Quadratic 3 48 ' 0.82
12 11 X 10. — 4 116 0.61
13 11 X 10 Exponential 5 231 " 2.24
14 " 14 X 16 Fixed-charge 3 497 6.11

" Acknowlegment, The author would like to thank prof. Hoang Tuy for his
valuable comments and advices.

Received April 10, 1983
Revised January 12, 1984

REFERENCES

[1] Y.T. Ban, A finite algorithm for minimizing a concave function under Hnear
. sonsiraints and its applicafions. Proceedings of IFIP Working Conference on Recent Advances
on System Modelling and Optimization, Hanoi, January 1983.
[2] R.T. Rockafellar, Conver analysis. Princeton Univ. Press. Princeton, New
Jersey, 1970. :
. {8] T.V. Thieu, Relationship between bilinear programming and concave minimization
nnder linear constrainfs. Acta Mathematica Vietnamica. 5(1980), M 2, 106 — 113.



i4] T.¥ Thiew, B.T. Tam and V.T. Ban, An oufer approrimation method for globally
minimizing a concave funciion over a compact conver sel Acta Mathemaltiea Vielnamica.
8 (1983), Net, 21 — 46. :

[5] Ng. V. Thoai, Computational testing procedure of Tuy’ s decomposifion method for
a class of concave programming problems. Preprint. Institute of Mathematics, Hanoi 1983,

[6] Ng. V. Thoai and H. Tuy, Convergent aigorithms jor minimizing a concave functicn.
Mathematics of Operations Research. 5 (1980), 556 — 566.

[7] Ng. V. Thoai and H. Tuy, Solving the linear complemeniarily problem through concave
programming. J. Vychisl. MatkL. i math. Fiziki. 23 (1983), 602 — 608.

{8] H. Tuy, Concave programiming under linesr consiraints. Doklady Akad. Naunk,
USSR. 150 (1984), 32 — 35. Translated Soviet Math. 5 (1964), 1437 - 1440,

[9] H. Tuy. Conical algorithin for solving a class of cemplementarily problems. Acta
Mathematica Vietuamica. 6 (1980, Net, 3 — 17,

[10] H. Tuy, Global mazimization of a convex funciion over a closed, convex, nol
necessarily bounded set. Cahier de Math. de 1a Decision n® 8223 CEREMADE Univ. Paris-
Dauphine 1982.

[11] H. Tuy, On oufer approximation methods for solving concave minimization problems.
Acta Mathemalica Vietnamica, 8 (1983), M\e 2, 8 — 34.

[12] H. Tuy, Concave minimization under lirear consiraints with special structures
Optimization. 16 (1985), 1 — 18.

[13] H. Tuy, T. V. Thieu and Ng. Q. Thai, A conical algorithm for globally minimizing
a coneave funciion over a closed convexr sef. Mathematics of Operations Research
(forthcoming).

[14] H. Tuy and Ng. V. Thoai, Solving the linear complementarity problem via concave
programming, Methods of Operations Research, Proceedings of the V Symposium on
Operations Research, Koln, August 25 — 27, 1980. Ed. R.E. Burkard» T. Ellinger,
175 — 178.

INSTITUTE OF MATHEMATICS, P. 0. BOX 631, BOHO, 10000 HANOI, VIET-NAM

e IR , 161



